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Abstract: Though forest ecosystems play a critical role in enhancing ecological, environmental,
economic, and societal sustainability, on a global scale, their future outlooks are uncertain given
the wide-ranging threats they are exposed to. The uniqueness of this study is to provide a line of
evidence in which forest change trajectories are not only tracked but also evaluated through the
lenses of forestry and economic oriented events’ timelines. The dynamics of forest change trajectories
were mined using a temporal model. To understand the forces driving the changes, the change
trajectories were linked to the timelines when forestry policies and economic factors where adopted.
During 1980–1990, the forest change trajectory assumed a peak (forest gain). This was interpreted
as a response to the adoption of policies that promoted ecological conservation. During 1995–2010,
the forest change trajectories reflected the response to the antagonistic effects of forest-oriented
policies and the economy-oriented drivers. During 2010–2015, the forest change trajectories assumed
a deep (forest loss). This was attributed as a response to the economy-oriented factors. However,
inferences from the results indicated that deforestation driven by economic factors was restricted by
forest management policies. Though the role of economic factors has promoted developments within
the study area, forest policies still constrain illegal logging and play a key role in protecting forests.
We hope that insights from this study will inform, support and guide decisions for precise and smart
sustainable forest management plans.

Keywords: forest change trajectories; spatial-temporal analysis; remote sensing; forest policy and
economic factors; Guangdong-Hongkong-Macao (GHKM)

1. Introduction

Forest plays a critical role in the provision of many ecosystem services, according to the
Millennium Ecosystem Assessment (MEA) [1]. For example, they provide supporting ser-
vices (nutrient cycling, seed dispersal, and soil conversation), provisioning services (timber,
fuelwood, and food stuff), cultural services (source of aesthetic recreational, and spiritual
values) and regulating services (water shed protection, biodiversity protection, and climate
change mitigation) [2,3]. On a global scale, however, their functional integrity continues to
be, undervalued, interfered, disturbed, and compromised [1,4]. This implies that their re-
silience is exposed to a range of vulnerabilities and threats and, hence, their future outlooks
are uncertain. The concern is much more prevalent in developing economies where, due to
booming populations, industrialization, and urban agglomerations, forests are cleared to
meet the demand for space [5]. Even if the whole forest is not cleared, fragmenting the for-
est ecosystem alters its natural structure. The forest fragments act as blocks that break the
holistic flow of the ecosystem services that promote environmental, economic, and social
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well-being. This underlines why information on forest dynamics and their driving forces is
key input to understanding the role of anthropogenic activities on ecosystem services [5].

Land use/cover change (LUCC) can directly reflect the forest change amplitude, direc-
tion and trend. The reported approaches on LUCC include field observation, meta-analysis [6–8]
and remote sensing (RS) [9]. The rapid development in RS technology has opened new
possibilities to effectively monitor forest cover changes in terms of time, costs, and logistics.
The availability of cost-free satellite data archives of dense time series observations to
the public domain has made forest monitoring remarkably cost effective. RS images data
cover expansive areas including remote areas that would otherwise be too difficult to reach
during field observations making the logistics of forest monitoring remarkably effective.
RS images from platforms such as NOAA/AVHRR [10,11], MODIS [12–15], and Land-
sat [16,17] are commonly have been widely used to analyze forest cover dynamics in space
and time.

LUCC can be detected from RS products using bi-temporal detection and time trajec-
tory analysis [18]. The bi-temporal detection approaches use data of two different epochs
to reveal the changes. Time trajectory analysis, on the other hand, captures detailed LUCC
dynamics that reveal the trajectories over time [19]. Owing to the detailed nature in which
temporal trajectory analysis can reveal the changes, the approach has, in the past, been used
to reveal deforestation and forest fragmentation within the Amazon [20,21], land cover
changes in arid zones in the face of climate change [22], tropical forest disturbance [23],
forest cover changes in southern Chile [24] and arable land changes in an economically
viable location in China [25]. In most of these studies, derivatives from satellite images
such as indexes are commonly used as proxies for green land cover. The most widely used
indexes include the Normalized Differential Vegetation Index (NDVI) [26], Enhanced Vege-
tation Index (EVI) [27] and Normalized Difference Fraction Index (NDFI) [28] as well as
other indices related to the forest growth such as Normalized Combustion Rate (NBR) [29].
In many of the past studies, inferences to indicate the health of the forests are linked
to climatic conditions. Rarely are these inferences analyzed to indicate the synergistic
and antagonistic role of forest management policies as well as economic factors on forest
change dynamics.

