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Abstract: Metropolitan areas in China are not only the core spatial carriers of urbanization develop-
ment but also the main generators of land use carbon emission (LUCE). However, existing research
lacks comparative studies on the differential patterns and impact factors of LUCE in different stages
of metropolitan areas. Therefore, this paper deeply analyzes the spatial characteristics of LUCE and
the coupling coordination degree (CCD) of the economy contributive coefficient (ECC) and ecological
support coefficient (ESC) in three different stages of metropolitan areas in the Yangtze River Economic
Belt (YREB), China. Moreover, quantitative modelling of the impact factors of LUCE in these different
stages of metropolitan areas is furtherly revealed. Results show that: (1) The more mature stage
of the metropolitan area, the higher the amount of LUCE, and the more districts or counties with
high carbon emissions levels are clustered. (2) At the metropolitan area scale, the more mature the
metropolitan area is and the lower the CCD between ECC and ESC is, while at the finer scale, more
developed counties have lower CCD. (3) Resident population, per capita GDP, and urbanization
rate have good explanatory effects on carbon emissions in these three metropolitan areas; however,
except for the urbanization rate, which has a negative effect on LUCE in Nanchang metropolitan
area (NMA), the other two factors have positive effects on LUCE in these three metropolitan areas.
This study has important implications for different stages of metropolitan areas to formulate targeted
LUCE reduction policies.

Keywords: land use carbon emissions; metropolitan areas; coupling coordination degree; STIRPAT
model; driving factors

1. Introduction

Climate change brings enormous challenges to the natural environment and human
society. Studies have reported that carbon dioxide is one of the dominant contributors to
climate change [1], which has become the main area of concern at home and overseas. Since
the industrial revolution, land use carbon emissions (LUCE) have contributed around 30%
of human carbon emissions (CE) [2,3]. At present, research on LUCE is relatively rich in
mainly two parts. Firstly, in terms of research content, the spatio-temporal characteristics
of LUCE and the influencing factors [4,5], the relationships of LUCE [6], the network
relationship and spillover effects [7], the efficiency [8], the economy contributive coefficient
(ECC) and ecological support coefficient (ESC) of LUCE [9,10] are the research concerns
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of most studies. However, these studies do not focus as much on the CCD (coupling
coordination degree) between ECC and ESC of LUCE and are unable to offer specific
improvements to this relationship. Secondly, in terms of spatial scales, studies have been
carried out on the urban agglomeration [11], provincial or state [12], municipal [13], and
watershed scales [14], while few studies have been conducted in metropolitan area scale.
However, as the main form of urbanization [15], the land use of metropolitan areas is not
only the spatial projection of the main economic activities of human society but also the
main generator of carbon emissions [16,17]. Therefore, it is of great urgency to scientifically
identify the CCD between ECC and ESC and the impact factors of carbon emissions in
metropolitan areas, which is helpful for formulating targeted low-carbon development
measures in this kind of important area.

Studies have reported that different regions and areas had different network synergis-
tic capabilities and driving power [18]. Similarly, the LUCE characteristics of metropolitan
areas at different development stages may also differ significantly. When Fujii et al. stud-
ied the relationship between economic development and CO2 emissions in 276 global
metropolitan areas, they assumed that the urban CO2 emissions per capita in the same
sector would show differences in different urban economic development stages [19]. How-
ever, verifications of the above assumptions have not been conducted. In addition, the
current studies on CO2 emissions in urban areas of China are usually focused on a single
evolution type of study area [20,21]. The same problem also exists for the Yangtze River
Economic Belt (YREB), which is leading China’s high-quality economic development. For
instance, much attention has been paid to the environmental and economic development
of the YREB, which is crucial to both regional ecological security and sustainable develop-
ment in China [22]. The existing studies mainly concern the patterns [23], the influencing
factors [24,25], and the efficiency of LUCE [26] in the YREB. For example, spatial autocor-
relation [27], social network analysis (SNA) [7], and information entropy model [28] are
often introduced to analyze the spatio-temporal patterns of LUCE in the YREB. The grey
relational analysis model [29], regression models regarding spatial lag model, spatial error
model [30], or LMDI [31] are used to model the impact factors; DEA, SBM-DEA [32], and
SBM-UN model [33] are often used to measure efficiency under the constraint of LUCE. In
addition, over 95% population lives in the 34 metropolitan areas in China, but few studies
have compared the LUCE characteristics of metropolitan areas in different development
stages. Therefore, a systematic study on the spatial differentiation of LUCE in metropolitan
areas at different development stages is needed.

