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Abstract: The purpose of this paper is to simulate the future runoff change of the Yellow River Basin
under the combined effect of land use and climate change based on Cellular automata (CA)-Markov
and Soil & Water Assessment Tool (SWAT). The changes in the average runoff, high extreme runoff
and intra-annual runoff distribution in the middle of the 21st century are analyzed. The following
conclusions are obtained: (1) Compared with the base period (1970-1990), the average runoff of
Tangnaihai, Toudaoguai, Sanmenxia and Lijin hydrological stations in the future period (2040-2060)
all shows an increasing trend, and the probability of flood disaster also tends to increase; (2) Land
use/cover change (LUCC) under the status quo continuation scenario will increase the possibility of
future flood disasters; (3) The spring runoff proportion of the four hydrological stations in the future
period shows a decreasing trend, which increases the risk of drought in spring. The winter runoff
proportion tends to increase; (4) The monthly runoff proportion of the four hydrological stations
in the future period tends to decrease in April, May, June, July and October. The monthly runoff
proportion tends to increase in January, February, August, September and December.

Keywords: climate change; LUCC; average runoff; high extreme runoff; intra-annual runoff distribu-
tion

1. Introduction

The Chinese government promoted the “ecological protection and high quality devel-
opment of the Yellow River Basin” as a national development strategy in 2019, and pointed
out that there are some problems to be solved in the basin, such as water shortage. With its
rapid increase in population and the rapid expansion of the economy, water shortage is
becoming more and more serious [1], which restricts its high quality and rapid develop-
ment. Runoff is an important part of water resources in the Yellow River Basin. Therefore,
the analysis and simulation of runoff change is very important for the management and
effective utilization of water resources in the Yellow River Basin.

Many scholars have simulated future runoff variation in different rivers, such as the
Yellow River [2-4], Hoeya River [5], Altmiihl River [6], Beijiang River [7], and the upper
reaches of the Grande River [8]. For example, Li et al. [9] simulated the future runoff
variation in the upper reaches of the Yellow River under two climate scenarios (A2 and
B2) using seven CMIP3 models. The results showed that the runoff will tend to decrease
in the future, and the probability and severity of flood and drought disasters will all
increase. Li et al. [10] simulated the runoff variation in the source region of the Yellow
River from 2010 to 2020 under two climate scenarios (A2 and B2), and showed that the
runoff will decrease gradually in the future. Wei et al. [11] imported the climatic data from
the BCC-CSM1.1 model into the Variable Infiltration Capacity (VIC) hydrological model
and estimated the runoff change in the upper reaches of the Yellow River from 2011 to
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2050. The results indicated that, compared with the runoff from 1971 to 2010, the runoff in
this area increases by 2.65%, 2.66% and 8.07%, respectively, under the three representative
concentration path (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5). Lu et al. [12] used
RegCMH4 to predict the runoff changes in the source area of the Yellow River from 2041 to
2060 under three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5). The results showed that
the runoff increases by more than 3%. There are some inconsistent results in the existing
studies, which may be caused by the use of different global climate model data.

In fact, the runoff change is the result of the joint action of many factors. In addition to
climate factors, soil type, topographical features and land use/cover change (LUCC), which
are also the input to the Soil & Water Assessment Tool (SWAT) model, are also key factors
affecting the change in runoff; however, the soil type and topographical features do not
change in a short time [13-15]. LUCC affects the hydrological cycle process by changing
transpiration and surface confluence [16-18], and then affects its runoff and its intra-annual
runoff distribution. However, previous studies have only considered the impact of climate
change on the future runoff of the Yellow River basin, but did not take into account the
impact of LUCC on the future runoff, which may be due to the lack of high-resolution land
use data.

The purpose of this paper is to simulate the future runoff change in the Yellow River
Basin under the combined effect of land use and climate change. Firstly, the cellular
automata (CA)-Markov model was applied to simulate the land use data of the Yellow
River Basin in 2050 under the status quo continuation scenario. Then, the SWAT model was
applied to simulate the runoff from 2040 to 2060 under the combined action of land use and
climate change. Finally, the difference between average runoff, seasonal runoff proportion,
monthly runoff proportion and high extreme runoff in the future period (2040-2060) and
base period (1970-1990) was analyzed.

2. Study Area, Data and Methods
2.1. Study Area

The Yellow River basin lies around 95°53/~119°05' E, 32°10'~41°50" N (Figure 1), it
originates from the Bayankala mountains, and flows into the Bohai sea. The Yellow River
spans 5464 km and covers 79.5 x 10* km? (including the inner river area), accounting for
8% of China. Most of the regions belong to arid and semi-arid regions. Its precipitation
decreases from southeast to northwest, with an average of 476mm. The overall distribution
of temperature is gradually decreased from south to north and from east to west, with
an annual average temperature between —4 and 14 °C. Its evaporation is different and
increases from southeast to northwest. The water resources in the basin are deficient and
the ecological environment is fragile under the influence of climate change and human
activities. In addition, the basin is also one of the most important bases for the produc-
tion of grain and agricultural products in China, accounting for about 13.4% of China’s
total amount of agricultural products. The total area of cultivated land in the basin is
20.2346 million hm?, accounting for about 16.6% [19]. The shortage of water resources in
the basin poses a great threat to China’s food security.