The Guangdong-Hongkong-Macao (GHKM) region is particularly relevant for this
study because it represents management conflict hot spot where stakeholders’ interests
clash owing to the land potential and its intrinsic value. Ecologically, the region is an
important forestry resource bank with a host of species. On the other hand, the region has
exceedingly high economic potential in China and thus is on high demand for investors.
Therefore, the development of sustainable plans is conflicted by entities promoting eco-
nomic development agendas against the interests of those campaigning for forest protection
and ecological conservation [30]. This scenario though locally unique to this region, it is
relatable to many regions of the world where conflicts of interest have seen irreversible
conversion of expansive forested areas to other land uses. As such, we use it as a case study
with the hope that the insights from this research can inform a global audience.

Our research takes a three-fold approach: First, the spatiotemporal dynamics of
forested areas in GHKM are analyzed by constructing temporal trajectories. The second
phase involves linking the change trajectories to the timelines of forestry policies and eco-
nomic factors were adopted to reveal the transformation from forest policy-oriented forest
change drivers during 1980–1990 to economy-oriented drivers during 2010–2015. In the
third phase, deforestation is linked to physical factors (such as slope and altitude) to evalu-
ate the constraint role of policies when economic factors are the lead actors. Specifically,
this paper aims to (1) track spatial and temporal dynamics of forest patterns in GHKM
during 1980–2015; (2) elaborate the synergistic role of forest policy and economic drivers in
forest change dynamics and trajectories.
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2. Materials and Methods
2.1. Study Area

The “Guangdong-Hongkong-Macao” region (GHKM) in China is located within the
southern coastal zone covering three provinces including; Guangdong, Hong Kong and
Macao (Figure 1). GHKM is characterized by a subtropical humid and warm monsoon
climate. As such, the region is heavily endorsed with expansive forestry resource of
high species richness, such as mangroves, rubber, tropical fruit trees, bamboos, and tea
trees. To better capture the forest features and rightly articulate their change patterns
and dynamics, this study divides the GHKM region into four: the Eastern Guangdong
region (EGR), the Western Guangdong region (WGR), the Northeast Guangdong region
(NGR) and the Guangdong-Hong Kong-Macao Greater Bay Area (GHKM-GBA) [31].
The EGR region is a famous tea production zone and covers four cities namely: Chaozhou,
Shantou, Shanwei and Jieyang. The WGR region is well known for agricultural production
especially tropical fruits in Leizhou Peninsula and covers three cities including Maoming,
Zhanjiang and Yangjiang. The NGR is a mountain zone and has the highest altitude in the
GHKM and includes Shaoguan, Qingyuan, Meizhou, Heyuan and Yunfu city. The GHKM-
GBA is among one of the highly developed urban agglomeration in China and includes
Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen,
Zhaoqing, Hong Kong and Macao City.

Figure 1. Location of the study area in China illustrating the four regions of the study.

2.2. Data

The gridded land use data from 1980 to 2015 and vector data of administrative
divisions was obtained from Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (RESDC) (http://www.resdc.cn) [32]. The land use data was
generated from Landsat data remote sensing images, with reference to China’s land-use
remote sensing mapping system [32]. The forest types were categorized into: closed-
canopy forests (canopy closure > 30%), shrub (canopy closure > 40% and height below
2 m), sparse forests (with canopy closure between 10 and 30%), and other-forest types
(e.g., orchards) [33]. The accuracy of the forest type’s classification was greater than 90%
for the 1980 data [34], 95% for the 1990–2000 data [35], 98% for the 2005 data [36], 94.3% for
2010 data [37] and 93% for the 2015 data [38]. The forest policies were acquired from the
central government of China, China forestry network and from Guangdong Provincial
People’s Government websites. The forestry output values, GDP per capita and agricultural

http://www.resdc.cn
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labors data after 1990 was obtained from the statistical yearbook of Guangdong province.
The physical data of the study area such as altitude and slope data were derived from the
CGIAR-CSI SRTM/SRTM 90 m DEM Digital Elevation Database (http://srtm.csi.cgiar.org).

2.3. Methods

To construct a temporal trajectory model for the estimation of the forest dynamics
(Figure 2), the land use data from 1980 to 2015 was classified into forest/non-forest maps.
50 temporal trajectories were selected and summarized into five categories namely:

• Permanent forest: A forest pixel that without change in status remained a forest pixel
between 1980 and 2015.

• Permanent non-forest: A non-forest pixel that remained non-forest between 1980 and
2015 without change in status.

• Afforestation: A pixel that was non-forested in the early period but later transformed
into a forested pixel within four temporal trajectories.

• Deforestation: A forested pixel that was transformed into a non-forest pixel with five
temporal trajectories.

• Unstable change: A pixel that underwent irregular transformations from forest to
non-forest and vice-versa making the transformation pattern hard to track.

Figure 2. A graphical outline of the research framework.

The above-mentioned five change trajectories were summarized into three major cate-
gories namely: unchanged (Permanent forest and Permanent non-forest), stable (afforestation
and deforestation) and unstable (the irregular change patterns).