In summary, existing studies have made some achievements in regional LUCE in the
YREB. However, there is still a lack of comparative investigations in metropolitan areas
with different development stages. Simultaneously, the CCD between ECC and ESC of
LUCE and impact factors are rarely analyzed. Therefore, the purpose of this study is to
conduct a comparative study on the spatial patterns of LUCE in metropolitan areas at
various development stages in the YREB and to explore the CCD between ECC and ESC,
and the impact factors of LUCE in each metropolitan area. Contributions of this paper
are two-fold: Firstly, the spatial differentiation characteristics and the spatial patterns of
LUCE in cultivating, developmental and mature metropolitan areas are identified, which is
conducive to the determination of sub-regional and differentiated low-carbon sustainable
development goals for each metropolitan area. Secondly, differential analysis of the impact
factors of LUCE from metropolitan areas is conducive to the targeted formulation of
carbon reduction measures for each metropolitan area. The findings of this study can
serve implications for the low-carbon development of metropolitan areas at different
development stages.

2. Materials and Methods
2.1. Study Area

The Yangtze River Economic Belt (YREB) is an important strategic area for China’s
economic development [34,35]. YREB is divided into three parts (namely, the upper,
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middle, and lower reaches). Chongqing, Sichuan, Guizhou, and Yunnan provinces are in
the upper reach. Hubei, Jiangxi, and Hunan provinces are in the middle of reach. Anhui,
Zhejiang, Jiangsu, and Shanghai provinces are in the lower reach. The lower reach is the
most developed, which has the famous Yangtze River Delta (YRD), while the economic
levels of the other two reaches are relatively low [36]. The Chengdu, Nanchang, and
Hangzhou metropolitan areas are located in the upper, middle, and lower reaches of
the YREB, respectively. According to the China Metropolitan Area Development Report
2021 [37] announced by the China Institute of New Urbanization of Tsinghua University,
the Chengdu, Nanchang, and Hangzhou metropolitan areas belong to the developmental
type, cultivating type, and mature type respectively. Thus, these three different stages of
metropolitan areas are the study cases of this research (as shown in Figure 1).
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Chengdu Metropolitan Area (CMA) is in the upper reach of the YREB and the eco-
nomic centers of southwestern China. According to the CMA Development Plan, the
CMA is centered in Chengdu City and consists of 30 districts or counties with an area
of 2.70 × 104 km2; the resident population of the CMA in 2020 is 27.61 million, and the
economic output accounts for 2.11% of China’s Gross Domestic Product (GDP).
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Nanchang Metropolitan Area (NMA) is in the middle reach of YREB. According to
NMA Plan (2015–2030), the NMA consists of 18 districts or counties with a total area of
2.45 × 104 km2; the resident population of NMA reaches 11.58 million in 2020, and its total
GDP accounts for 0.71% of China.

Hangzhou Metropolitan Area (HMA) is located downstream of the YREB. According to
the HMA Development Plan (2020–2035), the HMA includes 6 cities, including Hangzhou,
Jiaxing, Huzhou, Shaoxing, Quzhou, and Huangshan, with a total of 44 districts or counties
and a total area of about 5.48 × 104 km2; by 2020, the population of HMA was 27.46 million,
and its GDP accounted for 3.11% of the country.

2.2. Data Sources and Pre-Processing

Land use classification results are 30-meter spatial resolution GlobeLand30 images
of year 2020 (http://www.globallandcover.com/) (accessed on 10 May 2022), which has
become quite popular for many scholars to conduct related research [38,39]. Social and
economic data are respectively derived from the 2020 Statistical Yearbooks of each province
and China City Statistical Yearbook involved in the study areas. The resident population
data are mainly from the 7th National Census bulletin and the statistical yearbooks and
bulletins of the corresponding districts or counties. The energy consumption per unit of
GDP was calculated from the total energy consumption and total GDP in the statistical
yearbooks of each region.

2.3. Methods

In this study, the total LUCE of each metropolitan area is obtained by measuring
the number of sources and sinks of LUCE in the three stages of metropolitan areas. The
relationship between the ECC and ESC of each district and county in the metropolitan
areas is studied by the CCD model, and the STIRPAT model is introduced to investigate the
dominant factors affecting LUCE in the three types of metropolitan areas. Figure 2 shows
the analysis clue of this study.
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2.3.1. Measurement of LUCE

The total amount of LUCE is equal to the sum of carbon sources and sinks [40], as
shown in Equation (1):

CE = CO2 sources + CO2 sinks (1)

where CE is the total amount of LUCE; CO2 sources represents the number of carbon sources
of LUCE; and CO2 sinks represents the number of carbon sinks of LUCE.

