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Abstract: In response to the global loss and degradation of wetland ecosystems, extensive efforts
have been made to reestablish wetland habitat and function in landscapes where they once existed.
The reintroduction of wetland ecosystem services has largely occurred in two categories: constructed
wetlands (CW) for wastewater treatment, and restored wetlands (RW) for the renewal or creation of
multiple ecosystem services. This is the first review to compare the objectives, design, performance,
and management of CW and RW, and to assess the status of efforts to combine CW and RW as
Integrated Constructed Wetlands (ICW). These wetland systems are assessed for their ecological
attributes and their relative contribution to ecosystem services. CW are designed to process a
wide variety of wastewaters using surface, subsurface, or hybrid treatment systems. Designed
and maintained within narrow hydrologic parameters, CW can be highly effective at contaminant
transformation, remediation, and sequestration. The ecosystem services provided by CW are limited
by their status as high-stress, successionally arrested systems with low landscape connectivity and an
effective lifespan. RW are typically situated and designed for a greater degree of connection with
regional ecosystems. After construction, revegetation, and early successional management, RW are
intended as self-maintaining ecosystems. This affords RW a broader range of ecosystem services
than CW, though RW system performance can be highly variable and subject to invasive species and
landscape-level stressors. Where the spatial and biogeochemical contexts are favorable, ICW present
the opportunity to couple CW and RW functions, thereby enhancing the replacement of wetland
services on the landscape.

Keywords: treatment wetlands; ecological restoration; socioecological systems; coupled ecosystems;
integrated landscape approach

1. Introduction

Wetlands provide ecosystem services to a degree that is proportionately greater than
their geographic extent [1]. Even so, wetlands are among our most endangered ecosystems,
having been drained, filled, diked, flooded, and converted to other land uses with impunity
for much of modern history [2,3]. Socioecological systems around the world have suffered
from wetland loss and degradation, as manifested in deteriorating fisheries, reduced water
quality, loss of coastal storm abatement, biodiversity decline, increased flood intensity and
frequency, aquifer depletion, and reduced carbon storage [4]. The remaining wetlands have
consequently achieved a heightened degree of protection, and efforts around the world
have attempted to replace some of the wetlands we have lost.

Wetland replacement generally occurs in two broad categories, which are the focus
of this review. The first is wetland construction. Constructed wetlands (CW) are typically
designed to treat a particular wastewater stream (see [5–7] for representative designs).
Often, but not always, CW are artificial ecosystems, in the sense that they are designed and
managed primarily for wastewater treatment, and not intended to go through the adaptive
cycle of succession [8,9]. CW are commonly engineered to treat particular wastes that are
introduced at controlled concentrations, with carefully managed substrate, hydraulic path,
retention time, oxidation, and a trophic structure. The second category, restored wetlands
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(RW), differs in several respects. RW are intended to reestablish multiple ecological func-
tions on the landscape (see [10–12] for representative designs). In the broadest sense of
the term, the restoration of wetlands may involve the rejuvenation of a wetland where it
once existed, creation of new wetland habitat, or enhancement of a wetland that exists in a
degraded state. The goals of wetland restoration vary by project, but they are typically not
focused solely on water quality improvement. For example, habitat provision, flood water
retention, aquifer recharge, carbon sequestration, and cultural services are all common
desirable outcomes in RW [13]. In special cases, there are also political and economic goals,
as wetlands are built for the compensatory mitigation of wetland losses [14,15]. Beyond
their goals and objectives, RW differ from CW in that they are intended as ecosystems that
self-organize, respond to disturbance, and change through succession [16].

Despite the different intentions of CW and RW, they have many commonalities. First,
they have followed a similar historical trajectory, with early trials in the first two-thirds of
the twentieth century, implementation beginning in earnest in the 1970s, and global growth
over the past 50 years [17,18]. Second, both types of wetlands have evolved in terms of
design and management technique over this period [19,20]. Third, both CW and RW have
performance criteria by which they are evaluated, and critical parameters that influence
performance [5,21]. Recently, some scholars and practitioners of wetland replacement
have advocated for the use of CW and RW in combination where practicable, noting that
the design and performance of these systems are complementary. Coupled CW and RW
systems, known as Integrated Constructed Wetlands (ICW), offer the potential for holistic
replacement of wetland services on the landscape [22,23].

