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Abstract: Public domain synthetic-aperture radar (SAR) imagery, particularly from Sentinel-1, has
widened the scope of day and night vegetation monitoring, even when cloud cover limits optical
Earth observation. Yet, it is challenging to combine SAR images acquired at different incidence angles
and from ascending and descending orbits because of the backscatter dependence on the incidence
angle. This study demonstrates two transformations that facilitate collective use of Sentinel-1 imagery,
regardless of the acquisition geometry, for agricultural monitoring of several crops in Israel (wheat,
processing tomatoes, and cotton). First, the radar backscattering coefficient (σ0) was multiplied by
the local incidence angle (θ) of every pixel. This transformation improved the empirical prediction
of the crop coefficient (Kc), leaf area index (LAI), and crop height in all three crops. The second
method, which is based on the radar brightness coefficient (β0), proved useful for estimating Kc, LAI,
and crop height in processing tomatoes and cotton. Following the suggested transformations, R2

increased by 0.0172 to 0.668, and RMSE improved by 5 to 52%. Additionally, the models based on the
suggested transformations were found to be superior to the models based on the dual-polarization
radar vegetation index (RVI). Consequently, vegetation monitoring using SAR imagery acquired at
different viewing geometries became more effective.

Keywords: Sentinel-1; SAR; RVI; incidence angle; crop coefficient; leaf area index

1. Introduction

Spaceborne monitoring of agricultural landscapes is predominantly performed using
optical sensors and synthetic-aperture radar (SAR). The use of passive optical remote
sensing in the visual, near-infrared, shortwave infrared, and thermal spectral regions for
the estimation of agricultural variables is well established [1–10]. However, optical sensors
are limited by cloud cover. To overcome this problem, previous studies have suggested
combining observations acquired at different times by several optical sensors [11–15], but
even this approach does not always produce enough cloud-free observations to monitor
cloudy regions effectively. Moreover, leaf area index (LAI) estimation from optical imagery
suffers from a saturation effect when the LAI is greater than 3 [16–20]. Overcoming this
limitation is desirable since LAI is commonly used as a measure of crop growth, nitrogen,
and fertilization status estimation [21]. The LAI is also a good proxy for vegetation
vigor [22,23], and a good yield predictor [24–27].
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This study proposes complementing optical remote sensing with SAR to overcome
these obstacles in monitoring vegetation properties and to facilitate better agricultural prac-
tices [28]. SAR penetration of the canopy can mitigate saturation in LAI estimation [29–31].
Moreover, since SAR can penetrate clouds, it produces high-quality imagery even in ad-
verse weather conditions [32]. In addition to the LAI, remote sensing can be used to
estimate other variables such as the crop coefficient (Kc) and height. Kc-based estimation
of crop water consumption is one of the most commonly used irrigation management
methods [33,34]. Crop height is a good predictor of the aboveground biomass [35] and
is commonly used by growers as a proxy for crop development. Therefore, deriving re-
liable SAR-based LAI, Kc, and height estimation models can facilitate better agricultural
monitoring, especially in cloudy regions.

Several studies have employed spaceborne SAR for agricultural purposes [36–40] and
demonstrated that quad-polarization SAR (e.g., RADARSAT-2, TerraSAR-X/TanDEM-X)
could be used for crop monitoring. However, quad-polarization SAR images currently
come at a high cost that limits their use in routine monitoring of crops and in research.
Since 2014, the Sentinel-1 mission, consisting of two polar-orbiting satellites, provides a
dual-polarization alternative at no cost to the user. These satellites have a revisit time of six
days at 30◦ latitude at the same viewing geometry and a 10 × 10 m pixel size, thus having
significant potential for agricultural applications.

One of the most critical challenges in creating time series of SAR imagery is the
dependence of radar backscatter on the incidence angle [41]. The incidence angle is defined
by the incident radar beam and the vertical (normal) to the surface. More specifically,
the local incidence angle (θ) takes into account the local relief. The backscatter is weaker
in images acquired at shallow incidence angles compared to images acquired at steeper
incidence angles; therefore, the same object has different and uncomparable backscatter
values in images acquired with different incidence angles. Given the dependence of the
backscatter’s intensity on the incidence angle, previous studies have underlined the need
to correct this effect [42,43]. Until now, many studies using C-band SAR imagery from
Sentinel-1, RADARSAT-2, and RISAT-1 for agricultural monitoring only used a subset of the
available imagery acquired from either ascending or descending orbits with a limited range
of incidence angles. Accordingly, these studies discarded imagery acquired at incidence
angles that fell outside certain margins (Table 1). This practice might exclude more than half
of the available images from the time series. Moreover, empirical models developed based
on these limited datasets are likely applicable only for the same range of incidence angles.
Therefore, the practice of excluding images from the time series reduces the applicability of
SAR-based models.

Table 1. Summary of the incidence angle range considered in past studies.