To understand the role of policies on the forest change dynamics, the forest trajectories
were linked to the forestry policies and economic factors adoption timelines bearing into
consideration that there is a time lag between when the polices are adopted and when their
impact would be reflected on the forest changes.

2.3.1. Forest Change Trajectories Dynamics

Following Zhou et al. (2011) [22] and Feng et al. (2014) [39], a temporal trajectory
model was used to reveal patterns in the forest change dynamics. To keep tract of the
change patterns, forested pixels were coded as 1 while non-forested pixels were coded as
0. The codes’ change trajectories were tracked and analyzed within 5-timestep including
1980–1990, 1990–1995, 1995–2000, 2000–2005, and 2010–2015. Thus, a change trajectory of
“1110000” as is illustrated in Figure 3 indicates a pixel that was a forested pixel in 1980,
1990, and 1995 but was a non-forested pixel in 2000, 2005, 2010 and 2015. In other words,
the pixel underwent a conversion from forested pixel to non-forested pixel (deforestation)
during 1980–2015.

http://srtm.csi.cgiar.org
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Figure 3. Example of forest temporal trajectory model.

2.3.2. Temporal and Spatial Cluster Analysis

The Global Moran’s Index [40] was used to indicate the degree of forest’s clustering in
the timing of afforestation and deforestation. The global Moran’s Index is given by:

I =
n ∑n

i=1 ∑n
j=1 ωi,jZiZj

S0 ∑n
i=1 Z2

i
(1)

where Zi is the deviation of an attribute for feature i from its mean
(
xi − X

)
, ωi,j is the

spatial weight between feature i and j, n is the total number of features, and S0 is the
aggregate of all the spatial weights. S0 is given by:

So =
n

∑
i=1

n

∑
j=1

ωi,j (2)

To determine the degree into which the forested areas were cluttered spatially (gains
and losses), a Local Getis-Ord Gi* algorithm [41] was used. This method is robust in identi-
fying areas with highly significant clustering (hot spot), which represents afforested areas,
as well as those areas whose clustering was of low significance (cold spot), which represent
deforested areas.

The Local Getis-Ord Gi* algorithm is given by:

G∗
i =

∑n
j=1 ωi,jxj − X ∑n

j=1 ωi,j

s

√ [
n ∑n

j=1 ω2
i,j−

(
∑n

j=1 ωi,j

)2
]

n−1

X =
∑n

j=1 xj

n
S =

√
∑n

j=1 x2
j

n
− (x)2 (3)

where xj is the attribute value of factor j and ωi,j is the spatial weight between factor i and
j, and n is the number of factors.

2.3.3. Driving Mechanisms Analysis

Forestry output value of various forest types (including the value of timber and
other forest products) (X1), GDP per capita (X2), agricultural labors (X3), average altitude
(X4) and average slope (X5) were correlated to closed-canopy forest (Y1), shrub (Y2),
sparse forest (Y3), other-forest (Y4), total forest (Y5), afforestation (Y6) and deforestation
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(Y7) to evaluate if there was a significant relationship, by employing a correlation analysis
method within the SPSS software.

3. Results
3.1. The Spatial-Temporal Dynamics of Forest Types

Considering the whole study time frame (1980–2015), the coverage of the closed-
canopy forest coverage which is the main forest type within GHKM decreased by 1477 km2.
However, slicing the study time frame into narrower time frames exposed the time bound
trajectories of the change dynamics. For example, using the 1980–1995 timeframe, the anal-
ysis indicated that the closed-canopy forest area coverage increased by 1806 km2. However,
during 1995–2015, they experienced a negative trend and decreased by 3283 km2. The mag-
nitude of the negative change during 1995–2015 thus overweighed the positive experienced
during 1980–1995 and hence the observed decrease reported when the full timeframe
i.e., 1980–2015 is considered (Table 1). Interestingly, between 1980 and 2015, other-forest
types increased by 2404 km2. A breakdown of the temporal dynamics indicated that
during 1980–1995 the other forests type was characterized by decreased trends in which
837 km2 were lost while during the 1995–2010 they experienced an increasing trend in
which 3291 km2 were gained and hence the gain overweighed the loss. Narrowing the
analysis to the forest types revealed that the area coverage of the sparse forest and the
shrubs decreased by 806 and 165 km2, respectively from 1980 to 2015.

Table 1. Temporal change of forest types in GHKM from 1980 to 2015 (km2). (“+” indicates increase,
“−” indicates decrease).