During this era of wetland replacement, numerous studies and comprehensive reviews
have been prepared on both CW and RW systems. However, the CW and RW literature
have largely occurred in parallel, with little comparative assessment. The objective of this
review is to assess the state of the science for wetland construction and wetland restoration,
both individually and in combination as ICW systems. Specifically, CW, RW, and ICW
systems are considered in terms of their objectives, design, management, performance, and
limitations, with particular attention to ecosystem development and ecological services.
Ecological services, including provisional, cultural, regulating, and supporting services as
described by the Millennium Ecosystem Assessment [4], are ultimately what human-made
wetlands are intended to replace. Through a comparative analysis of the services provided
by different types of replacement wetlands we may better understand the potential for
renewing the full complement of wetland functions that once existed on our landscapes.

2. Constructed Wetlands
2.1. CW Properties and Context

Wetlands have attributes that promote useful ecological functions. Among these are
the capacity to transform, assimilate, or sequester influent nutrients and contaminants,
thereby reducing the effects of potential pollutants on the landscape. In this way, natural
wetlands have long alleviated stress on adjacent and downstream ecosystems [24]. Unfor-
tunately, the accelerated production of anthropogenic stressors, such as nutrients, synthetic
chemicals, eroded sediments, toxic metals, and oxygen-demanding organic wastes, has
coincided with the era of wetland destruction and degradation. Our collective production
of stressors thus exceeds the ecological capacity of the remaining wetlands [25].

One response to this problem is to construct wetlands for the explicit purpose of re-
ceiving and sequestering or altering wastewater before it can contaminate other ecosystems.
For the purposes of this review, the term “constructed” wetlands refers to wetlands built for
wastewater treatment. As Zhi and Ji [26] note, other terms are used interchangeably with
“constructed wetlands”, including “engineered wetlands”, “treatment wetlands”, “artificial
wetlands”, and “reed beds”. By all these names, CW have indeed become part of our
ecological infrastructure. Vymazal [27] traces the evolution of CW from conceptual origins
in 1901 [28,29] to the first documented experimental treatments in 1950s Germany [30].
In the late 1960s, wetlands were constructed for municipal wastewater treatment in the
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Netherlands and in Hungary [27,31,32]. North American applications began at about
the same time, as HT Odum experimented with natural estuarine wetlands and cypress
swamps for the treatment of wastewater [27,33,34]. CW for wastewater treatment followed
in the Houghton Lake Project in Michigan [35]. Research publications on CW were sparse
until 1990, and then increased dramatically through 2020 [17,26]. The geographic extent
of CW research sites is now global, featuring thousands of publications from more than
60 nations [17,36,37].

2.2. CW Objectives and Design

From early experiments to modern systems, CW have been used to treat a wide variety
of wastewaters, including pre-treated municipal wastewater, livestock waste, industrial
effluent, biomedical and pharmaceutical waste, agriculture and aquaculture runoff, landfill
leachate, greywater, acid mine drainage, food processing waste, lake and river water,
stormwater, and others [27]. The specific contaminants intended for treatment vary by
wastewater source [38]. Nutrients, notably nitrogen and phosphorus, are contaminants of
primary concern in municipal and agricultural waste streams. Oxygen-demanding wastes
are also a concern in municipal and agricultural wastewater, and in some industrial effluent,
such as paper mill sludge [5]. Industrial waste streams may include halogens, metals,
metalloids, and synthetic organic compounds. Biomedical waste, as well as waste from
municipal, greywater, and livestock sources, is apt to contain pathogenic microorganisms
and pharmaceuticals. Acid mine drainage may be a concern due to its acidification of
receiving waters. In addition, many of these wastewater streams contain high levels of
dissolved and suspended solids [5].