2.2. Data Sources

(1) The monthly runoff data of the Tangnaihai, Toudaoguai, Sanmenxia and Lijin
stations from 1967 to 1990 are obtained from the Yellow River Water Conservancy Commis-
sion (http://yrcc.gov.cn/, accessed on 1 January 2021). Tangnaihai hydrological station is a
runoff monitoring station in the source area of the Yellow River. Toudaoguai hydrological
station is the dividing point between the upper and middle reaches of the Yellow River.
Sanmenxia hydrological station is an important national hydrological station, which is
responsible for the flood control monitoring of the lower Yellow River. Lijin hydrological
station is the last hydrological station in the Yellow River Basin.
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(2) The Digital Elevation Model (DEM) data are downloaded from the Resource and
Environmental Science Data Center of the Chinese Academy of Sciences (http://www.
resdc.cn/, accessed on 1 January 2021), with a resolution of 1 km x 1 km.

(3) The land use data are downloaded from the Resource and Environmental Science
Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/, accessed on
1 January 2021), including 1980, 1995, 2005 and 2015, with a resolution of 1 km x 1 km.

(4) The soil data are derived from the World Soil Database with a resolution of
1km x 1 km (http://westdc.westgis.ac.cn/, accessed on 1 January 2021).

(5) The 134 meteorological station data in and around the Yellow River are obtained
from the China Meteorological Administration (http://www.cma.gov.cn, accessed on
1 January 2021).

(6) The climate data in the future period are derived from the five global climate
models (https:/ /esgf-node.llnl.gov/search/cmip5/, accessed on 1 January 2021), includ-
ing MIROC-ESM-CHEM, NorES1-M, IPSL-CM5A-LR, GFDL-ESM2M, and HadGEM2-ES
(Table 1). These five models are widely used to assess China’s future climate change [20,21].
Each global climate model includes daily mean temperature data, daily maximum temper-
ature data, daily minimum temperature data and daily precipitation data under four RCP
scenarios. RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios indicate that the earth’s radiation
forcing levels in 2100 are 2.6 w/ m2,4.5w/m?2, 6.0 w/m?2 and 8.5 w/m?, respectively.
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Figure 1. The location of hydrological and meteorological stations in and around the Yellow
River Basin.

Table 1. The basic information of the five global climate models.

Global Climate Model Country Resolution (Longitude x Latitude)
GFDL-ESM2M America 2° x 2.5°
HadGEM2-ES England 1.25° x 1.875°
IPSL-CM5A-LR France 1.875° x 3.75°

MIROC-ESM-CHEM Japan 2.8° x 2.8°
NorESM1-M Norway 1.875° x 2.5°
2.3. Methods

2.3.1. Delta Method

The spatial resolution of global climate model data is very low, so it is difficult to

accurately and effectively show the climate change on the watershed scale. Therefore,
it is necessary to use a downscaling method to improve its accuracy when studying the
watershed scale.
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The Delta method can correct the data bias of multiple weather stations at the same
time, and its operation process is relatively simple, which has been widely used by schol-
ars [22-24]. Therefore, based on the observation data of 134 meteorological stations in
and around the Yellow River Basin from 1985 to 2005, the Delta method is used to pro-
cess the precipitation, maximum temperature and minimum temperature data of five
CMIP5 models from 2040 to 2060, including MIROC-ESM-CHEM, NorES1-M, IPSL-CM5A-
LR, GFDL-ESM2M and HadGEM2-ES, respectively. The specific calculation formula is
as follows:

[PG futlm
Prut = Prgis X 1 20" (1)
[PGhis| Mon
Tmaxpy; = Tmaxy;s + {[Tmﬂxcfut]Mon - [Tmaxchis]Mon} ()
Tming,; = Tming;s + {[Tmincfut]Mon - [Tminchis]Mon} 3)

In the formula, Pr,;, Tmaxg,;, Tminp,; represent the future precipitation, maximum
temperature and minimum temperature data of each meteorological station after down-
scaling, respectively; Py;s, Tmaxp;s, Tming;s represent the precipitation, maximum tem-
perature and minimum temperature observed data at each meteorological station in the
historical period, respectively; [Pgfutlmon, [TMaxcgutlMon, [TMingsutlmon represent the
monthly scale precipitation, maximum temperature and minimum temperature data of the
CMIP5 model in the future period, respectively; [Pgpis| Mon, [TMAaXGhis| Mon, [TMiNGhis] Mon
represent the monthly precipitation, maximum temperature and minimum temperature
data of the CMIP5 model in the historical period, respectively.

2.3.2. CA-Markov Model

The CA-Markov model effectively combines the advantages of the CA model and
Markov model, greatly improves the accuracy of future land use simulation results, and
has been widely used [25,26]. Therefore, the CA-Markov model is chosen as the method to
simulate the land use of the Yellow River Basin in 2050 in this paper.

The CA model can be expressed by the following formula:

Ste1 =f(St,N) 4)

where S represents a set of all cells, t and ¢ + 1 represent different times, f represents a
functional transformation between cells, and N represents the neighborhood of cells.

By analyzing the transition probability of random events from the initial period to
another period, the Markov model can predict the situation in the future period on the
basis of the initial period. It can be expressed in the following formula:

St+1 = PyiSt ®)

where S; and S;,; represent the land type matrix at time ¢ and t + 1, respectively; P,-]-
represents the transfer probability matrix.