Closed-Canopy
Forest Shrub Sparse

Forest Other-Forest Total

1980–1990 +822 +73 −166 −93 +636
1990–1995 +984 −103 −112 −744 +25
1995–2000 −1187 −17 −31 +1211 −24
2000–2005 −356 −4 −50 +349 −61
2005–2010 −1105 −120 −392 +1731 +114
2010–2015 −635 +6 −55 −50 −734
1980–2015 −1477 −165 −806 +2404 −44

The GHKM-GBA region has witnessed rapid urban expansions since 1978; a factor
that is highly attributed to the China’s reform and open policy. Within this region, forested
areas have gradually been “swallowed” and dissolved by urban expansions. Illustrative of
this is the reported decreased trends of forest cover in all major cities within GBA region
except Hong Kong from 1980 to 2015. Macao, Dongguan and Shenzhen city all reported
forest cover loss of greater than 10%, with Macao experiencing 15.79%, Dongguan 12.61%
and Shenzhen 11.59% loss (Table 2). Within the WGR, EGR and NGR region (except Yunfu
City), forest coverage increased at a slight rate. Among these regions, the largest forest
area expansion was observed within the NGR region in which an increase of 461 km2 was
reported. Compared to the other regions, the highest increase rate (1.08%) of the forested
areas was reported within the WGR.
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Table 2. Forests’ spatial dynamics in GHKM from 1980 to 2015.

Region City
Percent Between Forest Area and the Total Area of Each City (%)

1980 1990 1995 2000 2005 2010 2015

GBA

Guangzhou 43.55 43.75 43.58 43.57 42.94 42.27 42.04
Shenzhen 51.65 51.22 45.97 45.75 41.85 40.61 40.06

Foshan 24.01 24.04 23.96 23.99 23.06 22.49 22.27
Dongguan 35.08 35.12 31.56 31.40 24.89 22.92 22.47
Huizhou 64.34 64.62 64.23 64.55 64.50 64.32 63.88
Zhuhai 31.28 32.66 31.79 31.71 31.35 31.35 30.91

Zhongshan 20.78 22.64 22.76 22.76 20.78 20.37 20.20
Jiangmen 51.97 52.00 51.92 51.93 51.92 52.03 51.26
Zhaoqing 75.66 75.89 75.82 75.91 75.81 75.89 75.25

Hong Kong 58.31 58.31 57.78 57.78 58.31 58.41 58.41
Macao 36.84 21.05 21.05 21.05 21.05 21.05 21.05
Total 55.76 55.99 55.48 55.56 54.89 54.62 54.13

EGR

Shantou 24.15 24.38 26.29 24.48 24.62 24.71 24.66
Shanwei 43.19 43.33 43.93 43.31 43.74 44.25 43.80

Chaozhou 47.44 47.67 46.86 47.64 47.61 47.87 47.54
Jieyang 45.73 45.96 45.84 46.03 46.18 46.34 45.88

Total 42.23 42.44 42.69 42.46 42.66 42.94 42.57

NGR

Shaoguan 71.95 72.96 72.71 73.00 73.17 73.33 72.80
Meizhou 74.93 75.89 75.97 75.91 76.08 76.39 75.98
Heyuan 77.81 77.96 78.36 77.96 78.51 79.02 78.51

Qingyuan 67.43 67.73 67.79 67.79 67.80 67.99 67.65
Yunfu 70.07 70.42 70.37 70.37 70.33 70.34 69.93
Total 72.45 73.03 73.08 73.05 73.24 73.50 73.06

WGR

Zhanjiang 33.40 33.67 35.25 35.30 36.16 36.15 36.02
Yangjiang 58.55 58.48 58.86 58.78 58.96 59.13 58.78
Maoming 59.55 59.59 59.65 59.51 59.66 59.74 59.55

Total 49.13 49.23 49.96 49.91 50.35 50.42 50.21

GHKM GHKM Cities 60.99 61.35 61.36 61.35 61.31 61.38 60.96

3.2. Forest Change Trajectories

Of the 50 temporal trajectories used to describe the forest dynamics during 1980–2015,
37 had an area of less than 100 km2, which is less than 0.05% of the total study are (Table 3)
and accounted for only 0.13% (Table 4). This implies that the change trends were mainly
dictated by 13 main trajectories. The spatial distribution of the change types in the study
area from 1980 to 2015 is graphically illustrated in a map in Figure 4. The non-forest
areas were predominately high within the GBA region, and within the coastal areas of
EGR and WGR. Since 1978, Shenzhen and Dongguan City has been a subject of rampant
economic developments and urban expansion. Due to demand for space, these two cities
have witnessed enormous conversion of forested areas into urban land. This explains the
observed decreased in forest cover in Shenzhen and Dongguan, especially within the east
bank of the Pearl River Estuary (Figure 4d). The NGR region is well known for state-owned
forest farms. Thus, the scattered forest decrease observed within this region (Figure 4c) is
attributed to the harvesting and planting of the artificial forests. Though the NGR region
suffered scattered deforestation, it also benefitted afforestation (Figure 4b,c). Other regions
in which afforestation was witnessed included the EGR (Figure 4e) and Leizhou Peninsula
of WGR (Figure 4a).
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Table 3. Proportions of 37 irregular change trajectories to the total area.