To mitigate these various contaminants, CW takes a few basic forms [39]. Free water
surface (FWS) constructed wetlands receive surface waters from a stream, swale, ditch,
or effluent pipe. As water flows through the sealed wetland basin or series of basins, the
water column contacts the substrate surface, vegetation, and atmosphere. FWS systems
rely on algal mats and macrophytes, both for their ability to assimilate and metabolize
contaminants and for the binding sites they provide for microbial biofilms. In FWS wet-
lands, the primary mechanisms for contaminant treatment include biomass assimilation,
microbial metabolism, substrate and organic detritus adsorption, ultraviolet irradiation,
volatilization, and sedimentation [38,39]. Through biomass assimilation, contaminants
are taken up and sequestered, primarily by vegetation. Adsorption is a process by which
contaminants adhere to the surface of detritus, vegetation, or substrate particles; these
surfaces are also sites of biofilm formation and microbial metabolism [38,39]. Through these
processes, FWS can be particularly effective at removing organic contaminants, suspended
solids, and nitrogen from influent wastewater [39]. Floating treatment wetlands (FTW) are
an innovation that suspend macrophytes on buoyant mats so that the roots dangle into the
water column [40]. FTW have shown some promise for the removal of nutrients, metals,
and organic contaminants from surface waters [41].

Subsurface CW include horizontal flow (HF) and vertical flow (VF) systems. In HF
designs, wastewater is introduced to a bed of porous substrate and rhizosphere of emergent
plants, through which it moves above an impervious liner until it exits the system [42].
This design maximizes substrate and rhizosphere exposure and minimizes atmospheric ex-
posure, making it effective for the microbial metabolism of organics and nitrogen, filtration
of suspended solids, and sorption of ions [39]. Vertical flow (VF) subsurface systems are
similar but intermittently introduce wastewater to the surface of a substrate bed, through
which the water percolates to drainage structures below [43]. VF systems allow for en-
hanced oxygenation, which can provide advantages for the aerobic treatment of organic
contaminants and for nitrification [39]. A variation is the “tidal flow” (TF) CW, in which
wastewater is allowed to flood a subsurface bed completely, held for a period, and then
drained completely [44,45]. This intermittent fluctuation allows for alternating periods of
oxidation and reduction, thus improving the treatment efficiency for some contaminants.
Many CW are hybrid designs, which use more than one type of CW in succession to provide
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a complex network of aerobic and anaerobic zones, settling ponds, filtration, sorption sites,
and microbial communities to promote multiple removal pathways [46,47].

2.3. CW Performance and Management

Physical, chemical, and biological treatment mechanisms in CW vary by design, and
thus CW conformations are specific to contaminant treatment objectives. Essentially, CW
effectiveness relies on the interactions of the waste products with the vegetation, substrate,
microbes, and water column of the CW [47]. Physical waste removal processes include
flocculation, precipitation, sedimentation, and filtration, and are thus reliant on water
column interactions with the substrate [6]. The substrate is also the primary locus of
chemical removal processes, including interactions with ions and adsorbent surfaces, ion
exchange, and redox processes. For this reason, substrate has been a focus of CW research,
testing the relative efficacy of various adsorbent substrate materials, including alum sludge,
limestone, coal slag, sand, rice husks, biochar, and many others [47,48]. The different
physicochemical characteristics of substrate materials can result in a range of removal
efficiencies for different contaminants; according to Patyal et al., substrate materials varied
removal efficiency for oxygen-demanding wastes from 71.8–82%, for total phosphorus from
77–80%, and total nitrogen from 52–82% [47].

Biological processes, including microbial metabolism, phytoremediation, biosorption,
and predation, also occur in the substrate, as well as in the water column [6]. Macrophyte
stems, roots, and leaves reduce the flow rate and provide additional surface area for mi-
crobial biofilms. Macrophytes also exude carbon compounds and oxygen, particularly
in the rhizosphere, stimulating chelation and aerobic microbial metabolism [49]. Macro-
phyte metabolism contributes to waste retention and removal through phytoaccumulation,
phytodegradation, volatilization, and sequestration [17,50].

