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Abstract: This research was focused on estimation of tree canopy cover (CC) by multiscale remote
sensing in south China. The key aim is to establish the relationship between CC and woody NDVI
(NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field CC
measurements, this research used Google Earth as a complementary source to measure CC. In total,
63 sample plots of CC were created, among which 45 were applied for modeling and the remaining
18 were employed for verification. In order to ascertain the ratio R of NDVIW to the satellite observed
NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposition to obtain the
NDVIW component, and then the ratio R was calculated with the equation R = (NDVIW/NDVI)
*100%, respectively, for forest (CC > 60%), medium woodland (CC = 25–60%) and sparse woodland
(CC 1–25%). Landsat TM and OLI images that had been orthorectified by the provider USGS were
atmospherically corrected using the COST model and used to derive NDVIL. R was multiplied for
the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data for each of these plots.
The 45 plots of CC data were linearly fitted to the NDVIWL, and a model with CC = 103.843 NDVIW

+ 6.157 (R2 = 0.881) was obtained. This equation was applied to predict CC at the 18 verification plots
and a good agreement was found (R2 = 0.897). This validated CC-NDVIW model was further applied
to the woody NDVI of forest, medium woodland and sparse woodland derived from Landsat data for
regional CC estimation. An independent group of 24 measured plots was utilized for validation of the
results, and an accuracy of 83.0% was obtained. Thence, the developed model has high predictivity
and is suitable for large-scale estimation of CC using high-resolution data.

Keywords: canopy cover; NDVIW; time-series analysis; CC-NDVIW model

1. Introduction

Forest canopy cover (CC), defined as the proportion of the tree canopy by vertical
projection on the forest floor [1,2], is an important parameter with multiple factors of
ecological significance, especially for characterizing woodlands and forests. It can be
applied to a number of aspects, most commonly measuring forest stand density [3,4] and
distinguishing different animal habitats [1,4,5]. CC data can also be employed for prediction
of woody plant composition, tree stand volume, forage production, and for monitoring
and assessment of forest pest damage [6,7]. In particular, CC is useful for assessing
forest microclimate and light conditions [1], estimating the leaf area index (LAI) [8–11],
and predicting the interception losses (i.e., wetted-canopy evaporation) from forests [12]
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and woody biomass [13]. It has to be noted that CC is a different concept from canopy
closure, the latter of which is defined as the proportion of the sky hemisphere obscured by
vegetation when viewed from a single point [1]. CC has been gradually recognized as a
key indicator of forests and incorporated into forest inventory programs [1–3].

Traditional CC measurements are performed on site. This measurement method can
obtain high-precision data but is time-consuming and labor-intensive [1,3] and may also
face unknown natural risks-for example, venomous snakes, bumblebees, insects, and,
especially, getting hurt by thorns and brambles. The second method of estimating CC
is to construct a statistical model based on known forest measurements. For example,
Bechtold [14] used the strong correlation between at-breast height diameter and crown
diameter to construct a crown diameter prediction model. This method is limited by forest
statistics and is improper for small areas where statistics are lacking. The third method is to
use remote sensing data to obtain CC, which is in general estimated from multiresolution
satellite images for different types of forests and woodlands [13,15].

At present, satellite remote sensing provides great facility for forest research and
has been widely applied in tree cover characterization, forest performance monitoring,
biomass estimation and carbon sequestration/emission analysis at local, regional and
global scales [13,16–23]. Woodlands and forests account for 68.6–75.9% of the total annual
net primary production (NPP) in global terrestrial ecosystems [13,24], which are impor-
tant carbon sinks that are capable of mitigating carbon emissions and climate change.
This demonstrates the importance of employing remote sensing data for forest and wood-
land research.