2.3.3. Kappa Coefficient

The Kappa coefficient is often used to verify the accuracy of the predicted land use
map. It is generally believed that the accuracy of the prediction result is better if the Kappa
value is greater than 0.75 [26,27].

Assuming that the total number of pixels is N, S is the number of correctly simulated
grids. The real number of each class is a1, a, ..., 4., respectively, while the simulated
number of each classis by, by, . .. , b, respectively, the kappa coefficient (K) can be expressed
in the following formulas:

_ Py — P,

K= 1D, (6)
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2.3.4. SWAT Model

The SWAT model is a distributed hydrological model, and several studies showed
that the SWAT model can be better applied to simulate not only streamflow and runoff but
also nutrient loadings, water quality, pollution, etc., all over the world in different climate
regions [28-35].

In this paper, firstly, the Yellow River Basin is divided into 33 sub basins according
to the DEM data (Figure 2), and then, the Hydrological Response Units (HRUs) in each
sub basin are divided according to the land use, slope and soil type data imported into the
SWAT model. Slope data are calculated based on DEM data. The basic information of soil
type data is displayed in Figure 3 and Table 2. The number of HRUs can affect the speed of
SWAT model operation. Therefore, in order to take into account the accuracy and speed of
SWAT model operation, it is not suitable to generate too many HRUs. The threshold values
of land use, soil and slope are set to 15%, 15% and 15%, which means that land use, soil
and slope below 15%, 15% and 15% will be merged into other types. Finally, 138 HRUs
are generated.
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Figure 3. Soil types in the Yellow River Basin (Note: the number after the abbreviation of soil type
indicates that the soil type is the same, but the soil physical parameters are inconsistent).
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Table 2. Names and abbreviations of soil types.

Name Abbreviation Name Abbreviation Name Abbreviation
Cambic Arenosols ARb Salic Fluviosls FLs Gleyic Luvisols Lvg
Calcaric Arenosols ARc Fishpond FP Haplic Luvisols LVh

Haplic Arenosols ARh Glaciers GG Calcic Luvisols LVk

Aric Anthrosols ATa Eutric Gleysols GLe Calcaric PHc

Phaeozems
Cumulic . . .

Anthrosols ATc Gelic Gleysols GLi Gleyic Phaeozems PHg

Fimic Anthrosols ATf Calcic Gleysols GLk Haplic Phaeozems PHh

Haplic CHh Mollic Gleysols GLm Calcaric Regosols RGc

Chernozems
Calcic Chernozems CHk Haplic Greyzems GRh Eutric Regosols RGe
Luvic Chernozems CH1 Haplic Gypsisols GYh SOLONCHAKS SC

Haplic Calcisols CLh Fibric Histosols HSf Gleyic Solonchaks SCg

Luvic Calcisols CLI Terric Histosols HSs Haplic Solonchaks SCh

Calcaric Cambisols CMc Haplic KSh Calcic Solonchaks SCk
Kastanozems

Dystric Cambisols CMd Caldic KSk Mollic Solonchaks SCm
Kastanozems

. . Luvic .

Eutric Cambisols CMe KSl1 Sodic Solonchaks SCn
Kastanozems

Gleyic Cambisols CMg LEPTOSOLS LP Gypsic Solonchaks SCy

Gelic Cambisols CMi Eutric Leptosols LPe Gleyic Solonetz SNg

Humic Cambisols CMu Gelic Leptosols LPi Calcic Solonetz SNk

Dunessa::;lcsl shift DS Rendzic Leptosols LPk Urban, mining, etc. UR

Calcaric Fluvisols FlLc Mollic Leptosols LPm Eutric Vertisols VRe

Eutric Fluvisols FLe Albic Luvsiols LVa Water bodies WR

Then, the soil attribute database and meteorological attribute database are established,
respectively, according to the soil data and meteorological data. Finally, the SWAT model
of the Yellow River Basin is established. Among them, 1967-1969 is the warm-up period,
1970-1980 is the calibration period, and 1981-1990 is the validation period. Its time step
is months.

2.3.5. SWAT-CUP Software

SWAT-CUP is a software developed by the Swiss Federal Institute of Aquatic Sci-
ence and Technology for calibrating the SWAT model. In SWAT-CUP software, there are
5 algorithms that can be selected to verify the parameters, namely SUFI2 algorithm, GLUE
algorithm, ParaSOIl algorithm, MCMC algorithm and PSO algorithm. The SUFI2 algorithm
has the fastest operation process and high accuracy [36]. Therefore, the SUFI2 algorithm
was selected to describe the uncertainty of the parameters based on a uniform distribution
assumption. This algorithm is able to perform the approximation at a 95 percent predic-
tion uncertainty level called 95PPU [37]. SUFI2 initially assumes large uncertainty in the
parameters covering all the observed data at 95PPU level. This uncertainty is reduced in
subsequent rounds until the difference between the upper and the lower parts of 95PPU—
97.5% and 2.5% levels—is minimized and 95PPU includes 80-100% of the observations [38].
The SUFI2 algorithm uses a Latin hypercube sampling approach [39] where n parameters
are combined in a satisfying simulation number (500-1000 runs), with the simulations
thereafter being assessed using an objective function [38]. There are several objective
functions in SWAT-CUP dealing with model calibration [40].