Trajectory Area
(km2)

Proportion
(%) Trajectory Area

(km2)
Proportion

(%)

0010111 76 0.042 1110111 3 0.002
0011000 20 0.011 0000100 2 0.001
0100000 12 0.007 0000110 2 0.001
1100111 11 0.006 0011110 2 0.001
1110000 11 0.006 0101110 2 0.001
0000001 9 0.005 0111100 2 0.001
0111000 9 0.005 1010111 2 0.001
0111110 9 0.005 1011111 2 0.001
0001111 8 0.004 0001000 1 0.001
1111011 8 0.004 0001110 1 0.001
0101111 7 0.004 0010110 1 0.001
1101000 6 0.003 0101000 1 0.001
0010011 5 0.003 0101100 1 0.001
1101110 5 0.003 0110000 1 0.001
0000010 4 0.002 1000011 1 0.001
1101100 4 0.002 1000111 1 0.001
0011100 3 0.002 1100100 1 0.001
1010000 3 0.002 1111001 1 0.001
1100011 3 0.002

Table 4. Reclassification of change trajectories to three types namely unhanged, stable and unstable.

Types Trajectory Number Area
(km2)

Proportion
(%)

Unchanged
type

Permanent
Forest

1111111
2

105,828 59.073
1101111 249 0.139

Permanent
Non-forest

0000000
2

68,631 38.310
0010000 205 0.114

Stable change

Afforestation

0000011

4

332 0.185
0000111 438 0.245
0011111 453 0.253
0111111 716 0.400

Deforestation

1000000

5

114 0.064
1100000 445 0.248
1111000 553 0.309
1111100 226 0.126
1111110 718 0.401

Unstable change trajectory

0010111

37 240 0.134
0011000
0100000
1100111
0111000

3.3. Spatio-Temporal Concentrations of Forest Dynamics

The degree of forest’s clustering in the timing of forest dynamics in GHKM during
1990–2015 is graphically illustrated in Figure 5. Although the minimum Z value of forest
dynamics in 2015 was 10.69, the probability of discrete state of forest dynamics was still
less than 1%. During the 1990–2015, the agglomeration pattern increased from 1980 to 2005
and tended to weaken between 2005 and 2015. From 1995 to 2000, a reduction in forest
change amplitude led to the decrease in the concentration degree and Z value. The forest
change had the highest concentration and Global Moran’s I reached a peak of 32.31 in 2005
(Figure 5).



Land 2021, 10, 87 9 of 18

Figure 4. Five forest change trends in GHKM during 1980–2015: (a) obvious afforestation in Leizhou
Peninsula; (b) obvious afforestation in NGR; (c) obvious artificial forest management and changes in
NGR; (d) obvious deforestation in Shenzhen and Dongguan (GHKM–GBA); (e) obvious afforestation
in EGR.

Figure 5. The degree of forest’s clustering in the timing of forest dynamics within GHKM from 1980
to 2015.

The local Getis-Ord Gi* revealed that forest hot spots that is areas that forest cover-
age was gained through afforestation were mainly distributed in Leizhou peninsula and
mountainous regions of NGR and EGR. The cold spots that are areas which underwent de-
forestation were mainly concentrated in the GHKM-GBA (except Hong Kong and Macau),
especially in Shenzhen and Dongguan City (Figure 6a). The deforestation reached its peak
in Dongguan and Shenzhen during 2000–2005 and the east bank of the Pearl River Estuary
was the most affected (Figure 6b). From 1980 to 1990, the NGR and EGR experienced a
huge afforestation which was highly concentrated in Leizhou Peninsula that is located in
Zhanjiang City of WGR during 1990–2005 (Figure 6c).
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Figure 6. (a) Hot spot map of forest change; (b) spatial distribution of deforestation; (c) spatial distribution of afforestation.
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3.4. Focus Plot Analysis

To highlight in detail the above changes, the analysis focused on three locations
including the Leizhou Peninsula in WGR, the Wanlu lake in NGR and the Shenzhen City
in GHKM-GBA.

• Leizhou Peninsula

This location is unique in that it is a huge artificial eucalyptus plantation zone. The plan-
tations serve as an alternative source for short-cycle industrial timber. Artificial eucalyptus plan-
tations revolution in this area started in mid-1980s in Guangdong as a response to meet
the increased demand for wood and forest by-products [42]. Consequently, during 1990 to
1995, the Leizhou Peninsula witnessed increased forest cover gain as is reflected by the re-
ported forest coverage gains of 2013 km2 (Figure 7a). In addition, gains in forested areas in
Leizhou Peninsula were reinforced by the adoption of the tropical orchards. Afforestation
was highly concentrated within the central area of Leizhou Peninsula during 1990–2005
(Figure 7a).