Actually, more and more multisensor and multiresolution remote sensing data have
become available, and a number of scholars have extracted information from these data
and constructed CC models based on spectral reflectance [13,16,19,21,25]. As an important
remote sensing index, the Normalized Difference Vegetation Index (NDVI) has been proven
to be highly and linearly correlated to CC [13,26]. Wu et al. [13], utilized a number of
vegetation indices (VIs), such as the NDVI, Soil-Adjusted and Atmospherically Resistant
Index (SARVI [27]), Enhanced Vegetation Index (EVI [28]) and Wide Dynamic Range
Vegetation Index (WDRVI [29]), to build CC-VIs models, namely, CC-EVI, CC-SARVI and
CC-NDVI. Their research revealed that for African tropical savanna woodlands and forests,
the CC-NDVI model, or rather, the one coupling CC with the NDVI of woody vegetation
(denoted as NDVIW), performed best and it was hence selected for assessment of the woody
biomass in tropical Africa [13].

Remote sensing-based techniques have been applied for CC estimation in developed
countries with multiresolution data [3,11,13,21], yet they have rarely been reported in
China, especially in south China, with application of high-resolution data. Based on the
above studies, the main objective of this study is to develop a south China-suited CC-
NDVIW model, conduct a woodland cover mapping, and use the developed model to
estimate and map CC taking northeast Jiangxi as an example.

2. Materials and Methods

To achieve the objective, a flowchart demonstrating the overall methodology of this
research is shown in Figure 1.

2.1. The Study Area

The research area of this study is located in northeast Jiangxi, China, including three
cities, namely, Jingdezhen, Shangrao, and Yingtan, and encompassing 19 counties. The ter-
rain inclines largely from the east, composed of a series of northeastern striking mountains
and interbedded basins, to the west, where Poyang Lake is situated. The mountain-basin
landscape in the east mainly includes three mountain ranges—the Wulong Mountains in
the north, the Wuyi Mountains in the south, and the Huaiyu Mountains in the central east.
The highest point in the region is Huanggang Mount, the peak of the Wuyi Mountains in
Yanshan County, with an altitude of 2157 m. The lowest point is Poyang Lake in the west
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of the region, with an altitude of nearly 10 m. The water system is well-developed in the
study area where the main rivers are Xinjiang, Raohe and their tributaries flowing from
east to west into Poyang Lake (Figure 2).

Figure 1. The overall methodological flowchart applied in this study.

Figure 2. Location of the study area—northeast Jiangxi, China.

The study area belongs to the subtropical monsoon climate zone. The annual average
temperature is around 17 ◦C. The average temperatures in January and July are about 5
and 29 ◦C, respectively. Precipitation generally decreases from east to west, with an annual
average precipitation of more than 1600 mm.
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The main land use and cover types are croplands, forests and woodlands, grasslands,
water bodies and artificial areas. Here, woodlands encompass about 19,651.57 km2, in-
cluding mixed forests (11,041.29 km2), coniferous forest (2854.00 km2), bamboo forests
(1943.52 km2) and shrublands (2839.05 km2).

2.2. Data

The data used in this study consist of two types: field data obtained from the field
surveys and multiresolution satellite images.

2.2.1. Field Data

Two field campaigns were conducted, respectively, during 25–31 October 2019, and 5–
18 October 2020, and 28 plots of woodlands and forests (conifers and mixed forests) were
measured, including CC, diameter at breast height (DBH), canopy height and tree species
and numbers, which will be used for biomass calculation in future.

2.2.2. Multiresolution Satellite Data

While selecting satellite images for vegetation-related research and land cover map-
ping, phenology is a crucial factor to consider [13,19,21,30,31]. It is natural that herbaceous
vegetation grows together with trees in forests and woodlands. Favored by a humid and
warm climate, herbaceous vegetation in Jiangxi flourishes in spring, is full of vigor in
summer, but withers in late autumn and dries in winter. One may think it reasonable to
select winter images for forest research as there is no influence of herbaceous vegetation.
Nevertheless, one key factor lies in that most broadleaf trees become leafless, and the
sun-elevation angle is so low at that time that the impact of mountain shadow has to be
taken into account. Hence, it came to our knowledge that late autumn, e.g., November,
is the best month for forest/woodland research as influences of herbaceous vegetation can
be reduced and deciduous trees are still green. Another advantage is that the study area
becomes dry from November onwards, and there is high possibility to acquire cloud-free
satellite images in this month. Therefore, in consideration of all these reasons, November
Landsat images were acquired for our study.