Study Incidence Angle (◦) Satellite Crop Application

Van Tricht et al. (2018) [44] 32–42 Sentinel-1 Many crops Crop classification

Inoue et al. (2014) [45] 25–35 RADARSAT-2 Paddy rice Various biophysical
variables

Veloso et al. (2017) [46] 38–41 Sentinel-1 Wheat, rapeseed, maize,
soybean, sunflower Temporal behavior

Bousbih et al. (2017) [47] 39–40 Sentinel-1 Cereals Crop height and LAI

Nasirzadehdizaji et al. (2019) [48] 39–40 Sentinel-1 Maize, sunflower, wheat Crop height and
canopy coverage

Navarro et al. (2016) [49] 38.87–39.26 Sentinel-1 Maize, soybean,
bean, pasture

Crop water
requirements

Inglada et al. (2016) [50] 38.89–39.05 Sentinel-1 Wheat, rapeseed, barley,
corn, sunflower Crop classification

Hosseini et al. (2018) [51] 20.63–28.16 RADARSAT-2 Corn Biomass
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Table 1. Cont.

Study Incidence Angle (◦) Satellite Crop Application

Phan et al. (2021) [52] 42–44 Sentinel-1 Rice Various biophysical
variables

Molijn et al. (2019) [53] 36.0–36.6 Sentinel-1 Sugarcane Productivity mapping

Demarez et al. (2019) [54] 30 Sentinel-1 Maize Crop mapping

Srivastava et al. (2019) [55] 31 RISAT-1 Wheat Crop height

Srivastava et al. (2018) [56] 32 RISAT-1 Paddy LAI

Benabdelouahab et al. (2018) [57] 23.3 ERS-1 Wheat Irrigation supply
detection

Han et al. (2019) [58] 42.5 Sentinel-1 Wheat Crop water content

Yadav et al. (2019) [59] 40 Sentinel-1 Wheat LAI

Chauhan et al. (2018) [60] 38 RISAT-1 Wheat Various biophysical
variables

Harfenmeister et al. (2019) [61] Constant.
Undisclosed. Sentinel-1 Wheat, barley Various biophysical

variables

Song and Wang (2019) [62] Constant.
Undisclosed. Sentinel-1 Wheat Crop classification and

phenology monitoring

Nihar et al. (2019) [63] Constant.
Undisclosed. Sentinel-1 Cotton, maize Crop classification

Vreugdenhil et al. (2018) [64] Constant.
Undisclosed. Sentinel-1 Corn, cereals,

oilseed rape
Various biophysical
variables

Several different incidence angle normalization procedures were carried out in previ-
ous studies. For example, [44] normalized their selected subset of imagery (incidence angles
between 32◦ and 42◦) to 37◦ using a simplified correction method based on Lambert’s law of
optics. However, this method is insufficiently effective because it is relatively reliable only
at the center of the image [41,65]. Two new effective methods for incidence angle normaliza-
tion were proposed by [65], but environmental conditions limited the applicability of these
methods, and they have been used mostly for ocean monitoring. Other methods for inci-
dence angle normalization, such as simplified normalization [43], radiative transfer-based
models, and statistical methods, can be applied only under specific ground conditions [66].
Therefore, despite past attempts to deal with the heterogeneity of the incidence angle in
the SAR time series, the challenge of incidence angle normalization remains.

Therefore, the main goal of this study was to propose methods to reduce the backscat-
ter dependence on the local incidence angle to permit the use of all available Sentinel-1
images in a single dataset without defining a range of allowed incidence angles and omit-
ting images that extend beyond it. The second goal of this study was to use the proposed
methods to accurately estimate vegetation properties (Kc, LAI, and crop height) based on
incidence angle-normalized Sentinel-1 imagery.

2. Materials and Methods
2.1. Test Sites and Field Measurements

The field measurements used in this study were carried out during two seasons of
winter wheat, three seasons of processing tomatoes, and two seasons of cotton in different
locations in Israel (Table 2, Figure 1). LAI was measured by a SunScan Canopy Analysis
System—SS1 developed by Delta-T Company (Cambridge, United Kingdom) during two
wheat seasons and two processing tomato seasons. The SunScan is an accurate, nondestruc-
tive LAI measurement system successfully employed in many previous studies [25,67].
Each LAI value is an average of at least 30 consecutive field measurements taken at 20-cm
intervals along a transect perpendicular to the row direction. Vegetation height was mea-
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sured at a precision of 1 cm using a tape measure and represented by an average of at
least 30 plants per measurement date. LAI and vegetation height in wheat and processing
tomatoes were measured throughout the growing seasons; therefore, they represent the
full range of these variables. Cotton height was measured during the middle and late
stages of one growing season. The backscattering coefficient (σ0) and the radar brightness
coefficient (β0) were used in linear scale. Sentinel-1 backscatter values were averaged
for a polygon that represented the eddy covariance measurement footprint calculated
based on a two-dimensional footprint model [68]. All the empirical regression models in
this study utilized the average values of either σ0 or β0, and the local incidence angle (θ)
within the areas of interest and same-date field measurements. In cases of gaps in the time
series, linearly interpolated values of field measurements from adjacent dates (crop height
and LAI) were used. The number of SAR images used for the derivation of the various
models was not uniform because each model was based on the period for which field
measurements were available, resulting in different numbers of corresponding satellite
images. For example, LAI could not be measured using the SunScan system when the
plants were very small, while vegetation height was easily measured at any time using a
ruler. Accordingly, the LAI models were based on shorter time spans and fewer images
than were plant height models. In-field paths and their surrounding area were masked
out from analysis polygons of the processing tomato experiments which took place in
2019 to remove bare soil areas and avoid border effects. These excluded areas consisted
of approximately 20% of the overall areas of interest. Therefore, the Gadash 2019 area of
interest consisted of four vegetated regions separated by paths, and the Gadot 2019 area of
interest consisted of two regions.