(1) Calculation of the number of carbon sources

http://www.globallandcover.com/
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The number of land use carbon sources for each district and county in the metropolitan
areas is calculated from the cultivated and construction land. The number of LUCE from
cultivated land use is the area of this kind of land use multiplied by its carbon emission
factor, which is taken as 0.0422 according to Sun [41] and Zhang [42]. The number of LUCE
from construction land use is usually measured indirectly based on the energy consumption
of the city (such as coal, oil, natural gas, electricity, etc.). However, energy consumption
data for each district and county in the metropolitan areas is difficult to obtain. According
to relevant studies [43,44], since the value of secondary and tertiary industries is mainly
contributed by construction land, the number of carbon emissions from construction land
in each district and county can be approximated from the total GDP of secondary and
tertiary industries. The calculation formula of carbon sources amount is as follows:

CO2 sources = Ac × δc + Pi ×Mi × θi (2)

where CO2 sources is the total land use carbon sources; Ac represents the area of cultivated
land use; δc represents the coefficient of cultivated land; Pi represents the energy consump-
tion per unit of GDP; Mi represents the total GDP of secondary and tertiary industries in
each district and county; and θi is the coefficient of standard coal.

(2) Calculation of the number of carbon sinks

Land with carbon sink function and its corresponding carbon sink coefficient [45] are
involved in calculating the carbon sinks of each district and county in the metropolitan areas.
The land with carbon sink function includes green lands (such as grassland, woodland, and
shrubland), water (such as wetland, water, and sea), unutilized land, permanent snow and
ice, and so on. According to relevant research, woodland and shrubland [42] and water
and sea were combined [46]. Referring to existing studies, the corresponding carbon sink
coefficients δi for different land use types are shown in Table 1. Since the percentage of
permanent snow and ice in these study areas is only 0.0017%, this study uses the LUCE
coefficient of water to replace its coefficient. The carbon sinks are calculated as follows:

CO2 sinks = ∑ ei = ∑ Ai × δi (3)

where CO2 sinks is the total amount of carbon sink; ei represents the amount of carbon sink
generated by land use type i; Ai and δi represent the spatial area; and sink coefficient of
land use type, respectively.

Table 1. CE coefficient of different land use types (kg·m−2·a−1).

Land Use Coefficient References

Woodland/Shrubland −0.0644 Zhang et al., [42]; Fang et al., [47]

Grassland −0.0021 Sun et al., [41]; Zhang et al., [42]

Wetland −0.0001 Zhang et al., [42]

Water/Sea −0.0253 Yang et al., [48]

Unutilized −0.0005 Yang et al., [48]

2.3.2. Global Moran’s I

Global Moran’s I is used to analyze the overall correlation degree of LUCE spatial
distribution of each metropolitan area [49], and the calculation formula is as follows:

Moran′s I =
n ∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)(
∑n

i=1 ∑n
j=1 Wij

)
∑n

i=1(xi − x)2
(4)

where n is the number of districts and counties in the metropolitan area; xi and xj are the
LUCE of district or county i and j, respectively; Wij is the spatial weight matrix of district
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or county i and j; and x is the average value. The values of Moran’s I range from [−1, 1];
Moran’s I > 0, Moran’s I < 0, and Moran’s I = 0 represent positive correlation, negative
correlation, and no spatial correlation, respectively.

2.3.3. Measurement of CCD

The CCD model is introduced to measure the relationship between the ECC and ESC
of CE for each district and county in the metropolitan areas. The calculation formula of
CCD [50] is as follows:

C =

√√√√ U1U2(
U1+U2

2

)2 =
2
√

U1U2

U1 + U2
(5)

T = a1U1 + a2U2 (6)

CCD =
√

C× T (7)

where CCD is between 0 and 1; C and T are the coupling degree and integrated coordination
index between ECC and ESC, respectively; U1 and U2 are the values of ECC and ESC
respectively; a1 and a2 are the weights of indicators ECC and ESC, in this study, ECC and
ESC are considered equally important, so the weights of both indicators a1 and a2 are taken
as 0.5, then T = 0.5U1 + 0.5U2.

According to the CCD grading method [51,52], the CCD was classified into five classes
as shown in Table 2:

Table 2. Levels of CCD.