Referring to the existing studies [41,42], 9 parameters, namely CN2.mgt, ALPHA_BF.gw,
GW_DELAY.gw, GWQMN.gw, GW_REVAP.gw, CH_K2.rte, HRU_SLPhru, SOL_AWC().sol
and REVAPMN.gw, were selected for verification by the SUFI2 algorithm. The optimal
values of 9 parameters in the SWAT model are obtained, as shown in Table 3.
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Table 3. The optimal parameter values in Soil & Water Assessment Tool (SWAT) model of the four hydrological stations.

Parameter Tangnaihai Toudaoguai Sanmenxia Lijin
r_ CN2.mgt 0.06 —0.039 —0.199 —0.091
v__ALPHA_BF.gw 0.901 0.405 0.849 0.735
v__GW_DELAY.gw 424.2 407.8 336.2 497.39
v_GWQMN.gw 442 495.6 581.2 514.29
v_GW_REVAP.gw 0.055 0.027 0.04 0.061
v__REVAPMN.gw 457.5 403.5 404.5 464.5
v__HRU_SLPhru 0.949 0.871 0.963 0.735
r__SOL_AWC(1).sol —0.123 0.415 0.331 0.179
v__CH_K2.rte 12.375 65.125 44.125 91.625

Note: v__ indicates that the given parameter value replaces the original parameter value in the model, r__: the original parameter value in
the model multiplied by (1 + given parameter value).

Three indicators were selected to evaluate the accuracy of the simulation results in the
parameter period and validation period: relative error (RE), determination coefficient (R?)
and Nash-Sutcliffe coefficient (NS), which are calculated as follows:

Z (Qz _Pz)
RE=2=L 5T 9)
i=1 !
. . 2
, ‘l(Qi_Q)(Pi_P)
R? = == 10
L (Q —@)2,;1(1),»—?)2 1o
,zl(Q,-fR»)z
NS=1-“*2=2 11
Y. (Pi—P)? )

i=1

where Q; represents the runoff simulation value at time i, Q represents the average value

of all runoff simulation values, P; represents the runoff observation value at time 7, P
represents the average value of all the observed values.

3. Results and Analysis
3.1. Calibration and Validation of SWAT Model

If the absolute value of RE between runoff simulation and observation values is
less than 20%, NS is greater than 0.6 and R? is greater than 0.6, it is considered that the
established SWAT model can be applied to simulate the runoff of the study area [43—46].

Figures 4 and 5 and Table 4 display the correlation between monthly observations
and simulated flow values of Tangnaihai, Toudaoguai, Sanmenxia and Lijin Hydrological
stations during the calibration period (1970-1980) and validation period (1980-1990). The
R? values of the four hydrological stations in the calibration period and validation period
are all greater than 0.7, RE values are all less than 20%, and NS values are all greater
than 0.6, so the SWAT model can well simulate the monthly runoff changes of Tangnaihai,
Toudaoguai, Sanmenxia and Lijin hydrological stations in the calibration period and
validation period.
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Figure 4. Monthly flow observation and simulation values of Tangnaihai (a), Toudaoguai (b), Sanmenxia (c) and Lijin
(d) during calibration period (1970-1980).

4000 | Tttt observed simulated (a)

--------- observed simulated  (b)

5000

3000 4000
@ ~_

= 2 3000
E 2000 )
S 3

L% o 2000
1000 =

1000

0 0

1981(1) 1983(1) 1985(1) 1987(1) 1989(1) 1981(1) 1983(1) 1985(1) 1987(1) 1989(1)
Time (month) Time (month)
--------- observed simulated (©) seeeeeeee observed simulated  (d)

6000 7000

6000

@5000

“E 4000

E 3000

R 2000

1000

- 0

1981(1) 1983(1) 1985(1) 1987(1) 1989(1) 1981(1) 1983(1) 1985(1) 1987(1) 1989(1)

Time (month) Time (month)

Figure 5. Monthly flow observation and simulation values of Tangnaihai (a), Toudaoguai (b), Sanmenxia (c) and Lijin
(d) during validation period (1981-1990).
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Table 4. Determination coefficient (R2), Nash-Sutcliffe coefficient (NS), relative error (RE) values for calibration and

validation period.

Calibration Period (1970-1980) Validation Period (1981-1990)
Hydrological Station
R2 NS RE(%) R? NS RE(%)
Tangnaihai 0.72 0.68 6.81 0.82 0.82 —4.54
Toudaoguai 0.74 0.66 18.22 0.77 0.71 15.67
Sanmenxia 0.76 0.72 5.47 0.78 0.73 13.02
Lijin 0.77 0.74 7.67 0.74 0.68 15.72

3.2. Future Land Use Simulation of the Yellow River Basin

In this study, the land cover map of the Yellow River Basin in 2050 is simulated by
IDRISI 17.2 software, which is developed by Clark University. The software includes more
than 300 practical and professional modules, such as remote sensing image processing,
GIS analysis, decision analysis, spatial analysis, land use change analysis, global change
monitoring, suitability assessment mapping, geostatistical analysis, and cellular automata
land dynamic change trend prediction. The main steps are as follows:

(1) Taking the land use data of the Yellow River Basin in 1995 and 2005 as the initial
year and the last year, the probability transfer matrix of land use from 1995 to 2005 can be
obtained by the Markov module in the IDRISI 17.2 software (Figure 6);

First [earlier] land cover image: |Iucc‘| 995

3
Second [later] land cover image: |IuchDD5

Prefix for output conditional probability images: |9505

Mumber of time periods between the first and second land cover images:
Mumber of time periods to project forward from the second image:

B ackground cell option -

* Assign 0.0

7 Agsign equal probabilities

" Assign relative frequency

Proportional error: |U.1 5

oK | Close | Help |

Figure 6. Calculation of land use probability transfer matrix by Markov module.