Table 2. Summary of seven field experiments conducted at six locations in Israel.

Experiment
Area Crop Period *

# Crop
Height Mea-
surements

# LAI Mea-
surements

Area Size (#
Sentinel-1
Pixels)

Nearest Mete-
orological
Station ET0
Data

Distance and
Bearing to the
Meteorological
Station

Saad Wheat 1-Jan-2018
9-Apr-2018 8 6 260 Dorot 9.5 km NE

Yavne Wheat 18-Dec-2018
10-Apr-2019 7 7 550 - -

Tel Nof Cotton 6-Jun-2016
17-Sep-2016 7 - 1300 Revadim 5 km S

Negba Cotton 25-Jul-2017
11-Sep-2017 - - 460 Negba 2.5 km SW

Gadash Processing
tomatoes

9-May-2018
30-Jul-2018 8 - 250 - -

Gadash Processing
tomatoes

3-May-2019
24-Jul-2019 7 6 500 Gadash 250 m SE

Gadot Processing
tomatoes

25-Apr-2019
14-Aug-2019 11 11 300 Gadot 1.5 km SW

Note: * Period indicates the starting and ending dates.

2.2. Agro-Meteorological Measurements

Agro-meteorological measurements of the reference evapotranspiration (ET0) and
actual evapotranspiration (ETc) were performed to derive the crop coefficient (Kc) as
Kc = ETc/ET0. Kc is an important variable used to determine the irrigation dose [69]. Daily
ETc was derived from water vapor flux measurements by eddy covariance systems [6,70].
The daily ET0 was calculated according to the Penman–Monteith method [33] based on
meteorological measurements of air temperature, relative humidity, wind speed, and
solar irradiance at the meteorological station closest to the field or at the flux tower itself
(Table 2). Meteorological station data are publicly available at http://www.meteo.co.il/
(accessed on 24 June 2021) and http://www.mop-zafon.net/ (accessed on 24 June 2021).
The Kc data used for developing the processing tomato models were smoothed in Python

http://www.meteo.co.il/
http://www.mop-zafon.net/


Land 2021, 10, 680 5 of 23

with the SciPy library using the cubic and the second-order splines. Smoothing spline
is a non-parametric regression technique, which was previously used in various remote
sensing applications [15,71–73]. ETc was measured throughout the growing seasons of
wheat and processing tomatoes and from the middle of the cotton growing seasons. ETc
data collected during the Gadash processing tomato experiment in 2018 and the Yavne
2019 wheat experiment were not used for the Kc model development because more than
half the data were lost due to technical difficulties that emerged during the experiments.
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2.3. Satellite Imagery

Sentinel-1 is part of the European Copernicus program for Earth observation. The
payload of the two Sentinel-1 satellites includes a dual-polarization (VV and VH) C-band
SAR instrument that is an active phased array antenna working at 5.405 GHz frequency
(corresponding wavelength 5.55 cm). The resolution of the Level-1 Ground Range Detected
(GRD) Interferometric Wide (IW) mode that was used in this study is 20 × 22 m, with a
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pixel size of 10 × 10 m, swath width of 250 km, and a revisit time of six days for images
with the same geometry. Sentinel-1A and Sentinel-1B were launched on 3 April 2014 and
on 25 April 2016, respectively. The Sentinel-1 incidence angle in the IW mode ranges
approximately between 29◦ and 46◦. Figure 2 shows the graphical representation of the
local incidence angle. In this study, some sites were close to the edge of the images,
resulting in an incidence angle range from 30.8◦ to 45.8◦, and in local incidence angle
values from 30.3◦ to 47.7◦ (Figure 3). Therefore, this study was based on a wide range
of incidence angles. The areas within SAR imagery used in the present study are not
affected by adverse geometrical effects, such as radar shadow, foreshortening, and layover.
The SAR imagery used in this study was downloaded from the ESA Copernicus site
(https://scihub.copernicus.eu/dhus/#/home, accessed on 23 June 2021). Overall, 38 SAR
images were used to derive models for wheat (Table S1), 19 for cotton (Table S2), and 94 for
processing tomatoes (Table S3), Figure 3).
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2.4. Image Processing

All images were pre-processed in the Sentinel Application Platform (SNAP versions
6.0 and 7.0, European Space Agency). The sequential pre-processing of the Sentinel-1
imagery was as follows: subsetting a region around the target area, applying the latest
orbit file to correct for the satellite path, thermal noise removal, calibration to β0 and σ0 in a
natural scale, range Doppler terrain correction using the Shuttle Radar Topography Mission
(SRTM, [74]) digital elevation model (DEM) with 30 m resolution. These pre-processing
steps were performed in the same sequence as in Song et al. [62], with the addition of the
thermal noise removal step that was also performed by Van Tricht et al. [44]. The speckle
filtering operation was avoided; therefore, the spatial resolution was retained [75–77].