Development Category Level Balanced or Not Degree

Coordinated 0.8 < CCD ≤ 1.0 Balanced Highly
Transformation 0.6 < CCD ≤ 0.8 Balanced Moderately

Uncoordinated
0.4 < CCD ≤ 0.6 Balanced Basically
0.2 < CCD ≤ 0.4 Unbalanced Moderately
0 < CCD ≤ 0.2 Unbalanced Seriously

(1) Calculating ECC

ECC is introduced to estimate the equity of economic contribution of CE among
districts or counties within a metropolitan area [53] and can reflect the socio-economic
benefits that accompany the process of generating carbon emissions. ECC is calculated as:

ECC =
Gi
G

/
Ci
C

(8)

where Gi and G are the GDP of each district and county and the whole metropolitan area,
respectively; and Ci and C are the carbon emissions of each district and county and the
whole metropolitan area, respectively. When the economic contribution of a district or
county is greater than its share of carbon emissions (ECC > 1), it indicates that the district
or county has a high level of economic efficiency and green development. When ECC is
less than 1, the economic contribution of the district is smaller than its carbon emissions
contribution, and its economic efficiency of carbon emission is relatively low.

(2) Calculating ESC

ESC is introduced to estimate the equity of contribution of carbon ecological capacity
among districts or counties in the metropolitan area [54], which could reflect the carbon
sink capacity of each district and county [55] as a reflection of ecological benefits. ESC
is calculated by the ratio of the carbon sink of each city to the carbon sink of all cities,
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divided by the ratio of carbon emissions of each city to the carbon emissions of all cities.
The calculation formula of ESC is:

ESC =
CAi
CA

/
Ci
C

(9)

where CAi and CA are the carbon sinks of each district or county and the whole metropoli-
tan area, respectively. Districts with carbon sinks contribution greater than their share
of carbon emissions (ESC > 1), indicate positive impacts on the absorption of CE in the
whole metropolitan area and generate positive externalities that help other districts or
counties, while districts with ESC less than 1 indicate negative externality to other districts
or counties.

(3) Data normalization

Since the distribution range of ECC and ESC values are different, the coupling co-
ordination degree between the two cannot be calculated directly, so they must be nor-
malized. According to existing research [56,57], the formulas of positive and negative
standardization are:

Yi =
Xi −min(Xi)

max(Xi)−min(Xi)
(10)

Yi =
max(Xi)− Xi

max(Xi)−min(Xi)
(11)

where Yi represents the standardized value of Xi; Xi represents the actual value of indicator
i; max(Xi), min(Xi) are the maximum and minimum values of Xi, respectively.

2.3.4. Impact Factor Measurement Model

STIRPAT is a commonly used model to investigate the impact of population, affluence,
and technology on the environment in the field of carbon emissions [58], which is expressed
as follows:

I = aPb AcTde (12)

where a is a constant variable; b, c, and d represent the coefficients of population, affluence,
and technology, respectively; and e is an error variable.

Equation (11) transforms to Equation (12) by logarithms method:

ln I = a + b ln P + c ln A + d ln T + e (13)

where I is the LUCE of each district and county in each metropolitan area; P, A, and T are
the residential population, per capita GDP and urbanization rate of each district or county,
respectively; a is a constant variable; b, c, and d represent the coefficients of P, A, and T,
respectively; e is an error variable.

3. Results
3.1. Spatial Characteristics of LUCE
3.1.1. Structures of LUCE in Metropolitan Areas

Overall, the total amount of LUCE in the metropolitan area is consistent with its devel-
opment stage. The total LUCE in HMA (the mature metropolitan area) of 7802.7285 × 104 t
is the highest, which is much higher than the total carbon emissions in CMA (the develop-
mental metropolitan area) of 4678.7527 × 104 t, and in NMA (the cultivating metropolitan
area) of 1421.2675 × 104 t. Construction land use types are the main contributor of LUCE
in these three metropolitan areas, accounting for 99.18%, 96.71%, and 98.34%, respectively,
while the proportion of LUCE from cultivated land use types is much lower. Regarding the
composition structure of carbon sequestration, the carbon sinks of the three metropolitan
areas are also very similar, with woodland accounting for the largest proportion of carbon
sequestration, 95.29%, 84.93%, and 95.84% of the carbon sinks in HMA, NMA, and CMA,
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respectively, while wetland and unutilized land are both weaker due to their smaller carbon
sink coefficients and weaker carbon sink capacities, as shown in Table 3.

Table 3. Land use carbon emissions/sinks of three metropolitan areas (×104 t/a).