(2) The transition suitability maps are generated for the six land cover classes by the
Multi-Objective Decision Wizard module (Figure 7). The rules are as follows: (DBuilt land:
elevation <500 m is the most suitable, the elevation is suitable for 500-1500 m, and elevation
>1500 m indicates poor suitability; slope between 0° and 5° is the most suitable, slope
between 5° and 15° is suitable, and slope >15° indicates poor suitability; distance to road
<500 m is the most suitable, distance to road between 500 m and 1000 m is suitable, and
distance to road >1 km indicates poor suitability. @Farmland: elevation <500 m is the
most suitable, the elevation is suitable for 500-1500 m, and elevation >1000 m indicates
poor suitability; slope within 0-5° is the most suitable, slope with 5-15° indicates poor
suitability, and >15° is unsuitable; distance to highway <1 km is the most suitable, distance
to road between 1 km and 3 km is suitable, and distance to road >3 km indicates weak
suitability. ®The conversion of water to other land types is prohibited; @Elevation is the
main constraint factor of forestland and grassland. Unused land can be converted to other
land types at will. Finally, the transfer suitability maps of six land types are generated
(Figure 8);
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e 5
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Figure 7. Constructing suitability atlas with Multi-Objective Decision Wizard module.
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Figure 8. Suitability maps of farmland (a), forestland (b), grassland (c), water (d), built land (e) and unused land (f).
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(3) Taking the land use data of 2005 as the initial data, the probability transfer matrix
from 1995 to 2005 and suitability maps (Figure 8) are input into the CA-Markov model.
The 5 x 5 neighborhood filter is selected as the neighborhood definition. The unit size is
set as 1000 m x 1000 m and the cycle is set to 10 times. The land use data of the Yellow
River Basin in 2015 can be simulated (Figure 9);

Land type (a) Actual land use map in 2015 Land type (b) Simulated land use map in 2015
|:| Farmland N \j Farmland N
Forestland Forestlund

I Grassland A I Girassland A
B water B water

I Bulit I Bulit

[ Unused land % [7] Unused land
= "y,

£

Figure 9. Comparison between simulated and actual land use maps in 2015.

(4) The CROSSTAB module of IDRISI 17.2 software is used to calculate the Kappa
coefficient (Figure 10), and the result is 0.82, indicating that the CA-Markov model can well
simulate the land cover change in the Yellow River Basin;

CROSSTAB - cross-tabulation = [ =)=
r Type of analysis
‘ " Hard classification " Soft classification ‘
First image [colurnn) : IS|M2U1 5 B
Second image [row) : llul:cZD‘I 5 E

I~ Third image [plane] :

I~ Use mask image

Output type:
" Cross-classification image
" Full cross-tabulation table
= Both cross-classification and tabulation
* Image similarity / association data only

0K | Close | Hep |

Figure 10. Calculation of Kappa coefficient by CROSSTAB module.

(5) Taking the land use data of 2015 as the initial data, the probability transfer matrix
from 1980 to 2015 (Table 5) and suitability maps (Figure 8) are input into the CA-Markov
model. The 5 x 5 neighborhood filter is selected as the neighborhood definition. The cycle
is set to 35 times. The land use data of the Yellow River Basin in 2050 can be simulated
(Figure 11).

Table 5. The probability transfer matrix of land use from 2015 to 2050 under the status quo continuation scenario.

2050
Y Land Type
ear yp Farmland Forestland Grassland Water Built Land Uil:Ifceld
Farmland 0.7461 0.0324 0.1048 0.0129 0.0975 0.0063
Forestland 0.0509 0.8128 0.1014 0.0043 0.0182 0.0124
2015 Grassland 0.1157 0.039 0.7346 0.0098 0.0185 0.0824
Water 0.2242 0.0104 0.0667 0.6218 0.0254 0.0514
Built land 0.233 0.0038 0.026 0.007 0.7271 0.0031

Unused land 0.039 0.0059 0.2839 0.0147 0.0132 0.6433
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Figure 11. Simulated land use maps of the Yellow River Basin in 2050.

Table 6 shows the difference of land types percentage in the Yellow River Basin in
2015 and in 2050 under status quo continuation scenario. The area percentages of farmland,
forestland, grassland, water, built land and unused land in the Yellow River Basin in 2050
under the status quo continuation scenario are 26.28%, 12.35%, 45.98%, 1.85%, 5.12% and
8.42%, respectively, and the change ranges are 1.65%, —1.79%, —1.27%, —0.17%, 1.99% and
—0.40%, respectively, compared with 2015.

Table 6. Comparison of land types percentage in the Yellow River Basin in 2015 and in 2050 under
status quo continuation scenario.