2.5. Dual-Polarized RVI Algorithm

One of the conventional approaches for agricultural monitoring from quad-polarization
SAR data is the calculation of the radar vegetation index (RVI) [40]. An adaptation for
Sentinel-1 data assumes that σ0

VV ≈ σ0
HH [78–80], such that

RVI =
4∗σ0

VH
σ0

VH + σ0
VV

(1)

The radar backscatter coefficient, σ0, also known as the radar cross-section (RCS) per
unit area, is the conventional measure of the intensity of the signal reflected by the surface.
It is a normalized dimensionless number that varies significantly with the incidence angle,
wavelength, and polarization, as well as with properties of the scattering surface itself [81].

Each RVI model in the present study was based only on one dataset with the maximum
number of images acquired at an ascending orbit with the same incidence angle. These are
considered to be the most favorable conditions for determining the RVI without incidence
angle normalization. An RVI-based Kc model for cotton was not produced because of the
lack of imagery acquired at the same incidence angle over the specific fields where the
agro-meteorological measurements were performed. The models based on the suggested
methods for local incidence angle normalization methods described in Sections 2.6 and 2.7
were compared to the models based on the RVI.

2.6. σ0-Based Local Incidence Angle Normalization

The radar backscatter intensity depends on the incidence angle, with σ0 decreasing
proportionally to the incidence angle increase in the intermediate range of incidence angles
typical for Sentinel-1 and the majority of spaceborne SAR missions [43,82–84]. Based on
this understanding, σ0 was normalized by multiplying it with the local incidence angle (θ)
in the decimal degree scale:

σ0
Norm = σ0∗θ (2)

The normalization of σ0 is achieved by multiplying lower σ0 values obtained under
shallower local incidence angles by higher θ values than the higher σ0 values acquired
under steeper local incidence angles. In this study, different VV and VH polarization
combinations of normalized σ0 values were used to model Kc, LAI, and crop height. The
models described below (Equations (3)–(5)) were produced using polarization combinations
that showed the best R2 and RMSE values. The following polarization combination was
used to model Kc and LAI in wheat, and LAI in processing tomatoes:

V = σ0
Norm, VH + σ0

Norm, VV (3)

where, and afterward, V is a vegetation variable being estimated.
The following polarization combination was used to model wheat and cotton height:

V = σ0
Norm, VH − σ0

Norm, VV (4)
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Processing tomato and cotton Kc estimation models were based on

V = σ0
Norm, VV (5)

The descending winter wheat imagery showed a very low correlation with wheat
variables and, therefore, was not used for the development of wheat models.

2.7. β0-Based Local Incidence Angle Normalization Method for Tomato and Cotton Height, LAI,
and Kc Estimation

A radar beam transmitted at a shallow angle travels longer distances through the
vegetation canopy than a beam transmitted under a steep angle; thus, the attenuation
of the former is typically higher than that of the latter. Apart from the beam two-way
travel distance through the vegetation, the radar backscatter is affected by soil roughness,
dielectric properties, and a combination of different types of scatterers that exist in each
pixel [85,86]. The wheat fields in this study are flat, and the vegetation growth is uniform.
Hence, scattering from the soil surface is mostly specular in the early part of the season,
and the volume scattering component increases as the vegetation develops [87,88]. Unlike
the wheat fields, the structure of processing tomatoes and cotton fields is more complex,
with mounds and furrows. The distance between planted mound centers in all three
processing tomato fields is two meters, and it is one meter in cotton. The difference
between the elevation of the mounds is up to 15 cm in processing tomatoes and 12 cm in
cotton. Consequently, the standard deviation of the surface height is up to 7.5 cm and 6
cm in processing tomatoes and cotton, respectively. According to the Peake and Oliver
roughness criterion [89], the surface is considered rough if

hrms >
λ

4∗ cos δ
(6)

where hrms is the standard deviation of the surface height variation; λ is the wavelength;
and δ is the incidence angle. The incidence angle is slightly different from the local
incident angle for slopeless surfaces, but this difference does not affect the calculation of the
roughness criterion. Accordingly, in C-band SAR with an incidence angle range of 30◦–45◦,
the roughness threshold is hrms > 1.5 cm for an incidence angle of 30◦, and hrms > 1.8 cm
for an incidence angle of 45◦. Therefore, the processing tomato and cotton fields are rough,
decreasing backscatter dependence on the incidence angles [85], and modifying the rate of
backscatter change as the incidence angle increases [90]. Unlike the smooth wheat fields,
every pixel in processing tomato and cotton fields contains multiple types of scattering:
specular (plant-free furrows), double bounce (corners between furrows and mounds), and
volume scattering in the canopy. Moreover, at some incidence angles, Bragg scattering
caused by the row frequency might occur [91,92].