Cultivated
Land

Construction
Land Woodland Grassland Wetland Water Unutilized

Land Total

Nanchang
Metropolitan Area 48.4964 1424.5591 −43.9845 −0.2845 −0.0006 −7.5160 −0.0024 1421.2675

Chengdu
Metropolitan Area 77.9751 4631.6161 −29.5562 −0.2083 −0.0003 −1.0737 0.0000 4678.7527

Hangzhou
Metropolitan Area 65.6841 7936.4449 −190.0182 −0.2788 −0.0006 −9.1028 −0.0001 7802.7285

3.1.2. Spatial Differentiation of LUCE in Metropolitan Areas

The spatial distribution characteristics of LUCE in NMA, CMA, and HMA metropoli-
tan areas are weak core cluster type, strong core cluster type, and flat extension respectively.
Based on the natural breakpoint method, the sources and sinks of LUCE of the three
metropolitan areas were reclassified, as shown in Figures 3 and 4. The areas with high
carbon emissions (more than 74.62 × 104 tons) in NMA are mainly concentrated in the
southwest, probably due to the higher development level of the economy in its southwest,
such as the “Feng-Zhang-Gao” (Fengcheng-Zhangshu-Gaoan) industrial development area.
The areas with high carbon sinks (more than 4.49 × 104 tons) were mainly concentrated in
two parts (the northwestern and southeastern parts) of the region. However, the LUCE of
districts or counties in the CMA shows an obvious “core-edge” spatial distribution pattern,
with carbon emissions decreasing from the middle to the periphery of the metropolitan
area. Areas with large carbon absorption are in the northwest of the CMA. The cause of
this spatial distribution may be due to the concentration of construction land being mainly
distributed in the central CMA, and the fact that the non-agricultural industries are also
most developed in the central part of the area and the central city of the metropolitan
area is more attractive. The spatial distribution of LUCE in the HMA shows a “flattened”
extension. Areas with large carbon emissions (more than 74.62 × 104 tons) are distributed
in the northeast of the metropolitan area. Areas with large carbon absorption (more than
4.49 × 104 tons) are concentrated in the southwest of this metropolitan area. From the west
to the east, the carbon emissions of districts or counties gradually increased.
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3.1.3. Spatial Clustering Characteristics of LUCE in Metropolitan Areas

Except for NMA (the cultivating metropolitan area), which showed no significant
positive spatial correlation, the carbon sources in CMA (the developmental metropolitan
area) and HMA (the mature metropolitan area) showed significant positive correlation
results. The Moran’s I value is 0.7957 in the Hangzhou metropolitan area, which is larger
than that of 0.7425 in CMA (Table 4). In addition, the carbon sequestration of all three
metropolitan areas shows a significant positive correlation result (Table 5). The specific
Moran’s I value of NMA is 0.8501, which is much higher than 0.4795 of HMA, and 0.4561
of CMA, due to the contiguous distribution of carbon sink spaces, such as woodland and
water, within the metropolitan area.

Table 4. Global Moran’s I of LUCE sources.

Moran’s I z-Score p-Value

Nanchang Metropolitan Area 0.0266 0.5065 0.6125
Chengdu Metropolitan Area 0.7425 9.0600 0.0000

Hangzhou Metropolitan Area 0.7957 7.8238 0.0000

Table 5. Global Moran’s I of LUCE sinks.

Moran’s I z-Score p-Value

Nanchang Metropolitan Area 0.8501 5.3412 0.0000
Chengdu Metropolitan Area 0.4561 5.4008 0.0000

Hangzhou Metropolitan Area 0.4795 4.6800 0.0000

Overall, the more mature the development stage of the metropolitan area, the more
clustered districts or counties with high LUCE levels. The districts or counties with
high LUCE levels are more distributed in the core circles of the CMA compared to the
NMA, while the districts or counties with high carbon emission levels in the HMA are
more widely clustered in contiguous areas. This is related to the high concentration of
construction land, industry, population, and other elements in and around the core area of
the metropolitan area.