Figure 7. (a). Forest change trajectories in the study area during 1980–2015; the changes within the plots are highlighted in
(b) the Leizhou Peninsula; (c) the Wanlu lake; (d) the Shenzhen City.

• Wanlu lake

This plot encompasses the mountainous region surrounding the Wanlu Lake (Figure 7b).
This location is specifically unique with artificial mono-economic forests plantations for
timber. The plantations are under a plantation-growth-logging-replantation management
plan. The trajectories of the forest change dynamics in this region were characterized by the
periodic change of forest. This was attributed to the temporal gaps in forest growth cycles
under different management practices. Within the coastal area of Wanlu Lake, there was
no significant difference between forest increases and decreases based on above-mentioned
forest/non-forest maps during 1980–2015 and, hence, it was hard to track the dynamics of
the change trajectories with clarity.

• Shenzhen city

The aftermaths of China’s Economic Reform and Open policy were characterized by
rapidly transformation of forested areas into urban land uses. Illustrative of this was the
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forest cover change within the Shenzhen city in a massive forest cover loss of 214 km2

during 1980–2015 at rate of 11.59% was reported (Figure 7c). In the late 20th century,
Shenzhen had the fastest rate of forest loss but the rate gradually decreased after 2005.
The forest cover loss rate within the Shenzhen decreased to 9.37% from 1990 to 2005.
The remaining forest fragments were mainly concentrated in the eastern part of the city
and hilly areas along the coast.

4. Discussion
4.1. Forest Change Dynamics Driven by Forestry Policies

The trajectories of forest change dynamics showed a response to the adoption of
forest policies. Illustrative of this is the afforestation dynamics within the Guangdong city
during 1980–1990 (Figure 8) whose timelines can be associated to the adoption of forest
policies. For example, during this period, the National People’s Congress of China (NPCC)
promulgated forest-related laws, following which the State Forestry Administration of
China (SFAC) issued two forest-related policies in 1986 and in 1988. These two policies
acted to reinforce the five forest policies issued by the Central Committee of the Communist
Party of China (CCCPC) and the State Council of China (SCC) in 1980, 1981, 1982, 1984 and
1988. The impact of policies on the forest change dynamics was evident within Shaoguan,
Qingyuan and Meizhou City in NGR, in which the forest coverage increased by of 636 km2.
Another impact from reinforcement of the policies on the forest change dynamics was
the improvement of the forest structure as is indicated by increasing trends of the closed-
canopy forest (822 km2), shrub (73 km2) compared to the reduced trend in which sparse
forest and other-forest reduced by 166 km2 and 93 km2, respectively. However, the positive
forest change trends in response to adoption and reinforcement of the forest policies were
not spatially universal as some cities such as Shenzhen city experienced decreased forest
cover. In 1991, the state law on soil and water conservation promulgated by NPCC was
adopted. In 1994, SCC issued two forest protection acts, while in 1995, SFAC proposed
the China’s forestry development plans. These two policies were aimed to reinforce
sustainable forest conservation and management. There is always a time lag between
policy inception and the manifestation of their impacts on the target. Though the initial
policies were enacted in the 1980s, the trajectories of the forest dynamics which manifested
as gains in forest area coverage reached the peak during 1990–1995. Illustrative of this was
the closed-canopy forests, which increased their coverage by 984 km2 during 1990–1995.
This trajectory was, however, followed by a downward trajectory in which 1187 km2 was
lost during 1995–2000. The closed-canopy forest decline during 1990–2000 was a common
in many parts of China, such as the Yangtze River Basin [43]. While the closed forest
cover was decreasing during 1990–2000, the coverage of other-forest types increased by
1211 km2 during 1995–2000. The increase in coverage of other forest types was linked to
the adoption of the state agriculture laws which were promulgated by NPCC and enacted
in 1993. The inception of the state agriculture laws influenced shifts in the market values
and farmers opted for higher value-added forestry products. The result thereof was thus
increased coverage of other forest types as is illustrated by the results. This observation
resonates with observations by Wang and Zhang (2017) [44] on research on transition from
a forestry policy-dominated status to a market-oriented status.
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The Yangtze River floods in 1998 and their effects thereof, alarmed decision and policy
makers to promulgate forest laws and policies to which would catalyze, prioritize, and re-
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inforce forest protection measures [45]. In response to the flood risk management and
future prevention, SCC issued four policies in in 1998, 2001, 2002 and 2003 whose mandate
was to prohibit deforestation, promotion of ecological protection, conversion of farmland
to forest and to accelerate the development and the implementation of sustainable forest
management plans. Additionally, in 1998, the Guangdong province locally promulgated
a local law to protect forest ecosystems. The effects of implementing these policies were
reflected on the trajectories of forest dynamics between 2000 and 2005, and 2005 and 2010.
Illustrative of this were the reduced rates at which the forest coverage declined. For ex-
ample, the decline in closed-canopy forest during 2000–2005 was much lower (356 km2)
compared to their decline rates (1187 km2) during 1995–2000. Moreover, the forest coverage
in the mountainous regions (Shaoguan and Heyuan City) in the upper reaches of the Pearl
River increased. This indicated that the forest policies and laws after the 1998 Yangtze
River flood played a role in driving the trajectories of the forest change dynamics.