Owing to the complex surface structure in cotton and processing tomato fields, an-
other transformation method specific to these fields was derived empirically in addition
to the σ0 normalization method. This new method is based on the polynomial regres-
sion between plant variables multiplied by the newly derived attenuation coefficient
sin(Radians(90 − θ)3) and radar brightness (β0):

V∗ sin(Radians(90 − θ)3) = A∗
(
β0

)2
+ B∗

(
β0

)
+ C (7)

where V is the plant variable (such as height, LAI, or Kc); θ is the local incidence angle
in degrees; A, B, and C are the specific model coefficients; and β0 is the radar brightness
coefficient [41] at either VV (processing tomatoes) or the sum of VV and VH polarizations
(cotton). β0 is a dimensionless coefficient that corresponds to the reflectivity per unit area
in the slant range. β0 is used because the radiometric correction of σ0 is based on a sea-level
ellipsoid [41,93] and, therefore, less suitable for monitoring of rough surfaces and areas with
a rugged topography [94]. Previous studies found β0 to be the best unencumbered estimate



Land 2021, 10, 680 9 of 23

SAR measurement [41,95,96]. Using radar brightness is an established practice for research
in space [97,98] and common practice in the analysis of RADARSAT-1 imagery [85,99], but
not of Sentinel-1 data.

The attenuation coefficient sin(Radians(90 − θ)3) is used to account for the depen-
dence of beam attenuation on the local incidence angle. The SAR beam interaction with
objects on the ground can be described as a triangle in which the radar beam is the hy-
potenuse, and the local incidence angle θ is the angle between the hypotenuse and vertical
cathetus normal to the surface (Figure 2). β0 values are reconstructed to a normalized
value by applying a sine function to a cubed value of the (90 − θ) value in radians. The
attenuation coefficient is linearly and inversely proportional to the local incidence angle, as
shown in Figure 4. Therefore, by applying the suggested normalization, higher β0 values
obtained under steeper (closer to vertical) local incidence angles are divided by higher
coefficient values compared to β0 values acquired under shallower local incidence angles.
The main difference between the σ0 and β0 methods is that the former applies a steeper
increase to the radar backscatter (σ0) as the local incidence angle increases than the latter
(β0). This difference in the behavior of the methods was created to take into account that
as the incidence angle increases, the radar backscatter decreases more slowly for rough
surfaces than for smooth surfaces [90,100].
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Therefore, the normalized β0 value can be written as

β0
Norm =

β0

sin(Radians(90 − θ)3)
(8)

where β0
Norm is the normalized radar brightness in VV or VH polarization, β0 is the radar

brightness in VV or VH polarization, and sin(Radians(90− θ)3) is the attenuation coefficient.
The processing tomato LAI model utilizes the sum of normalized β0 in both polarizations:

LAI =
β0

VH

sin(Radians(90 − θ)3)
+

β0
VV

sin(Radians(90 − θ)3)
(9)
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2.8. Calibration and Validation of Empirical Vegetation Variable Estimation Models

The field-measured vegetation variables were used in regression models against the
uncorrected radar backscatter parameters. Further, the proposed local incidence angle
normalization methods were applied to the SAR images, and new empirical regression
models were derived. Finally, the models based on the data prior to normalization and post-
normalization and on the dual-polarized RVI were compared to assess the performance of
the normalization process (Figure 5).
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In every case, the same type of regression model (either linear or polynomial) and the
same polarization combination were used in the comparison. Coefficients of determination
in models based on non-normalized data were symbolized as R2

0, and their root-mean-
square error was symbolized as RMSE0. The differences in the R2 and RMSE following the
normalization procedures were calculated. In addition, the Steiger variation [101] of the
two-tailed Fisher Z-score tests [102] was performed to determine whether the difference
in the models’ R2 is significant (α ≤ 0.05). The significance of the RMSE difference was
calculated using the two-tailed Wilcoxon signed-rank test [103] to determine whether the
difference in the models’ RMSE was significant (α ≤ 0.05). According to the goals set in
this study and due to a finite amount of available SAR imagery and ground truth data,
all the available data were used to calibrate the empirical models to achieve the models’
maximum reliability and estimation accuracy [104]. In order to additionally validate the
models’ estimation performance, the RMSE values of normalized models applied separately
to each dataset (experiment) were also calculated and are presented in Tables S4–S8.
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3. Results

3.1. Wheat, Processing Tomato, and Cotton Height, LAI, and Kc Models Based on the σ0

Normalization Method

The effect of the proposed normalization (Equation (2)) on the SAR backscatter from
two incidence angles is illustrated in Figure 6. Following the normalization process, the
difference is greatly reduced, and a considerable improvement in the R2 and RMSE of all
the σ0-based models is observed. In wheat, processing tomatoes, and cotton, the height,
LAI, and Kc models’ R2 improved in the range of 0.0172–0.367, and the RMSE improved in
the range of 5–52%. Table 3, Tables S4–S6, and Figure 7 show the performance of σ0-based
height, LAI, and Kc models in wheat, processing tomatoes, and cotton.
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3.2. Processing Tomato and Cotton Height, LAI, and Kc Models Based on the β0

Normalization Method

The effect of the β0-based normalization (Equation (8)) that reduces the difference in
β0 images acquired at different angles is shown in Figure 8.
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The β0-based normalization method permitted achieving the improvement in the R2

and RMSE of all the β0-based models. For the processing tomato and cotton height, LAI,
and Kc models, the R2 improved in the range of 0.1143–0.668, and the RMSE improved
in the range of 18–44%. Table 3, Tables S7 and S8, and Figure 9 show the performance of
processing tomato and cotton β0-based height, LAI, and Kc models. Table 3 shows the
performance of all the σ0-based and β0-based normalized models developed in this study
and their R2 and RMSE improvements over the non-normalized models.
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3.3. Performance of the Dual-Polarized RVI

The dual-polarized RVI-based wheat, processing tomato, and cotton models are
shown in Table 4. The wheat and cotton RVI models were compared against the σ0-based
models, while the processing tomato RVI models were compared to the β0-based processing
tomato models.