3.2. Coupling Coordination Degree Analysis of LUCE
3.2.1. ECC of LUCE in Metropolitan Areas

Districts or counties with high economic contribution coefficient (ECC) of LUCE are
generally concentrated in the central part or the periphery and edge part of the metropolitan
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area (Figure 5). The average values of ECC of carbon emissions of districts or counties in
NMA, CMA, and HMA are 1.07, 1.04, and 1.13, respectively. The districts or counties with
high ECC in Nanchang metropolitan area (cultivating metropolitan area), i.e., districts or
counties with ECC higher than 1.23, are mainly located in the periphery of its central city.
Nanchang, as the central city, accounts for 22.22% of the number of districts or counties
in NMA, indicating that the economic efficiency of LUCE in the periphery of the central
city is higher. The counties with higher ECC, i.e., those with ECC higher than 1.11, are
mainly located in the periphery of the CMA, accounting for 20.00% of the total number of
counties in the CMA, indicating that the contribution of the counties in the periphery to
the economy of the entire metropolitan area is greater than the contribution of their LUCE
to the LUCE of the entire metropolitan area. The ECC of HMA (mature metropolitan area)
gradually decreases from west to east. The districts or counties with high ECC, i.e., districts
or counties with ECC higher than 1.23, are concentrated in the western edge of the HMA,
accounting for 15.91% of the total number of districts or counties in the HMA. The districts
or counties in this area have higher economic efficiency than LUCE.
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3.2.2. ESC of Carbon Emission in Metropolitan Areas

The districts or counties with high ecological support coefficients (ESC) in the three
metropolitan areas are all located in the peripheral regions of each metropolitan area (as
shown in Figure 6), indicating that the carbon sinks capacity in the peripheral regions
contributes more than their carbon emissions contribute to the carbon emissions of each
metropolitan area. The mean values of ESC of NMA, CMA, and HMA are 2.31, 2.18, and
5.61, respectively. In addition, the number of districts or counties with higher ESC value
in HMA and CMA, i.e., ESC higher than 3.58 is 29.55% and 26.67% respectively, which
are much higher than the corresponding number of districts or counties in NMA, which
is 11.11%. The results show that HMA and CMA are not only ahead of NMA in terms of
the economic development stage, but also, the proportion of districts or counties with high
contribution of carbon sink capacity is higher than the proportion of districts or counties at
the corresponding level in NMA.

3.2.3. CCD of LUCE in Metropolitan Areas

The CCD (coupling coordination degree) between the ECC and ESC of each metropoli-
tan area is closely bound up to the development stage of the metropolitan area. On the
one hand, the more developed the metropolitan area, the lower the CCD. On the other
hand, the more developed the economic districts or counties within the metropolitan area,
the lower the CCD. The average CCD of NMA, CMA, and HMA is 0.27, 0.34, and 0.18
respectively. The more mature the development stage of the metropolitan area, the more un-
balanced the economy contributive coefficient of LUCE and the ESC. Regarding the spatial
distribution, there is an extreme imbalance between the ECC and ESC of carbon emissions
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of districts or counties in the core circles of CMA and NMA. The number of districts or
counties with extreme imbalance accounts for 40.00% and 44.44% in each metropolitan
area, respectively. The spatial distribution characteristics of the CCD of ECC and ESC of
the developmental metropolitan area (CMA) and cultivating metropolitan area (NMA)
show similarity, except that the number of seriously unbalanced districts or counties in
the developmental metropolitan area accounts for a larger proportion. The eastern part of
HMA is seriously unbalanced and the western part is more balanced overall. The amount
of seriously unbalanced districts or counties account for 65.91% of the total amount of
districts or counties in HMA (as shown in Figure 7).
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3.3. Driving Factors of LUCE in Different Stages of Metropolitan Areas

The LUCE of each district and county in the metropolitan areas are taken as the
dependent variables, while the resident population, per capita GDP, and urbanization
rate are the independent variables, and the carbon emissions of the three metropolitan
areas are analyzed by the STIRPAT model. Regression results are shown in Table 6. The
R-Square of all three models is close to 1, and the influencing factors of the model have
good explanatory power. The lowest value of R-Square is 0.926 in NMA, indicating that
the influencing factors in the model can explain carbon emissions to a degree of 92.60%,
and the remaining 7.40% is not explained by the influencing factors selected by the model.
The highest value of R-square is 0.998 in the CMA, and the influencing factors of its model
can explain the carbon emissions of its districts or counties to 99.80%.
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Table 6. Models Summary Table of Three Metropolitan Areas.