The physicochemical characteristics of CW are subject to careful management. For
instance, hydraulic parameters are critical aspects of CW design [51]. The expected hy-
draulic loading rate (HLR) and contaminant concentration determine the necessary surface
area and volume of the CW [52]. Equally critical is the frequency and duration of flooding
and drawdown events, as these regulate the oxygen availability in the water column and
substrate. The CW design, HLR, and hydrologic regime determine the hydraulic retention
time (HRT), the average length of time that influent wastewater remains in the CW [53].
Generally, a longer HRT results in higher percentage of contaminant removal for a given
system [54]. For example, Toet et al. [55] found a significant increase in retention of N and
coliform bacteria as HRT was increased from 0.3 to 9.3 days in a FWS municipal wastewater
treatment wetland. In a HF CW system, Ghosh and Gopal [54] similarly report a greater
retention of nitrogen (83–100%) with an HRT of 4 days over an HRT of 1 day (21–77%).
Many CW designs use long, sinuous paths, baffles, or multiple cells to lengthen the HRT
and maximize the system’s efficiency [56].

Other factors can confound CW performance, however; season, temperature, pH, oxy-
gen availability, changes in biomass productivity, bioturbation, and weather events can all
influence the efficacy of contaminant removal [50]. These, too, can be managed to an extent.
In cold-weather climates, temperatures may be increased with greenhouses [50] and bed
heating [57]. Artificial aeration, pH buffering, insulation, and bio-augmentation are all used
to maintain critical parameters to achieve the most efficient waste removal [50,58]. Vymazal
et al. [48] and Ingrao et al. [59] review emerging challenges in new wastewater streams and
novel pollutants amid the tighter regulation of effluent contaminant concentrations.

CW biota are also managed. The ideal macrophyte species for CW systems vary by
geography, design, and waste stream, but generally the plants must be robust, with quick
establishment, rapid growth, large biomass, and tolerance to the stressful conditions that
wastewater presents [60]. While plant species selection is deemed an important part of
CW design, the advantages or disadvantages of one macrophyte species over another
are inconsistent in the literature [60,61]. Vymazal [61] surveyed over 640 studies on FWS
systems that introduced a total of 150 macrophyte species. The most used species are
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Typha latifolia, Phragmites australis, Typha angustifolia, Juncus effusus, Scirpus lacustris, Scirpus
californicus and Phalaris arundinacea. Others [62] have experimented with woody species in
FWS CW. Subsurface CW often use emergent macrophytes for the enhanced treatment that
the presence of a rhizosphere provides. Vyzmal [27] found that macrophytes of the genera
Phragmites, Typha, and Scirpus are most used in subsurface systems. Of course, both FWS
and subsurface CW provide habitat for volunteer species; Knight [63] notes that more than
600 plant species occur in CW systems in the US.

Nuisance animals, the subject of removal or control in many CW (particularly FWS)
systems, include burrowing mammals (e.g., muskrat, beaver), mosquitos, bioturbators,
and aggressive grazers [6,64]. However, wetland animals can also have a positive effect
on CW performance. Li et al. [64] review an extensive list of invertebrates, fish, birds,
reptiles, and mammals that can enhance contaminant retention through adsorption and
bioaccumulation, by increasing the diversity of the microbial community, consuming
pathogens, and stimulating plant growth.

2.4. CW Ecosystem Services and Limitations

CW are primarily evaluated by their capacity to retain, remove, or reduce influent
contaminants (Table 1). For example, Varma et al. [50] summarize CW design efficacy by
the removal of nitrogen, phosphorus, and oxygen demanding wastes; depending on CW
type, the study cites average efficiencies ranging from 45 to 89% removal. Other CW are
similarly evaluated for their amelioration of metals and metalloids, pathogens, dissolved
and suspended solids, acidic waters, and synthetic organic compounds [6,65]. Data from
thousands of studies demonstrate the effectiveness of CW nutrient retention and removal,
though the success is not without caveat. CW can be highly efficient, but efficiencies can
fall with excessive HLR, low temperatures, low HRT, poor oxygenation, and unsuitable
pH [50].

Table 1. Examples of Ecosystem Services provided by constructed wetlands (CW) for wastewater
treatment. Based on Ecosystem Services categories of the Millennium Ecosystem Assessment as
applied to wetlands [4,66,67].