Table 4. RVI models for wheat, processing tomato, and cotton height, LAI, and Kc. The differences
in R2 and RMSE indicate the difference in performance compared to models based on either the σ0

(wheat and cotton models) or β0 (processing tomatoes) local incidence angle normalization methods
in Table 3. Negative values represent lower R2 and higher RMSE of the RVI models.

Height LAI Kc

Wheat

Overpass Asc Asc Asc

# SAR images used 26 25 6

Local incidence angle (◦) 35.3–36.6 35.3–36.6 47.7

R2 0.4248 0.1389 0.2912

R2 difference −0.2626 −0.5805 −0.381

RMSE 13 cm 1.6 0.102

RMSE difference −4 cm −1.0 −0.029

(%) (−44) (−167) (−40)

Processing tomatoes

Overpass Asc Asc Asc

# SAR images used 25 31 27

Local incidence angle (◦) 42.0–43.1 42.0–43.1 42.0–43.1

R2 0.1584 0.3425 0.5635

R2 difference −0.6523 −0.4916 −0.3075

RMSE 14 cm 1.9 0.2488

RMSE difference −5 cm −1.0 −0.1667

(%) (−56) (−111) (−203)

Cotton

Overpass Asc

# SAR images used 5

Local incidence angle (◦) 35.9

R2 0.3297

R2 difference −0.5424

RMSE 12 cm

RMSE difference −7 cm

(%) (−140)

4. Discussion

In contrast with previous studies that mostly used images acquired under fixed or
within narrow ranges of incidence angles, the correction derived in this study facilitates
the use of imagery acquired under all typical geometrical conditions. By applying simple
transformations to Sentinel-1 imagery acquired under a wide range of incidence angles,
the dependency of σ0 and β0 on the local incidence angle decreased, and the empirical
modeling of several crop properties was improved. This achievement is remarkable because
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monitoring crops using the full temporal resolution of SAR imagery is much more useful
than using imagery acquired at a narrow range of angles. Moreover, vegetation variable
estimation models calibrated in one region using the proposed methods can be applied to
other areas.

The improvement in the R2 and RMSE of the models following the local incidence
angle normalization procedure was found to be significant in many of the models: wheat
height and LAI models; β0-based processing tomato LAI, height, and Kc models; σ0-based
cotton Kc and height models; and β0-based cotton height model. Since the statistical signif-
icance of the difference between correlations is dependent on the number of images used
for model development, some of the models yielded a difference that was not significant
(wheat Kc model, processing tomato σ0-based LAI, height, and Kc models, and cotton Kc
β0-based model). However, the trend of improvement following the proposed normal-
ization procedures is clear, and the practical usefulness of the proposed methods can be
better represented by the RMSE improvements because RMSE represents the vegetation
variable estimation accuracy. The RMSE improvement was found to be significant in the
following models: processing tomato σ0-based LAI and Kc models; and cotton Kc σ

0 and
β0-based models. The RMSE improvement was not significant in the following models:
wheat, processing tomato σ0-based LAI, and processing tomato β0-based models, and
cotton height σ0- and β0-based models. The R2 and RMSE of all the models calibrated
in the present study improved following incidence angle normalization. The range of
RMSE improvements varied from model to model (Table 3), from 5 to 52%. Moreover, the
performance of the newly developed β0-based local incidence angle normalization method
shows potential for overcoming the limitations of σ0-based modeling for agricultural pur-
poses. The use of β0 to improve vegetation variable estimation is particularly useful in
fields with a rough soil surface geometry. Using β0 is not common for Sentinel-1 imagery,
and the users’ community could benefit from adopting this approach.

The models presented here for wheat and processing tomatoes were calibrated based
on measurements taken throughout the entire duration of growing seasons and can, there-
fore, be applied at any time during crop development without restrictions. Nevertheless,
the RMSE of LAI and height estimations was slightly higher at the peak of the season
compared to the rest of the season. The relatively high accuracy of the models calibrated
in this study and their independence from the incidence angle following the new nor-
malization methods are advantageous compared to previous studies [47,55,60,61,64], in
which the images used were limited to a narrow range of incidence angles. In addition, in
contrast to [48] that presented models that can only be reliably applied to certain vegetation
heights, the wheat and processing tomato models presented here are applicable to any
height within the range measured in our experiments: 34–95 cm (wheat) and 24–77 cm
(processing tomatoes). A comparison between several studies that used C-band SAR to
estimate vegetation height and LAI is shown in Tables 5 and 6.