The policies and laws on the reform of collective forest right system issued between
2008 and 2009 (Figure 8) and the elimination of institutional obstacles inhibiting the devel-
opment of forested areas greatly promoted the development of rural forested areas [44].
Illustrative of this was the observed increased trends of the areas covered by other-forests
which gained coverage of 2080 km2 between 2000 and 2010. The increase in the other-forest
was particularly higher within the NGR and WGR region. This indicated that the forest
management and developments were driven by the market values and hence the policies
led to internal conversions of forests. The deforested areas were mainly dominant within
the Shenzhen, Dongguan and Guangzhou City; all of which are within the GHKM-GBA re-
gion. Such forest loss is associated to the rapid urbanization because of increased economic
development that was witnessed in this region.

During 2010–2015, forest area coverage decreased by 734 km2. NGR region expe-
rienced the highest decline in which a total of 338 km2 was lost, of which 236 km2 was
within areas with a slope of less than 15◦. Within these areas, logging is legally permitted
based on a series of laws and policies issued by SCC, SFAC and Guangdong Forestry
Bureau. About 105 km2 of the areas in which forest cover was lost and had slope of <15◦

were converted into built-up land while the rest of the areas were used for timber logging.
The change trajectory of the forests during 2010–2015 was thus driven by activities permit-
ted and regulated by laws and policies. This observation was also made by a taskforce
which worked on the effective implementation of forestry laws and policies on forest
protection and utilization [46]. Similarly, Viña et al. (2016) [12] also found that the GDP per
capita showed a significant positive relationship with forest loss. Although the finding on
the conversion of forest into non-forest was consistent with the conclusion from Hu and
He (2010) [47], we found that forest utilization within NGR was reasonable and within the
stipulated limits as outlined in policies and laws adopted during 2010–2015.

4.2. Economy-Oriented Forest Dynamics from 1990–2015

The forestry output value (X1) and GDP per capita (X2) had significant negative
correlations to the sparse forest and the closed-canopy forest (p < 0.05) (Table 5). Similarly,
the average altitude (X4) and average slope (X5) had a significant negative correlation to the
closed-canopy forest (p < 0.01). On the other hand, the GDP per capita (X2), average altitude
(X4) and average slope (X5) had a significantly positive correlation to the other-forest type
(p < 0.05). This implied that the main force that drove the forest change dynamics was
the physical factors such as the slope and altitude, and economic factors such as forestry
output value and per capita GDP.
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Table 5. The correlation coefficients of the driving factors of five land use types.

Driving
Factors

Correlation Coefficient

Closed-
Canopy Forest Shrub Sparse

Forest Other Forest Total Forest Afforestation Deforestation

X1 −0.904 * −0.851 −0.947 * 0.873 −0.823 −0.857 0.347
X2 −0.931 * −0.896 −0.966 * 0.917 * −0.770 −0.862 0.362
X3 0.481 0.734 0.743 −0.480 0.689 0.449 −0.748
X4 −0.966 ** −0.788 −0.866 0.961 * −0.577 −0.812 0.079
X5 −0.977 ** −0.747 −0.849 0.955 * 0.623 −0.812 0.058

(* indicates the significance is less than 0.05, ** indicates the significance is less than 0.01).

On the other hand, agricultural population was not significantly correlated to forest
types implying that their role in forest dynamics was insignificant (Table 5). Forestry output
value and GDP per capita had a positive significant correlation to other-forest types.
This was so because the other-forest types were mainly composed of artificial economic
forests and orchards which have high economic benefits. The average slope <12◦and
altitude <300 m had a significant positive correlation to forest changes during 1980–2015.
This is explained by the fact that at such a slope and altitude, the terrain limits the con-
version of forests to other land uses. This is so because increased slope implies increased
difficulty in land developments. This observation was consistent to the report by Wang et al.
(2018) [48] which pointed out that afforestation was mainly concentrated in mountainous
areas with a high slope.