As required by multiscale research [13,31] and in order to achieve our objectives,
multiresolution and multisensor remote sensing data were prepared as follows:

1. Very high-resolution images available on Google Earth (©Google: https://www.
google.com/earth/, accessed on 2 April 2021).

2. Four scenes of Landsat 8 OLI images (30 m) with Pass/Row Nos. 120/40 and 120/41
acquired on 16 November 2019, and three with Pass/Row No 121/39 and 121/40 on 23
November 2019, were obtained from the USGS data server (https://glovis.usgs.gov/,
accessed on 9 March 2020).

3. MODIS MOD13Q1 data with frame No h28v06 (250 m, vegetation index 16-day
composite product) of a 20-year period from March 2000 to February 2020 were
obtained from USGS data server (https://lpdaac.usgs.gov/, accessed on 15 March
2021), and the NDVI data of each month within a 20-year period were extracted to
form the NDVI time-series dataset.

2.3. Development of the CC-NDVIW Model

A number of vegetation indices such as NDVI, SAVI, SARVI, WDRVI, EVI, and Gen-
eralized Difference Vegetation Index (GDVI) have been developed and widely applied
in different domains of research, especially in vegetation monitoring [13,27–29,31–36].
Wu, et al. [13], performed a regression analysis to couple different vegetation indices with
CC and concluded that NDVI performed better in building model with CC than other
vegetation indices. Therefore, following their conclusion, NDVI, or rather, its woody com-
ponent, NDVIW, was selected for CC modeling in this research. The detailed procedure
and steps for the development of the CC-NDVIW model are as follows.

https://www.google.com/earth/
https://www.google.com/earth/
https://glovis.usgs.gov/
https://lpdaac.usgs.gov/


Land 2021, 10, 433 5 of 16

2.3.1. CC Measurement

(1) CC plots for modeling

The measurement of CC is the key to the establishment of the model and requires
representative plots for sampling. In different geographical backgrounds, CC of woodlands
has been differently classified by different authors or institutions. In consideration of the
climatic conditions in Jiangxi and previous studies, woodland cover in the study area
was divided into three categories: forests when CC is greater than 60% (CCH), medium
woodlands when CC is between 25 and 60% (CCM), and sparse woodlands when CC is
1–25% (CCL).

The first step was to conduct field campaigns to measure CC of conifers, deciduous
species and bamboo across the study area in October 2019 and October 2020. However,
due to the complexity of the natural conditions, including landform, canopy interlayer and
inaccessibility to the plots of the mixed forests, it was extremely difficult to find reasonable
30 × 30 m2 plots, not to mention the full-size ones (100 × 100 m2) on the ground. The
28 measured plots varied from 10 × 10 m2 to 30 × 30 m2 in size, and the two directions of
canopy diameters were used to calculate CC. Unfortunately, five measured dense forest
plots of CC reach >100%, mainly incurred from the overlap of canopies with each other.
Hence, these five abnormal plots were removed and not used for modeling. The other
23 plots were more or less usable as they are close to those measured on Google Earth, with
about 5–12% of difference.

It should be mentioned that under the mature tree canopies, no matter whether they
are mixed (Cinnamomum camphora, Schima superba, Liquidambar formosana, Castanea
mollissima Blume, Quercus palustris) or coniferous (Pinus massoniana or Pinus elliot-
tiiforests) forests, mid-and young-age trees were rarely observed in the field except for
thorns, brambles and rattan vegetation inside the plots. In the young conifer plots, only
pure young pines (Pinus massoniana), at ages of about 6–10 years, were found.