Ecosystem Service Representative CW Performance Selected Sources

Provisional Biomass harvest, microbial fuel cell [48,68]
Biomethane, ethanol production [69]

Cultural Recreational benefits $580 to $9160 USD per hectare [70]

Supporting Regional nutrient and water cycling [71]
Regional ecosystem connectivity [72]

Regulating 73–99% retention of BOD, COD, TSS, TN, TP from wastewater sources [6,48,50,65]
45 phyla of bacteria and archaea supported in CW [48]
>600 plant species supported in CW [63]
36 macroinvertebrate taxa; >60 bird species, including species of concern [73–76]
Stormwater retention [77]
Carbon sequestration 676 g CO2 eq m−2 yr−1 [48,78]
Net GHG emission [79]

If these critical parameters are maintained within reasonable levels, CW removal
pathways such as denitrification and respiration can occur for an indeterminate time.
However, CW performance may decline over time in cases where the target pollutants are to
be sequestered [80–83]. CW systems have physical limitations; for example, sedimentation
pools can fill, flow paths can become channelized, and substrate pore space can become
clogged [84]. Chemical limitations occur as sorption sites become saturated, ion exchange
capacity becomes depleted, and buffering capacity is exhausted. Biological processes such
as phytoremediation and biosequestration are similarly finite. Management effort can
extend the useful life of a CW with energy inputs and re-fitting: removal and replacement
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of vegetation and substrate, aeration and heat, pH buffering, and management of HRT and
HLR. Finally, each CW is a function of its wastewater source, which is likely impermanent.
Carefully managed CW have been shown to be effective for decades [48]. For instance,
Vymazal [85] reviews 17 HF systems in the Czech Republic and finds that “the treatment
performance is steady for more than 20 years with outflow concentrations < 15 mg L−1 of
BOD5 and TSS and <50 mg L−1 COD”. Another study of the long-term efficacy of HF CW
finds 84–90% removal of TSS and organic contaminants and 65–67% removal of nitrogen
and phosphorus after 20 years of operation [48,86]. Brix et al. [83] review several hundred
Danish reed bed CW and find that these systems maintain TSS and BOD effluent of less
than 20 mg/L and 30–50% P and N removal for two decades, after which many were
reconditioned or decommissioned.

CW are seldom evaluated according to their status as ecosystems. Such an assessment
illustrates several key differences between CW and natural wetlands. First, while some
contaminant removal pathways (like denitrification, carbon sequestration, and methano-
genesis) may improve with time, many are at their most efficient when macrophyte and
microbial growth are vigorous, when pore spaces are open, when binding sites and sed-
imentation spaces are available, and when redox environments are interspersed. These
conditions are maximized in early succession, and CW are commonly managed to maintain
the conditions of early succession by vegetation harvest and substrate replacement [70,84].
Second, the introduction of wastewater makes a CW a high-stress environment, and the
expectation of a continuous performance precludes natural disturbance events such as
droughts, floods, extensive herbivory, or fire. High-stress, low-disturbance conditions can
occur in natural wetland ecosystems, of course, but they are generally not maintained for
years or decades. Long-term stress typically yields systems of comparatively low diversity,
predominantly featuring stress-tolerant organisms [87]. Third, CW are hydrologically dom-
inated by wastewater inflows, with only limited hydrological or biological exchange with
adjacent ecosystems. Wastewater, as a potential source of pollution, is carefully maintained
within the CW system by impervious liners and berms from inflow to outflow, even as
external water sources (e.g., flood waters) and the organisms and material they carry are
excluded from the CW system. This artificial hydrologic regime may limit CW diversity
and the seasonal patterns of germination and colonization [88,89].