2050
Land Type 2015
Percentage (%) Variation (%)
Farmland 24.63 26.28 1.65
Forestland 14.14 12.35 —1.79
Grassland 47.25 45.98 —1.27
Water 2.02 1.85 —-0.17
Built land 3.13 5.12 1.99
Unused land 8.83 8.42 —0.40

3.3. Future Runoff Simulation of the Yellow River Basin

In this section, we focus on the average value of simulated flow results based on the
five global climate models. In this paper, the SWAT model is used to simulate the runoff of
the Yellow River Basin in the middle of the 21st century (2040-2060) under the combined
action of representative concentration path (RCP) scenarios and Land use change (LUC)
scenarios (RCP-LUC). The differences between the runoff of the Yellow River Basin in the
future (2040-2060) and the base period (1970-1990) are analyzed from four aspects: average
runoff, seasonal runoff proportion, monthly runoff proportion and high extreme runoff
(Q95). Among them, the monthly runoff value is ranked from low to high, and the value
ranked at 95% is the high extreme runoff (Q95). Q95 extreme runoff indicates the 95th
percentile of the monthly flow distribution, which can represent the occurrence of flood
disasters in a basin [47-49].

3.3.1. Average Runoff Change

The differences between the average runoff of the four hydrological stations in the
middle of the 21st century (2040-2060) and the base period (1970-1990) are displayed in
Figure 12. The average runoff of Tangnaihai, Toudaoguai, Sanmenxia and Lijin stations
under four RCP-LUC scenarios tends to increase compared with the base period. Compared
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Change ratio of average runoft (%)

with different RCP-LUC scenarios, the order of average runoff increment of Tangnaihai
and Toudaoguai hydrological stations is RCP4.5-LUC>RCP8.5-LUC>RCP6.0-LUC>RCP2.6-
LUC; the order of average runoff increment of Sanmenxia and Lijin hydrological stations is
RCP8.5-LUC>RCP4.5-LUC>RCP2.6-LUC>RCP6.0-LUC.

32.83
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Hydrological stations

Figure 12. The differences between the average runoff in the future period and the base period of the four

hydrological stations.

Compared with the future runoff simulation results under RCP scenarios in the
existing studies [11,12], it is found that the average runoff in the future under the RCP-LUC
scenario is greater, which indicates that land use data input into the SWAT model will have
a great impact on future runoff simulation results.

3.3.2. Seasonal Runoff Proportion Change

Table 7 displays the differences between the proportion of seasonal runoff in the future
period (2040-2060) and the base period (1970-1990). Compared with the base period,
the runoff proportion of Tangnaihai and Sanmenxia hydrological stations in spring tends
to decrease, and it increases in summer, autumn and winter. The runoff proportion of
Toudaoguai hydrological station in spring and summer decreases, and increases in autumn
and winter. The runoff proportion of Lijin station in spring and autumn decreases, and
increases in summer and winter. To sum up, under the RCP-LUC scenario, the spring
runoff proportion of the four hydrological stations shows a decreasing trend, and the
winter runoff proportion tends to increase. The variation trend of runoff proportion in
summer and autumn at four hydrological stations is different.

3.3.3. Monthly Runoff Proportion Change

The differences between the monthly runoff proportion of the four hydrological
stations in the future period (2040-2060) and the base period (1970-1990) are shown
in Table 8. Compared with the base period, the monthly proportion runoff of the four
hydrological stations in the Yellow River Basin all changed in the middle of the 21st
century. The monthly runoff proportion of Tangnaihai, Toudaoguai, Sanmenxia and Lijin
hydrological stations in the middle of the 21st century (2040-2060) tends to decrease in
April, May, June, July and October. The monthly runoff proportion of the four hydrological
stations tends to increase in January, February, August, September and December.
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Table 7. The differences between the seasonal runoff proportion in the future period and the base period of the four

hydrological stations (%).

Hydrological Station Scenario Spring Summer Autmun Winter
RCP2.6-LUC —4.11 0.78 0.28 3.05
Tanenahai RCP4.5-LUC —4.19 0.81 0.36 3.02
& RCP6.0-LUC —4.01 0.60 0.27 3.13
RCP8.5-LUC —4.39 0.89 0.54 297
RCP2.6-LUC —6.34 —0.64 0.77 6.20
Toudaoeuai RCP4.5-LUC —6.27 —1.09 1.06 6.30
& RCP6.0-LUC —6.09 —-1.21 0.93 6.37
RCP8.5-LUC —6.34 —0.87 1.04 6.17
RCP2.6-LUC —7.18 1.33 0.28 5.57
S , RCP4.5-LUC -7.11 0.85 0.40 5.86
anmenxia RCP6.0-LUC ~6.96 0.67 0.56 5.72
RCP8.5-LUC —6.98 1.09 0.10 5.79
RCP2.6-LUC —6.52 244 —1.09 5.17
Litin RCP4.5-LUC —6.47 2.00 —0.90 5.36
) RCP6.0-LUC —6.30 1.77 —0.77 5.30
RCP8.5-LUC —6.46 2.54 -1.29 5.21

Table 8. The differences between the monthly runoff proportion in the future period and the base period of the four

hydrological stations (%).