The second step was carried out using Google Earth, on which high-resolution
(e.g., 0.5–2m) satellite images were available. We considered that this would be better
since tree canopy could be recognized and parameterized easily in the forests and wood-
lands. Thus, 40 plots with an area of 1 ha (100 × 100 m2 = 1 ha) were randomly selected
in the mixed forests, conifers and woodlands at different CC levels—i.e., high CC (>60%),
medium CC (25–60%) and low CC (1–25%), denoted as CCH, CCM and CCL, respectively,
on Google Earth. A screenshot function was used to capture the images of these plots.
We then imported them into Photoshop, and after discarding the color information, all these
plots of images were converted into black and white. An adjustment of the brightness and
contrast of the image followed—for example, for each image, the brightness and contrast
were uniformly increased to 120 (150 at maximum) and 95 (100 at maximum), respectively.
After this processing, the tree canopy (dark) in the sample plot could be clearly separated
from other ground features, such as soil and herbaceous vegetation (white). Through the
Density Slice tool of ENVI (an image processing package: ©Harris Geospatial Solutions,
Inc., https://www.l3harrisgeospatial.com/, accessed on 2 April 2021), the proportion of
canopy covered areas in the sample plot could be obtained, and this is the CC we were
looking for (Figure 3). This method is appropriate for CCH, where the plots are filled with
tree canopies, and herbaceous vegetation is generally hidden under the canopies, which
will not affect the reading of the crown area.

The warm and humid climate favors the vigorous growth of herbaceous vegetation in
the study area and even in late autumn it is still green to some extent. In the cases of CCM
and CCL, such vegetation will definitely influence the recorded signal by sensors as it is a
mixture of tree canopies and herbaceous vegetation. If we used a satellite-based vegetation
index, e.g., the NDVI, to study CC, herbaceous vegetation would be a problematic issue.

https://www.l3harrisgeospatial.com/
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Figure 3. An example of extracting CC using Photoshop and Density Slicing within ENVI. (a) Captured image plot on
Google Earth using the screenshot function; (b) discarding of color and enhancement of brightness and contrast of the
plot to 120 (150 at maximum) and 95 (100 at maximum), respectively, in Photoshop; and (c) canopy cover rendered by
thresholding using the Density Slice tool of ENVI.

To sort out this issue, we used plot dichotomy to deal with CCM and CCL cases. The
procedure for this method was first to randomly select a number of candidate areas. Then,
inside the selected area, plot(s) were carefully chosen without or with very little herbaceous
vegetation, which was distinct from woody trees with dense and concentrated crowns
while soil was clear. We defined the tree canopy part of the plot as a closed vector polygon
on Google Earth. The area of this polygon was actually the CC of the CCM and CCL cases
and the left of the plot was soil with low vegetation cover.

Therefore, in total 63 plots of CC were made available for the successive modeling,
where 45 plots were dedicated to modeling and 18 plots were used for model validation.

(2) CC plots for time-series analysis

With the same operation, 60 large plots with sizes of four ha (200 × 200 m2) were
also defined on Google Earth at different CC levels, i.e., 20 plots for each category of
CCH, CCM and CCL. These plots were used for NDVI sampling in the successive time-
series decomposition analysis with MODIS data to estimate the woody component of the
observed NDVI. When selecting these sample plots, it was necessary to ensure their spatial
representativeness to avoid farmland and mountain terraces, forest fire and deforestation
activities so that the plots were not affected by other disturbing features and could be
useful.

(3) CC plots for final CC map validation

To validate the final product of this research, the CC map derived from Landsat
images, a third independent group of 24 CC plots with a spatial size of 30 × 30 m2 was
defined on Google Earth.

The locations of all these three groups of plots are shown in Figure 4.