Knight [63] issued an early review of the potential ancillary services of CW systems,
noting that the abundant water source and ubiquitous presence of emergent macrophytes
make CW attractive to both aquatic and terrestrial fauna. Ghermandi and Fichtman [70]
further report that CW are used for both provisional and cultural services—the annual
monetary value for which ranges from 580 to 9160 USD per hectare—although they are
not without the potential for nuisances and human hazards. Vymazal et al. [48] note that
many CW are small, and are thus limited in terms of provisional services, but also review
emerging potential for biomass and microbial fuel cell energy production from CW. Many
studies have confirmed the capacity of CW to support microorganisms, macroinvertebrates,
amphibians, reptiles, birds, fish, and diverse vegetation [73], though Wiegleb et al. [72]
note that very few published CW studies systematically document the biodiversity and
wildlife use of CW. Zhang et al. [73] review such studies and find evidence that CW can
support native wildlife. For instance, various CW have been found to support 90% of
macroinvertebrate species and 54% of regional flora found in natural reference wetlands,
as well as abundant native birds, amphibians, reptiles, and mammals [74–76,90]. Zhang
et al. suggest, however, that CW often lack the habitat and hydrological heterogeneity
of natural wetlands, while also intentionally incorporating nonnative plant species [73].
These nonnative macrophytes tend to limit native biodiversity in CW. Further, CW have
been shown to act as ecological traps, luring native species into an environment that is less
than ideal for its toxicity and poor habitat quality. In this way, CW may actually decrease
regional biodiversity over time [73].

In summary, CW have demonstrated success at replacing the ecosystem services for
which they are designed, namely water quality improvement (Figure 1). They are generally
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not intended to replace all the other ecological services of natural wetlands in the landscape,
though they may provide a habitat for early successional wetland-dependent species,
productivity, educational opportunities, and an aesthetically pleasing environment. The
management of CW in a state of high stress, with a relatively closed hydrologic regime
and low degree of landscape connectivity, limits the capacity to provide a greater range
of ecosystem services. Furthermore, the CW lifespan means that any service rendered is
temporary.
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3. Restored Wetlands
3.1. RW Properties and Context

While CW do, in fact, restore certain wetland functions to the landscape, the term
“wetland restoration” has come to mean something fundamentally different than CW
in the scientific literature. Restored wetlands (RW) are intended to reintroduce a broad
suite of ecological services to the landscape [25]. Water quality improvement is among
these, though most RW are not specifically designed to treat wastewater. Other wetland
functions, such as biodiversity enhancement, floodwater control, storm abatement, carbon
sequestration, and aquifer recharge, are just as, if not more, important as RW goals and
objectives [25]. Another difference is that RW are designed to encourage successional
processes; that is, RW are designed for change [16]. Thus, the landscape context—proximity
to and connectivity with other ecosystems, topography, hydrologic sources, and disturbance
regimes—as well as in-system features such as microtopography, habitat interspersion,
seed bank, and biodiversity are critical aspects of RW [91].

The term RW is used here in the landscape sense, as in restoring wetland functions
to landscapes in which they once existed. This is to minimize jargon, for, in this broad
sense, RW can be taken to include wetland creation (systems built where none ever existed),
wetland enhancement (improvement to the structure and function of existing wetlands),
and wetland mitigation (wetlands built as legal compensation for wetland functions lost
elsewhere) [12,92]. Collectively, these RW efforts have followed a similar historical trajec-
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tory to CW. While indigenous peoples around the world have been managing and restoring
wetlands for millennia [93], documented cases do not arise until the end of the nineteenth
century. One early effort was conceived by Frederick Law Olmsted in Boston in the 1880s,
as he incorporated a salt marsh restoration into parkland called the Back Bay Fens [2]. Olm-
sted’s “fen” still exists today, and his methods would be recognized by modern restoration
ecologists—basin reconstruction, reconnection to the tidal hydrologic regime, planting
native macrophytes, and replanting to establish the desired community. Unfortunately,
such projects were rare during a systemic national effort to drain and fill wetlands. The
first concerted efforts to restore wetlands were initiated by private organizations like the
Izaak Walton League and Ducks Unlimited. Ducks Unlimited, established in 1937, had
completed over 100 wetland restoration projects by 1943 [2].