The models for LAI estimation show a better performance than previous studies.
Previous estimation based on imagery acquired under a narrow range of incidence angles
and dual-polarization [47] only achieved R2 = 0.25. Moreover, the models in this study
performed similarly to quad-polarization RADARSAT-2-based models for corn and soy-
bean LAI estimation that utilized imagery acquired under a narrow range of incidence
angles [39] and achieved R2 = 0.66 and RMSE = 0.75 and R2 = 0.64 and RMSE = 0.63,
respectively. Another study [60] presented a wheat LAI estimation model, which has better
prediction performance than the models obtained in the present study (RMSE = 0.4), but as
in other previous models, it was based on images acquired under only one incidence angle.
Unlike the LAI estimation based on optical imagery, the wheat and processing tomato LAI
models developed in this study were not saturated even at the peak of vegetation develop-
ment (wheat LAImax = 7.7, processing tomato LAImax = 9.1). Therefore, the LAI models in
this paper might be applied throughout the whole season duration, which is useful because
the LAI is a proxy for many vegetation variables [23], including crop productivity [105].
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Table 5. Comparison of vegetation height estimation models based on Sentinel-1 and RISAT-1 C-band SAR.

Model Satellite Crop Incidence Angle (◦) R2 Accuracy (RMSE)

Wheat (this study) Sentinel-1 Wheat 34.6–45.8 0.8566 6 cm

Processing tomatoes σ0-based
(this study)

Sentinel-1 Tomato 30.8–43.1 0.4201 11 cm

Processing tomatoes
β0-based (this study) Sentinel-1 Tomato 30.8–43.1 0.8107 9 cm

Bousbih et al. (2017) [47] Sentinel-1 Cereals 39–40 0.54 Not given

Nasirzadehdizaji et al. (2019) [48] Sentinel-1 Wheat 39–40 0.67 (<53 cm)
0.07 (≥53 cm) Not given

Srivastava (2019) [55] RISAT-1 Wheat 31 0.37 18 cm

Vreugdenhil et al. (2018) [64] Sentinel-1 Cereals Constant 0.68 Not given

Harfenmeister et al. (2019) [61] Sentinel-1 Wheat Constant 0.41 Not given

Table 6. Comparison of vegetation LAI estimation models based on Sentinel-1 and RISAT-1 C-band SAR.

Model Satellite Crop Incidence Angle (◦) R2 Accuracy (RMSE)

Wheat (this study) Sentinel-1 Wheat 34.6–45.8 0.7225 0.6

Processing tomatoes σ0-based
(this study)

Sentinel-1 Tomato 30.8–43.0 0.7881 1.0

Processing tomatoes β0-based
(this study)

Sentinel-1 Tomato 30.8–43.0 0.8341 0.9

Chauhan et al. (2018) [60] RISAT-1 Wheat 38 0.76 0.4

Bousbih et al. (2017) [47] Sentinel-1 Cereals 39–40 0.25 Not given

Vreugdenhil et al. (2018) [64] Sentinel-1 Cereals Constant 0.30 Not given

Harfenmeister et al. (2019) [61] Sentinel-1 Wheat Constant 0.48 Not given

The use of SAR for agricultural purposes has also been significantly enhanced by
this study. While several previous studies used SAR to estimate the wheat LAI and crop
height, processing tomatoes were not studied enough. Moreover, estimating Kc of wheat,
processing tomatoes, and cotton by SAR, to the best of our knowledge, was not previously
conducted. Previously, the crop water requirement estimation of maize, soybean, pasture,
and bean using SAR imagery acquired under a narrow range of incidence angles was
conducted [49]. Another study showed a non-crop-specific region-wise correlation between
only one Sentinel-1 image and the crop water stress index derived through the LANDSAT-8
image [106]. Finally, [107] used smoothed time series of Sentinel-1 backscatter values in
different polarization combinations to estimate Kc in vineyards. Therefore, the wheat and
processing tomato Kc estimation models derived in this study pave the way to accurate
Kc estimation using all available SAR imagery. This study stands out by overcoming the
limits imposed by the range of incidence angles typical for SAR imagery. As a result, the
newly developed normalized wheat and processing tomato Kc estimation models can be
used with confidence during the entire duration of a growing season.

Although the cotton models calibrated in this study showed good performance, they
are based on the data recorded from the middle to late stages of growing seasons. Therefore,
future studies should improve upon this by including the early stages of the growing
seasons. In addition, we did not calibrate an LAI model for cotton in this paper, but this
should be feasible given good field measurements. Therefore, additional field experiments
should be carried out to calibrate models for crop variables throughout the growing season.
Even though the cotton models developed in this study might have only limited use, all
four cotton models showed a sizeable improvement in the R2 and RMSE over the non-
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normalized models. This result confirms the effectiveness of the novel angle normalization
approach suggested in the present study.

The performance of models based on the new transformation was favorable com-
pared to models based on the dual-polarized RVI. Although the RVI-based models in the
present study were calibrated under the most favorable conditions possible, using only
ascending overpass imagery acquired under only one incidence angle, the new models
based on local incidence angle normalization methods outperformed them: the RMSE of
RVI-based models was 40–203% higher. It should be noted that the assumption σ0

VV ≈ σ0
HH

underlying the dual-polarized RVI is in contradiction to previous findings that show a
typical difference of 5 dB between σ0

VV and σ0
HH in the intermediate range of incidence

angles in the C band [91,108,109]. Therefore, we conclude that the dual-polarized RVI is not
recommended where the assumption of the equality of backscatter in the two polarizations
cannot be made.