Model R R-Square Adjusted R-Square Standard Error in
Estimation Durbin-Watson

Nanchang Metropolitan
Area (NMA) 0.962 0.926 0.910 0.230 1.604

Chengdu Metropolitan
Area (CMA) 0.999 0.998 0.998 0.034 1.865

Hangzhou Metropolitan
Area (HMA) 0.991 0.982 0.981 0.155 2.619

The results of NMA are shown in Table 7. The order of influence of carbon emission
influencing factors is per capita GDP (A) > resident population (P) > urbanization rate
(T). Meanwhile, the influence of resident population and per capita GDP on the LUCE of
the NMA is positive, and the significance test value is 0.000 < 0.050, which both pass the
significance test. However, the influence of the urbanization rate on the LUCE of districts
or counties is negative, and the significance test value is 0.183 > 0.050, which does not pass
the significance test. Therefore, for the NMA (the cultivating metropolitan area), increasing
the urbanization rate of its districts or counties will be a good strategy to reduce LUCE in
the region.

Table 7. Model test results of Nanchang metropolitan area.

Variables

Non-Standardized
Coefficient

Standardized
Coefficient Colinearity Statistics

B Std. Error Beta t Significance Tolerance VIF

CONSTANT −2.847 0.655 −4.343 0.001
Resident population 1.084 0.092 0.916 11.795 0.000 0.876 1.141

Per capita GDP 1.376 0.186 0.758 7.393 0.000 0.503 1.988
Urbanization rate −0.390 0.279 −0.138 −1.401 0.183 0.541 1.847

The regression results for CMA are shown in Table 8. The order of influence of
carbon emission factors is resident population (P) > per capita GDP (A) > urbanization
rate (T). The influence of all three factors on carbon emission in the CMA is positive. The
significance test values of influencing factors are all 0.000, and all pass the significance
test. Therefore, there exists a significant positive correlation between resident population,
per capita GDP, urbanization rate, and carbon emissions for the CMA. In the process of
continuous concentration of population, industry, and other factors, the carbon emissions
of this area should be reduced by other strategies such as improving the carbon emission
efficiency and optimizing the energy structure of districts or counties.

Table 8. Model test results of Chengdu metropolitan area.

Variables

Non-Standardized
Coefficient

Standardized
Coefficient Colinearity Statistics

B Std. Error Beta t Significance Tolerance VIF

CONSTANT −1.308 0.134 −9.760 0.000
Resident population 0.984 0.015 0.748 66.841 0.000 0.501 1.996

Per capita GDP 0.966 0.033 0.455 28.921 0.000 0.254 3.936
Urbanization rate 0.242 0.050 0.088 4.812 0.000 0.187 5.345

The results for the HMA are shown in Table 9. Similar to CMA, the order of influence
of the factors affecting carbon emissions in the districts or counties of the HMA is resident
population (P) > per capita GDP (A) > urbanization rate (T); besides, the impact of all three
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factors on LUCE in HMA is positive, except for the significance test value of urbanization
rate on carbon emissions which is 0.054 > 0.050, which does not pass the significance test.
The significance of resident population and per capita GDP all passed the test. Therefore,
for the HMA (the mature metropolitan area), the influence degree of the resident population
on LUCE of districts or counties is the strongest among the three metropolitan areas, and
its urbanization rate has already reached a relatively high level. While in the process of
continuous concentration of population and industries, the LUCE efficiency of districts or
counties should be improved by other ways to reduce carbon emissions in the region.

Table 9. Model test results of Hangzhou metropolitan area.

Variables

Non-Standardized
Coefficient

Standardized
Coefficient Colinearity Statistics

B Std. Error Beta t Significance Tolerance VIF

CONSTANT −2.117 0.256 −8.266 0.000
Resident population 1.142 0.041 0.700 28.129 0.000 0.717 1.394

Per capita GDP 1.078 0.066 0.438 16.314 0.000 0.614 1.627
Urbanization rate 0.265 0.134 0.059 1.984 0.054 0.509 1.966

4. Discussion
4.1. Factors Influencing the LUCE of Different Stages Metropolitan Area

Previous studies on the spatial patterns and impact modeling of LUCE have mainly
concentrated on a single aspect of the research object [59–61], such as analyzing the spatial
evolution characteristics [62] or the influencing factors of carbon emissions [63–65]. Few
studies have focused on research objects at different development stages at the same time,
thus failing to identify the spatial differentiation patterns and influencing factors of LUCE
among different types of research objects. Different from previous studies, this study
quantifies the LUCE of three different development stages of metropolitan areas in the
lower, middle, and upper reaches of the YREB and measures the CCD and influencing
factors of LUCE in each metropolitan area. The findings of this study show that the
urbanization rate only had a negative impact on the LUCE of the cultivating metropolitan
area (such as NMA), while the resident population and per capita GDP had a positive
impact on the LUCE of the three stages of metropolitan areas. Similarly, Chel et al. found
that population and per capita GDP are also positively related to LUCE after studying
103 metropolitan statistical areas (MSAs) in the United States [66]. The possible reason
is that the level of social and economic development and urbanization of the cultivating
metropolitan area (such as NMA) are lower than those of developmental and mature
metropolitan areas (such as CMA and HMA respectively). Besides, the distribution of
urban and rural populations, industry, land use, and other factors are not intensive and
efficient enough. Therefore, it is necessary to formulate corresponding strategies to reduce
LUCE for different types of metropolitan areas.