4.3. Relevance of the Article to the Forest Resource Management and Future Outlooks
4.3.1. Relevance of the Article to the Forest Resource Management with GHKM Region

Analysis of the temporal trajectories of forest changes revealed forest dynamics within
the GHKM region during 1980–2015 by capturing timelines of afforestation, deforestation,
and irregular forest dynamics. Compared to the bi-temporal change detection, this method
was more inclined to the real profiles of forest dynamics. The strength of using the temporal
trajectory analysis is that the trajectory dynamics can be linked to the timelines of events
and thus the force driving the trajectories can be determined. In this research, the temporal
trajectories were used to capture the response of forest dynamics in relation to policy
and economic factors during different periods. For example, forest change trajectories
during 1980–1995 that revealed afforestation when tracked to the timelines of events were
linked to forest’ policy-oriented drivers. During 1995–2010, the forest dynamics were
driven antagonistically by the forest policies and protection-oriented initiatives as well
as economy-oriented forest usage. During 2010–2015, however, there was a shift in the
forces driving the forest dynamics and the balance skewed to economy-oriented pressures,
and hence the reported massive deforestation to pave space for urbanization and other
economic developments. However, the deforestation was limited within regions with a
slope below 15◦, indicating that forestry policies still had the power to restrict economic
activities within forested areas. Such insights provided new information on the role of
forest policies and economic factors in forest management and protection. The results of
this study reinforce the application of remotely sensed satellite observations in understating
the synergistic and antagonism effects of policy-economic drivers of forest dynamics over
time and space.

4.3.2. Research Future Outlooks

This study analyzed and elaborated the spatial and temporal dynamics of forest
coverage and how they were influenced by forestry policies and economic factors. However,
it was beyond the scope of this study to reveal the changes in bio-chemical variables of
forest canopy, biomass, and the forest growth status all of which are important factors to
holistically describe forest health changes. Therefore, we propose this as a future research
opening in which future undertaking may consider the application of other forest health
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indicators such as vegetation index, leaf area index (LAI) and other indicators to reflect the
canopy features. In addition, we strongly propose inclusion of ecological functions and
forest growth processes in the analysis which was also not within the scope of this study.

Accurate remote sensing observation windows are critical for precise detection of
deforestation and afforestation processes. In this paper, a 5-year interval observation
window could not adequately capture the afforestation and deforestation within areas of
interest. For example, within the mountainous regions around the Wanlu Lake, the artificial
forest planting cycle is generally less than 5 years. Therefore, it was hard for this study
to capture the forest cover dynamics consequent of human activities within these areas
using a timestep of 5 years. In the future, therefore, application of a denser remote sensing
time-series to adequately capture the dynamics that occur within short temporal windows
is recommended. Additionally, we will find a fitting quantitative method to analyze the
role of synergies from different forestry policies on forest cover dynamics within various
regions and cities in the study area.

5. Conclusions

The trajectories of forest change dynamics within GHKM region depicted a signifi-
cant fluctuation of peaks (forest again) and deeps (forest loss) in space and time during
1980–2015. While considering the whole study area, one gets the perception of forest cover
decline. However, narrowing the analysis to focus on specific regions revealed the general-
ized perception of the whole study area masked the independent site-specific dynamics.
Illustrative of this was the significant forest coverage gain witnessed within the NGR and
the WGR region. This illustration demonstrates the specificities in the spatial domain.
Similarly, the forest change trajectories highlighted time bound specificities. It is these
time-bound change trajectories that allowed for tracking of the driving forces by linking the
trajectories to the policies’ adoption timelines. The trajectories reflected a process in which
the drivers transformed from forestry policy orientation to economic factor orientation.
During the early years of the study time frame i.e., during 1980–1990, the trajectory of the
forest change dynamics assumed a peak implying gains in forest cover. The gains reflected
the response of forest dynamics to adoption of policies which were later reinforced by
issues that promoted ecological conservation and protection. The intermediate period
during 1995–2010, the forest change trajectories reflected the response to the antagonistic
effects of forest protection-oriented policies and the economy-oriented drivers. During the
late period i.e., 2010–2015, the forest change trajectories assumed a deep implying a loss in
forest cover. This loss reflected the response of the forest dynamics to the economy-oriented
drivers. The weight of the forces driving the forest changes were skewed and shifted from
policy-oriented to economic oriented factors. The impact of this shift was massive deforesta-
tion to meet the demand for space for urbanization and industrial developments. However,
deforestation was mainly concentrated within the gentle slope plain areas where the policy
allows deforestation at a slope of less than 15◦. This shows that economy-oriented forest
changes were still constrained by forestry policies. Through tracking and revealing forest
change trajectories and linking them to the driving forces, this paper thus provides a line
of evidence whose insights can inform platforms interested in developing precise, smart,
and sustainable forest management plans within the GHKM region.
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