Unlike previous studies that used only fields with rows perpendicular to the SAR
beam [110], in this study, all the fields were used in model calibration. While this row
geometry is less noticeable in wheat fields, particularly in the middle and later stages of
the season, it should be noted that cotton and processing tomatoes are planted in rows
of earth mounds with furrows between them. In addition, the spatial orientation of the
rows in the fields in this study was not uniform between the locations. For example, in
the processing tomato fields in Gadash, the rows were oriented from west to east, while
in Gadot, the orientation was from west-southwest to east-northeast. This difference in
the spatial orientation of rows affects the backscatter because the target’s radar cross-
section depends on its angle relative to the satellite [111], and even minimal changes in the
target aspect significantly affect the RCS [112,113]. Nevertheless, the processing tomato
models were not sensitive to the crop row orientation because they showed a similar RMSE
(Tables S5 and S7) when they were applied to different fields. Therefore, the proposed
models seem to be insensitive to the row orientation and could likely be used in other
fields with different row orientations relative to the satellite orbit. However, this should be
further tested in future studies.

Despite the overall reliable performance of the newly developed models, it should be
pointed out that winter images in descending orbits have much weaker correlations with the
vegetation height, LAI, and Kc compared to images from ascending orbits. Consequently,
SAR images acquired in descending orbits could not be used for the development of
the wheat model. In the summer crops tested in this study, this phenomenon did not
occur, rendering the imagery acquired from descending orbits usable for the modeling of
crop variables.

A likely explanation for the weaker performance of wheat models based on imagery
from descending orbits might be related to the higher relative humidity in the early morning
(descending images were acquired around 03:40 GMT) compared to the relative humidity
in the evening (ascending images were acquired around 15:40 GMT). This observation is
confirmed by our meteorological measurements in Saad and Kvutsat Yavne, which showed
a regular diurnal pattern of a decrease in relative humidity following sunrise: from up to
100% in early morning hours to 40–60% in the afternoons. At night and in the early morning,
the relative humidity is very high, and the formation of fog and dew, along with increased
topsoil moisture, causes increased scattering and attenuation of the SAR beam [114,115].
Additionally, the SAR beam can be affected by common atmospheric inhomogeneities in
the morning hours over Israel that create radar echoes [116] and increase the atmospheric
reflectance and attenuation of the transmitted energy [117]. In previous studies, datasets
affected by these effects were binned. For example, [61] omitted a dataset that was affected
by dew. The issue of the relatively lower performance of descending orbit-based models
is an interesting direction that can be studied by analyzing data from other regions and
coupling them with the complementary ground and atmospheric measurements.

Although the newly proposed local incidence angle normalization methods were
tested on the typical incidence angle range of Sentinel-1 and most other spaceborne SAR
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missions, they are not expected to be effective for very steep incidence angles near to the
“nadir hole” region [118] or for very shallow angles because of the non-linear dependence
of the radar backscatter on the incidence angle in these ranges [90,91].

The proposed σ0 local incidence angle normalization method can be used not only
for agricultural purposes but also for other SAR applications. Additional studies need to
be carried out to determine if this method is ideal for general use. The β0 local incidence
angle normalization method might be used for the vegetation variable estimation of crops
other than processing tomatoes and cotton grown on rough soil surfaces. Future studies
should pursue this.

5. Conclusions

The proposed σ0 and β0 local incidence angle normalization methods facilitate the
use of all the images acquired by the Sentinel-1 constellation under the full range of typical
incidence angles. This is supported by an improvement in the correlations between the
SAR measurements and crop variables such as LAI, crop height, and Kc following these
normalization procedures in three crops: cotton, tomatoes, and wheat. Models based
on the suggested normalization of the incidence angle show considerable R2 and RMSE
improvements over the models that were not based on these transformations. This increase
in performance is the most notable for the wheat height and LAI models, processing tomato
σ0-based LAI and β0-based height models, and the cotton models. Most Kc, LAI, and
height models worked well with imagery acquired from ascending and descending orbits,
but winter imagery performed better with ascending orbits. This approach to estimate
vegetation variables is useful for routine vegetation and agricultural monitoring, having
a higher temporal resolution and accuracy than the previous approaches. Despite these
results, we wish to stress that the most important achievement is not only the improvement
in the models’ performance but also the enablement of the conjoint use of images acquired
under different incidence angles and even different orbits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/land10070680/s1; Table S1: Sentinel-1 image inventory used in the development of models for
wheat. Each line represents a dataset with specific geometrical parameters; Table S2: Sentinel-1 image
inventory used in the development of models for cotton. Each line represents a dataset with specific
geometrical parameters; Table S3: Sentinel-1 image inventory used in the development of models for
processing tomatoes. Each line represents a dataset with specific geometrical parameters; Table S4:
Wheat height, LAI, and Kc models; Table S5: Processing tomato height, LAI, and Kc models based on
the σ0 normalization method; Table S6: Cotton height and Kc models based on the σ0 normalization
method; Table S7: Processing tomato height, LAI, and Kc models based on the β0 normalization
methods; Table S8: Cotton height and Kc models based on the β0 normalization method.
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