2.3.2. Atmospheric Correction of Landsat Data

Already orthorectified by the provider, it is only necessary to conduct atmospheric
correction for these Landsat 8 OLI images. Radiation transmission is affected by atmo-
spheric scattering and absorption [13,37,38]. Atmospheric correction is used to remove
or to minimize such effects in images, and at the same time, to convert the at-satellite
solar radiance in digital number (DN) into surface reflectance [13,37–39]. Atmospheric
correction methods mainly include the radiative transfer code, ground wave measured data
regression correction, the histogram minimum value removal, and the image-based DOS
(dark-object subtraction) model [33] and its improved version, the COSine Theta (COST)
model (in which theta is the zenith angle θ) developed by Chavez [37]. The DOS model
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only corrects the additive scattering and not the multiplicative transmittance effect [37];
additionally, it may produce an overcorrection and not be applicable in images without
dark objects [38]. The COST model provides a reliable image-based approach to correct
additive scattering and multiplicative transmittance effects, and it is hence proper for
application in vegetation research by remote sensing [13,37,38,40].

Figure 4. Locations of the three sets of plots for modeling, decomposition and validation.

In this paper, the COST model was applied for atmospheric correction, i.e., to remove
or reduce the haze effects in the at-satellite spectral radiance and at the same time to convert
the radiance into surface reflectance [37]. Wu [38] simplified the correction equation of the
COST model, and for band i, it can be expressed as:

Ri =
π

Eoi cos2 θ
• LiMax − LiMin

DNiMax
(DNi − DNhi) (1)

Ri: spectral reflectance of the surface of band i;
Eoi: maximum solar spectral irradiance of band i;
θ: solar zenith angle;
LiMax and LiMin: the maximum and minimum spectral radiances of band i;
DNiMax: the maximum digital number (DN) of pixel of band i;
DN: DN value of pixel of band i;
DNhi: the haze value of pixel of band i.
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In this atmospheric correction, we used the band minimum as the haze effect. Af-
ter correction, NDVI of five forest patches increased from 0.61–0.71 to 0.78–0.84. These
corrected NDVI values were considered normal and reliable.

2.3.3. Decomposition of Time-Series MODIS NDVI

As we planned to use Landsat data for CC-NDVIW modeling, the purpose of this
decomposition analysis using the time-series MODIS NDVI dataset was to partition the
woody component from the herbaceous vegetation, or rather, to calculate the ratio between
the woody component and the satellite observed NDVI. We can thence apply this ratio to
Landsat NDVI for extraction of the Landsat woody NDVI (NDVILW).

Roderick et al. [41] and Lu et al. [42] extracted NDVIW by the moving average method
to obtain the baseline of NDVI time-series data, thus realizing the partition of woody
and herbaceous components. They attributed the baseline of the trend to the woody
vegetation and the seasonal signal to the understory herbaceous vegetation. Therefore, they
decomposed the NDVI time-series dataset (F) into three components: trend (T), seasonal
(S), and irregular variable (E). At a given time t, F can be expressed as:

F(t) = T(t) + S(t) + E(t) (2)

Shifting T by a constant K to get the baseline, this is actually the woody component of
the observed NDVI. K is the absolute value of the minimum seasonal component for two
consecutive years. Then, we have the following equation:

NDVIw = T − K (3)

Our study followed these concepts and used the Statistical Product and Service
Solutions (SPSS), a powerful statistical software platform developed by IBM (https://
www.ibm.com/analytics/spss-statistics-software, accessed on 9 April 2021), to perform
the decomposition analysis using the time-series MODIS NDVI dataset. The 60 4-ha plots,
more clearly, 20 plots for each of the three categories CCH, CCM, and CCL which were
randomly defined in forests, medium woodlands and sparse woodlands on Google Earth,
were saved as vector polygons, and then imported into ENVI and converted into regions
of interest (ROIs) of three categories as previously defined.