Hggl;?(l:‘%mal Scenarios January February March April May June July August September October November December
RCP2.6-LUC 1.05 091 0.41 —-1.25 —3.28 —~1.90 —0.71 3.39 143 -1.07 —0.08 1.09
Tangnaihai RCP4.5-LUC 1.06 0.89 035 ~123 —331 —2.05 —0.85 371 1.64 ~115 ~013 1.07
ang RCP6.0-LUC 1.07 094 042 121 322 —1.89 —0.85 335 137 ~1.06 —0.04 112
RCP8.5-LUC 1.05 0.85 024 ~139 —325 —164 —0.82 334 158 ~0.97 ~0.07 1.07
RCP2.6-LUC 2.18 1.13 —1.34 —1.49 —3.50 -3.23 -1.13 3.72 1.08 -0.92 0.62 2.89
Toudaoguai RCP4.5-LUC 2.21 117 —1.34 —145 —3.48 -3.31 —1.41 3.63 1.39 —0.94 0.61 292
& RCP6.0-LUC 2.24 1.19 -1.28 —1.40 —3.41 —3.14 —1.34 3.27 1.16 —0.89 0.66 2.95
RCP8.5-LUC 217 111 -1.39 —1.51 —3.44 —3.05 -1.20 3.38 125 —0.84 0.63 2.88
RCP2.6-LUC 2.16 0.60 —2.03 —2.02 -3.13 —1.08 —0.42 2.84 1.06 —0.86 0.08 2.81
. RCP4.5-LUC 2.26 0.71 —1.95 —1.96 —3.20 —1.25 —0.65 2.75 117 —0.88 0.11 2.90
Sanmenxia RCP6.0-LUC 222 0.68 -1.97 -1.9 -3.03 —0.95 —059 221 1.26 —0.75 0.05 283
RCP8.5-LUC 223 0.68 —1.96 —-1.92 -3.11 -1.17 —0.44 2.70 0.96 —0.93 0.07 2.87
RCP2.6-LUC 2.08 0.66 —1.67 —1.86 —2.99 —-1.12 —0.04 3.53 0.85 —1.46 —0.48 242
Litin RCP4.5-LUC 2.15 0.76 —1.61 —1.81 —3.05 -1.23 —0.07 3.29 1.03 —1.42 —0.51 245
y RCP6.0-LUC 2.14 0.72 —1.60 -1.79 —291 —0.91 —0.03 2.71 1.04 —1.28 —0.53 244
RCP8.5-LUC 2.11 0.69 —1.66 —1.82 —2.98 -1.18 0.20 3.52 0.77 —149 —0.57 2.41

3.3.4. Q95 Extreme Runoff Change

The differences between the Q95 extreme runoff of four hydrological stations in
the middle of the 21st century (2040-2060) and the base period (1970-1990) are shown
in Figure 13. Compared with the base period, the Q95 extreme runoff of Tangnaihai,
Toudaoguai, Sanmenxia and Lijin stations all increased obviously, indicating that the
probability of flood disasters in the Yellow River Basin will increase in the future period.

Compared with different RCP-LUC scenarios, the order of Q95 extreme runoff in-
crement of Tangnaihai and Toudaoguai hydrological stations is RCP4.5-LUC>RCP8.5-
LUC>RCP6.0-LUC>RCP2.6-LUC; the order of Q95 extreme runoff increment of Sanmenxia
and Lijin hydrological stations is RCP8.5-LUC>RCP4.5-LUC>RCP2.6-LUC>RCP6.0-LUC.
In a word, Tangnaihai and Lijin hydrological stations have the highest probability of flood
disasters under the RCP4.5-LUC scenario, while Sanmenxia and Lijin hydrological stations
have the highest probability of flood disasters under the RCP8.5-LUC scenario.

Compared with the future runoff simulation results under RCP scenarios in the
existing studies [11,12], it is found that the Q95 extreme runoff in the future under the
RCP-LUC scenario is greater, which indicates that existing studies have underestimated
the risk of flood disasters in the future.
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Figure 13. The differences between the Q95 extreme runoff in the future period and the base period of the four

hydrological stations.

4. Discussion
4.1. Uncertainty of SWAT and CA-Markov Model on Runoff Simulation

Although the SWAT and CA-Markov models have rigorous theoretical basis and
complex structure, there are still some uncertainties when using mathematical formulas to
describe the process of runoff generation and land change. In the follow-up study, in order
to reduce the uncertainties of the model on the future runoff simulation results, multiple
models can be used to simulate the future runoff change (such as VIC and SWAT model)
and future land use maps (such as CA-Markov and FLUS model) of the Yellow River Basin.

4.2. Uncertainty of Parameter Calibration on Runoff Simulation

In this paper, the monthly runoff data of Tangnaihai, Toudaoguai, Sanmenxia and
Lijin in the Yellow River Basin are verified by the SUFI2 algorithm in SWAT-CUP software.
However, there is still some uncertainty between the simulation results and the actual
observation data. During the verification period (1981-1990), the relative errors between
the monthly flow observation values and simulated values of Tangnaihai, Toudaoguai,
Sanmenxia and Lijin hydrological stations in the Yellow River Basin are —4.54%, 15.67%,
13.02% and 15.72%, respectively. These parameters will lead to some uncertainties on
runoff simulation results in the future. In the follow-up study, we need to collect more
data such as urban water, industrial water, agricultural water and water conservancy dam
construction, so as to establish a more accurate SWAT model.