4.2. Policy Implications

For cultivating metropolitan areas, large numbers of the rural population will be con-
tinuously promoted to gather into central cities in the future to increase the urbanization
rate. Meanwhile, changing spatial planning from incremental to stock will be accompanied
by the development trend of more intensive urban and rural land use and more concen-
trated industries, etc. The above changes may make the carbon emissions from construction
land in cultivating metropolitan area decrease to a certain extent.

For mature and developmental metropolitan areas, it may be possible to learn from
the research of Yang et al. on metropolitan areas in the United States, that is, to increase the
number of high-density areas (urban centers) in the metropolitan area to reduce commuting
time and distance [67], thereby reducing traffic carbon emissions in the metropolitan area.
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4.3. Limitations

However, there are some limitations and potential uncertainties in this study:

(1) Due to the tiny percentage of permanent snow and ice in the research area, we
substituted the permanent snow and ice emission coefficient with the water emission
coefficient. However, if it occurs in other research regions where there is a sizable
amount of permanent snow and ice or sea, it might lead to unreasonable results.
Therefore, future studies should further explore the coefficient of permanent snow
and ice and sea.

(2) This study is only based on the STIRPAT model, which examines the effects on LUCE
in metropolitan areas at each development stage regarding population (P), affluence
(A), and technology (T), without selecting control variables, which may result in an
incomplete analysis of the influencing factors.

(3) Related studies show that regional climate and carbon cycle changes affect CO2 emis-
sion pathways [68]. In addition, some studies have reported that the CO2 emission
level of metropolitan areas with a high level of sprawl is generally high [69]. How-
ever, climate change, urban form, and other aspects of the metropolitan area are
not considered in this research. Therefore, further relevant studies are needed in
the future.

5. Conclusions

Based on the GlobeLand30 land use type data of 2020 with 30-meter spatial resolution,
this study calculated the total LUCE, analyzed the spatial characteristics, and revealed
the relationship between the ECC and ESC of LUCE in each district and county of three
metropolitan areas at different development stages, namely NMA, CMA and HMA in
YREB. The STIRPAT model was further introduced to explore the impacts of various socio-
economic factors on land use carbon emissions in these three metropolitan areas. The main
conclusions of this work are drawn as follows.

(1) The more mature the stage of the metropolitan area, the higher the amount of LUCE
is. Meanwhile, the spatial distribution patterns of LUCE of Nanchang, Chengdu, and
Hangzhou metropolitan areas show weak core grouping, strong core clustering, and
flattening extension patterns respectively. In general, the more mature the develop-
ment stage of the metropolitan area, the more concentrated the districts or counties
with high carbon emission levels.

(2) The districts or counties with a higher economy contributive coefficient (ECC) are gen-
erally concentrated in the central cities or on the periphery or edge of the metropolitan
areas. The districts or counties with higher ecological support coefficient (ESC) in
the three metropolitan areas are in the peripheral areas of each metropolitan area.
Meanwhile, the more developed the metropolitan area, the lower the CCD between
ECC and ESC. The more economically developed districts or counties are within the
metropolitan area, the lower CCD is.

(3) Based on the STIRPAT model, the resident population, per capita GDP, and urbaniza-
tion rate have good explanatory effects on the carbon emissions of the three metropoli-
tan areas. All these three factors have positive effects on carbon emissions, except for
the urbanization rate, which contributes to a negative effect on the LUCE of NMA.

Our empirical study revealed the spatial patterns and CCD between the ECC and
ESC of LUCE, and verified the effects of the resident population, per capita GDP, and
urbanization rate on LUCE in each metropolitan area by applying the STIRPAT model.
Both the characteristics of LUCE in metropolitan areas and the influencing factors show
specific correlations with the development stage of metropolitan areas. Findings can
help to identify sustainable development strategies [70] and formulate corresponding
carbon reduction measures for metropolitan areas at different stages of development and
different regions within the metropolitan areas. In future studies, we will conduct further
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comparative analysis on the spatio-temporal evolution patterns of LUCE and other drivers
in metropolitan areas at different development stages.
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