For the MODIS NDVI product, MOD13Q1, from March 2000 to February 2020, a total
of 240 scenes were imported one by one into ENVI to extract the average NDVI for each
defined CC category from each NDVI image using the 20 large plots of ROIs of CCH,
CCM, and CCL, respectively. The average NDVI dataset of each category with a time
span of 240 months was hence prepared. Then, the SPSS package was employed again to
conduct the decomposition analysis of the NDVI dataset of 20 high CC (CCH), 20 CCM
and 20 CCL plots separately. In the decomposition process, four new sequences were
decomposed—namely, the seasonal factor sequence (SAF), seasonal adjustment sequence
(SAS), smooth trend cycle sequence (STC), and irregular (error) component sequence
(ERR). These sequences correspond to Equation (2): SAF = S, STC = T, ERR = E. Therefore,
Equation (3) can be expressed as:

NDVIw = T − K = STC − K (4)

SAS was obtained by deleting the seasonal variations in the original sequence.
SAS = OS-SAF. OS is the original value of NDVI. The same operation was carried out for
the NDVI dataset of the CCM and CCL plots, respectively, and the decomposition results
are shown in Figure 5. It can be seen that the K values of the CCH, CCM, and CCL plots are
0.0947, 0.1272, and 0.1335, respectively.

https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
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Figure 5. Decomposition results: (a) forests; (b) medium woodlands; and (c) sparse woodlands. Note:
Here “Observed” denotes the original value of MODIS NDVI. X−axis represents months—240 in
total; Mar−00 = March 2000 and May−19 = May 2019. SAF—seasonal factor sequence, STC—smooth
trend cycle sequence, and NDVIW—woody component of the observed NDVI.

Using Equation (4), the NDVIW for any month from March 2000 to February 2020
can be calculated. Since Landsat images used for modeling in this paper were acquired
in November, it was necessary to calculate the NDVIW of November for all these three
types of plots during the 20-year period. Then, the ratio R of woody NDVI to the satellite
observed NDVI was calculated as follows:

R = (NDVIw/NDVI)× 100% (5)
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According to the above formula, the R values of the CCH, CCM, and CCL plots in
November were 0.8774, 0.8462 and 0.8338, respectively.

2.3.4. Derivation of Landsat NDVILW

The atmospherically corrected Landsat images of November 2019 were loaded in
ENVI, and the NDVIs corresponding to different R values were calculated, denoted as
NDVILH, NDVILM and NDVILL, respectively. The 45 sample plots with 1 ha area as
mentioned above were imported into the ENVI. These 45 plot frames, in three classes of
CCH, CCM and CCL, were, respectively, converted into ROIs, and denoted as ROIH, ROIM
and ROIL. In the NDVILH image, the NDVILW of each CCH plot in ROIH was obtained.
The same was effectuated to obtain the NDVILW of the other two types of plots, ROIM
and ROIL.

2.3.5. CC-NDVIW Modeling

The measured CC of the 45 plots and their corresponding NDVILW obtained from
the above procedure were coupled with a linear regression analysis to construct the CC-
NDVILW model at the confidence level of 95% (see Figure 6). The regression equation was
obtained as follows:

CC = 103.843 NDVILW + 6.157 (R2 = 0.881) (6)

Figure 6. CC-NDVILW model calibrated by linear regression analysis.

2.3.6. Verification of CC-NDVILW Model

As described in the foregoing sections, the 18 remaining CC plots were used as
verification samples to validate the above model. We took advantage of Equation (6) to
calculate the predicted CC at the verification sample plots and coupled it with the measured
CC samples using the linear regression model again at a confidence level of 95% (Figure 7).
It is clear that the agreement is extremely high, indicating that the developed CC-NDVIW
model is capable of achieving reliable CC prediction.
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Figure 7. Model validation: agreement between the measured and predicted 18 plots of CC.

2.4. Application of CC-NDVILW Model for CC Mapping
2.4.1. Woodland Classification

To apply the developed model for estimating woodland CC of the study area, an essen-
tial procedure is to derive different CC level masks where woody NDVI can be, respectively,
calculated from the Landsat NDVI. Based on an intensive land cover mapping, all wood-
lands and forests of the study area were extracted to build a woodland mask. As divided
during the CC classification, samples of CCH, CCM, and CCL were further defined in forest
and woodland areas in Landsat images with reference to Google Earth, and a supervised
classification with a random forests algorithm was further carried out under the woodland
mask. All woodlands were hence divided into three levels, i.e., forests, medium woodlands
and sparse woodlands in northeast Jiangxi in terms of the CC levels, i.e., CCH, CCM,
and CCL.