4.3. Uncertainty of Global Climate Models on Runoff Simulation

For the study of climate change on river runoff, the main uncertainty is the global
climate model data [50]. These uncertainties are highly correlated with the corresponding
structure, parameters and spatial resolution of the global climate model [51]. The differ-
ences between the average runoff and Q95 extreme runoff of the five global climate models
in the middle of the 21st century and the base period are shown in Table 9.

The variation range of the average runoff and Q95 extreme runoff of Tangnaihai,
Toudaoguai, Sanmenxia and Lijin hydrological stations is very large, which shows that
different climate models will lead to great difference in runoff simulation results of the
Yellow River Basin in the future. However, using multiple global climate model data can
reduce the uncertainty of runoff simulation in the future [50,51]. In this study, only five
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sets of global climate model data are used as the basic data. In the follow-up study, we will
use more climate model data to estimate future runoff.

Table 9. The differences between future average runoff, Q95 extreme runoff and base period of the four hydrological stations

(%).
Global RCP2.6-LUC RCP4.5-LUC RCP6.0-LUC RCP8.5-LUC
oba
. Hydrological
Climate YS;‘O osica Average Q95 Average Q95 Average Q95 Average Q95
Model ation Runoff Extreme Runoff Extreme Runoff Extreme Runoff Extreme
Runoff Runoff Runoff Runoff
Tangnaihai 50.51 53.79 63.28 60.29 67.96 65.55 65.91 64.08
GFDL- Toudaoguai 25.79 34.13 42.30 43.81 44.90 50.15 48.79 51.38
ESM2M Sanmenxia 36.70 52.80 59.63 67.08 53.58 63.83 76.00 87.34
Lijin 40.86 64.60 62.34 77.66 52.84 76.82 79.17 100.60
Tangnaihai 34.72 20.64 38.26 24.76 23.65 19.99 23.46 11.70
HadGEM2- Toudaoguai 8.84 —4.13 421 —6.55 —11.08 —10.91 —4.73 —15.44
ES Sanmenxia 5.02 3.54 —-1.72 4.66 —22.52 —10.53 —6.75 —5.14
Lijin 9.83 12.53 0.89 10.74 —22.42 —5.76 —2.53 0.02
Tangnaihai 65.55 51.68 71.85 59.48 72.76 65.66 92.52 77.30
IPSL- Toudaoguai 28.72 14.05 32.58 19.13 33.00 16.30 46.61 28.33
CM5A-LR Sanmenxia 18.04 17.19 13.72 14.02 19.59 18.50 36.37 27.59
Lijin 17.19 19.66 12.49 15.86 19.40 23.58 35.55 32.15
MIROC Tangnaihai 31.43 17.50 52.17 34.18 34.86 23.94 40.38 27.52
ESM i Toudaoguai 3.41 —6.03 19.71 6.31 4.94 —3.89 6.66 —1.60
CHEl\-/[ Sanmenxia 0.46 5.30 23.08 16.76 2.51 3.78 6.24 7.12
Lijin 0.20 6.79 19.43 18.78 0.22 7.82 2.96 8.49
Tangnaihai 33.07 20.80 33.17 22.64 19.55 16.47 19.47 16.68
NorESL-M Toudaoguai 4.24 —-9.04 3.71 —-7.19 —-7.22 —17.01 —4.66 —13.98
orksl- Sanmenxia —4.06 -7.17 —-2.14 211 —13.89 —8.00 —-9.42 —5.68
Lijin -1.13 —1.08 —-1.33 5.33 —13.23 —2.51 —6.44 0.72

4.4. Uncertainty of Land Use Simulation on Runoff Simulation

The CROSSTAB module of IDRISI 17.2 software was used to calculate the Kappa
coefficient and the result is 0.82, which will lead to some uncertainties on land use sim-
ulation results in the future. In the follow-up study, we will establish a more accurate
CA-Markov model to simulate land use data of the Yellow River Basin. In addition, in
the follow-up study, it is necessary to simulate the future land use under the scenarios of
ecological protection, status quo continuation and rapid urbanization, and analyze the
impact of different land use change scenarios on future runoff.

5. Conclusions

This paper simulated the future runoff change in the Yellow River Basin under the
combined effect of land use and climate change (RCP-LUC) based on CA-Markov and
SWAT, and analyzed the changes in the average runoff, Q95 extreme runoff and intra-
annual runoff distribution under the RCP-LUC scenario. The conclusions were as follows:

(1) Compared with the base period (1970-1990), the average runoff of the Yellow River
Basin shows an increasing trend in the future period (2040-2060), and the probability of
flood disasters also tends to increase.

(2) Compared with the future runoff simulation results under the RCP scenario in the
existing studies [11,12], it is found that the average runoff and Q95 extreme runoff in the
future under the RCP-LUC scenario are greater, which indicates that existing studies have
underestimated the risk of flood disasters in the future.

(3) Compared with the base period, the spring runoff proportion of the four hydrolog-
ical stations in the Yellow River Basin in the future period (2040-2060) shows a decreasing
trend, which increases the risk of drought in spring. The winter runoff proportion tends
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to increase, and the variation trend of runoff proportion in summer and autumn at four
hydrological stations is different.

(4) Compared with the base period (1970-1990), the monthly runoff proportion of
the four hydrological stations in the Yellow River Basin in the future period (2040-2060)
tends to decrease in April, May, June, July and October, and tends to increase in January,
February, August, September and December.
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