2.4.2. Model Application to Estimate Regional-Scale CC

The produced CCH, CCM, and CCL zones were extracted to create three canopy
cover masks, denoted as MaskH, MaskM and MaskL. Under these three different masks,
the woody NDVI (i.e., NDVILW) was, respectively, calculated for each pixel using the above
decomposition ratios.

The CC-NDVILW model was applied to each of these three zones of NDVILW to
produce CC, and then, a mosaic was conducted to merge all these three zones of CC to
constitute the CC map.

This CC map was verified against the independent group of 24 plots of CC (Section 2.3.).
If the agreement was good (e.g., >80%), the CC map was thereby validated. Otherwise,
it would be necessary to repeat the whole procedure until the agreement was satisfactory.

3. Results and Discussion
3.1. CC Measurement

Among the 63 measured plots of CC, their distributions in different CC levels were,
respectively, 8 plots at CCL, 19 plots at CCM, and 37 plots at CCH. Measuring field CC was
a tough job and less accurate than when using Google Earth due to the complex landform
and difficulty of accessing the plots. Hence, we used a combination of the field measured
CC with those from Google Earth for CC-NDVIW modeling.

The CC measurement method can also be calculated by directly measuring the
canopy diameter of the canopy in field and on Google Earth using a formula proposed
by Wu et al. [13]. This method is simple and feasible, but it is cumbersome to measure
each tree. However, using the method of this paper described in Section 2.3.1 to process
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the plots can greatly improve the measurement efficiency and is more suitable for areas
where there are luxuriant trees. The study area is complex in landform and composed of
both mountains and basins; nevertheless, it is essential to select relatively flat areas for
CC measurements. If plots were selected in the shadow of the north hillside with steep
slopes, CC measurement and NDVIW would be affected, as would the CC estimation
from Landsat data. In addition, disturbance from human activities such as deforestation,
burning, terrace reclamation, ore mineral exploitation, etc., which directly affects the value
of NDVIW, should be avoided.

The acquisition time difference between Landsat images and the very high-resolution
data on Google Earth has to be considered. If CC and NDVIW were found to be inharmo-
nious, it was necessary to check whether there was sudden change in the plot. If NDVIW
was derived from images before or after the change observed on Google Earth, there would
be, respectively, a high NDVIW versus a low CC or a low NDVIW versus a high CC. These
abnormal cases should be excluded.

3.2. The Importance of Decomposition of Time-Series Dataset

While extracting NDVIW, the influence from herbaceous vegetation has to be taken
into account as it is still partially green in the study area even in late autumn. Although we
had screened the sample plots to minimize herbaceous vegetation, it was impossible to
completely eliminate its influence on NDVI. The direct extraction of NDVI in the sample
plots from the November Landsat data would be risky and not be recommended. For this
reason, it is critical to conduct the decomposition processing of time-series NDVI to min-
imize the impact of herbaceous vegetation on NDVIW. Our results may be applied to
extract woody NDVI in any month of the year as we have obtained the year-round woody
component, i.e., the baselines of forests, medium woodlands and sparse woodlands as
shown in Figure 5.

3.3. Woodland Classification and NDVIW Maps

The classification map of woodlands was the basis for generating CC map. Using the
abovementioned approach, the four scenes of Landsat 8 images acquired in November 2019
were classified into forests (CCH), medium woodlands (CCM) and sparse woodlands (CCL)
with accuracies of 90.17, 90.12, 94.23 and 91.78%, respectively. The three classes of wood-
lands of the four scenes were mosaicked to constitute the regional woodland map (Figure 8)
and at the same time to produce three classes of woodland masks: forests, medium wood-
lands and sparse woodlands. These masks were used for derivation of NDVIW of each
woodland class with its corresponding woody NDVI ratio R. After mosaicking, a Landsat
NDVIW map was also produced.

3.4. CC Mapping

To demonstrate the applicability of the developed CC-NDVIW model, the latter was
applied to the Landsat-derived NDVILW under the three woodland masks to predict CC
and the result, the CC map, is presented in Figure 9.

For validation purpose, corresponding to the third group of 24 measured CC plots
from Google Earth, the predicted 24 CC values from the CC map were extracted and
both were coupled using linear regression analysis again at the confidence level of 95%.
Fortunately, the agreement reaches 83.0% (Figure 10), implying that using the proposed
approach, the predicted forest and woodland CC is reliable, or rather, the developed CC-
NDVIW model is operational and able to relevantly estimate CC with high accuracy in
northeast Jiangxi.
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Figure 8. Woodland classification map of northeast Jiangxi. Note: Forests where CC > 60%—CCH,
medium woodlands with CC of 25–60%—CCM and sparse woodlands with CC of 1–25%—CCL.

Figure 9. Forest and woodland canopy cover (CC) map of northeast Jiangxi.
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Figure 10. Agreement between the predicted CC from the Landsat-derived CC map and the indepen-
dent group of 24 validation plots of CC from Google Earth.

3.5. Possibility of Extension

The multiscale approach for regional scale CC mapping has clear advantages—i.e., it can
be applied for CC estimation in any month of the year if cloud-free high-resolution images
are available. It is known that wood species are normally Cunninghamia lanceolata, Pinus
massoniana for coniferous forests, Cinnamomum camphora, Pinus massoniana, Schima superba,
Pinus elliottii, Cunninghamia lanceolata, Liquidambar formosana, Castanea mollissima Blume,
and Quercus palustris for mixed forests, and Phyllostachys pubescens, Phyllostachys heteroclada
Oliver, and Phyllostachys stimulosa for bamboo forests in the study area. Actually, from
north to south and from east to west, forests are more or less similar in the whole of
Jiangxi Province, and even in the whole of south China. The only difference lies in the
abundance of broadleaf trees between the southern coastal provinces, such as Guangdong
and Guangxi, which are favored by abundant rainfall, and those inside the Yangtze River
Watershed, e.g., Hunan, Hubei, Jiangxi and Anhui.

Thus, the approaches developed in this study are most likely extendable to south
China and the CC-NDVIW model is directly applicable to the whole of Jiangxi and even
Hunan, Anhui and Zhejiang for regional and subnational CC mapping.

Though global-scale tree cover data of 500 m resolution have been made available by
NASA, which were derived from MODIS data [21], our approach can be considered as a
complement to theirs to derive regional- and subnational-scale forest and woodland CC by
high-resolution satellite data. Such a product may provide more useful information for
forest resource monitoring and management for local and regional authorities.

4. Conclusions

This paper demonstrated development of a multiscale forest and woodland CC map-
ping approach based on the derivation of woody NDVI through time-series decomposition
analysis and construction of the CC-NDVIW model in northeast Jiangxi. This approach pro-
vided a simple, fast, and regional-scale CC estimation and mapping possibility. Compared
with the traditional manual measurements, the developed method has evident advantages,
i.e., cost-effectiveness, not time-consuming, and especially, possibility of year-round CC
mapping. Theoretically, the developed model appears to be applicable for characteriza-
tion of forests and woodlands in the whole of Jiangxi. Moreover, as long as there is a CC
classification map and corresponding NDVIW data, the model can be extended to other sub-
tropical monsoon climate regions where coniferous and mixed forests coexist, for example,
in south China, thanks to the similarity in woody species and climate conditions there.



Land 2021, 10, 433 15 of 16

Moreover, after we encountered a difficulty in implementing the field measurement
of CC, we employed Google Earth as an alternative to supplement the measurement so
that this study provides an operational example of integration of field measurement with
Google Earth. To overcome the field difficulty of measurement, use of an unmanned
aerial vehicle (UAV) is a good option, and this is going to be conducted in our next step
of research.
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