The re-introduction of wetlands to the landscape became a bigger business as the
US federal and state governments began to incentivize and mandate it. The no-net-loss
policy, derived from the Clean Water Act of 1972 and subsequent amendments and court
cases, mandated the compensation of wetlands lost to development. Other programs,
such as the US Fish and Wildlife Service Partners for Wildlife (1987), the Wetland Reserve
Program in the 1990 Farm Bill, and the 1986 North American Waterfowl Management Plan,
encouraged the restoration of millions of wetland hectares [2]. Unsurprisingly, academic
research on wetland restoration has blossomed since, notably in North America, China,
Australia, Brazil, and Europe [18].

3.2. RW Objectives and Design

RW serve a different purpose than CW, and thus have different design considerations.
While many RW change the regional water quality, this is typically not the sole objective.
Olmsted’s Back Bay Fens, for instance, were primarily intended for aesthetic appeal [2].
Most of the wetland restoration projects of the early 20th century were undertaken for
the provision of wildlife—particularly waterfowl—habitat [2]. The objectives of modern
wetland restoration range over a wider collection of services, including flood water and silt
retention, soil conservation, biogeochemical management, cultural significance, education,
and academic research. In some cases, financial incentives are the primary driver of a
restoration project. This is particularly true for government-subsidized conservation pro-
grams and the establishment of mitigation wetlands, which can be a lucrative business [94].
Naturally, objectives differ by project. However, as wetland restoration has become more
closely tied to legal requirements and money, a basic objective has emerged: the RW needs
to exhibit the characteristics that define a wetland. In brief, this means that the RW must
have a hydrologic regime that is sufficient to develop hydric soils and support hydrophytic
vegetation [95].

The requirement of a suitable hydrological regime means that an RW must be situated
in such a way that it receives periodic inundation from some combination of surface flow,
tidal action, groundwater discharge, and precipitation. Landscape setting is thus a critical
consideration for RW [96]. Wetlands built where no wetland previously existed—called
created wetlands in the literature—often result in low diversity and a high incidence of
nonnative species, particularly when they are geographically isolated [97]. Greater success
has been achieved with RW located in topographic depressions, floodplains, or catchments
that have historically flooded with sufficient duration to develop hydric soils [97]. Another
consideration for landscape setting is connectivity with other natural habitats, which can
serve as a source of propagules and organisms for the new RW. Middleton [11] makes
the case that landscape setting dictates the hydrologic regime of the RW, and that these
patterns of flood depth, duration, and recurrence interval set the stage for all other physical,
chemical, and biological processes within the ecosystem.

Soil characteristics can be useful in the identification and selection of a restoration site
and are critical factors in RW success [98]. Remnant hydric soils from long drained and
filled wetlands are an indicator of a historic hydrologic regime. Such sites are not always a
great candidate for an RW, as land-use changes and regional hydrologic alterations may
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have rendered them unsuitable for wetland restoration. Even so, the presence of remnant
hydric soils indicates (1) connection with hydrologic sources, or past connection that may
be restored; (2) soils with the physical characteristics to sustain periodic inundation; and
(3) soils that may have a remnant seed bank of hydrophytic propagules [98,99]. Remote
sensing data from aerial and satellite images and topographic surveys have proven useful
in the identification of remnant hydric soils and suitable locations for RW, though remote
sensing can be problematic for forested habitats [100–102]. Of course, sites with ideal
landscape and soil characteristics must also be available for acquisition, or have a willing
landowner, for the RW project to proceed.

The soil conditions of an RW site can exist over a wide range in terms of hydraulic
conductivity, nutrient and organic matter, toxicity, microtopography, and seed bank. These
attributes can influence the physical character (e.g., substrate permeability, water flow path
and depth), chemical character (e.g., nutrient availability, contamination), and biological
character (e.g., habitat heterogeneity, vegetation, trophic status) of the RW. In cases of severe
degradation, soil may need to be amended with topsoil or other substrate to alter nutrient
availability, increase organic matter, and enhance the microbial community [103,104]. Some
RW projects have attempted to improve soil quality by transplanting soil from an existing
wetland. This “donor soil” approach has been demonstrated as an effective way to quickly
establish a depleted wetland seed bank, leading to the more rapid establishment of native
wetland macrophytes [105].

Given a particular site, selected for its landscape context, hydrologic regime, and soil
characteristics, the next objective of an RW project is to plan wetland habitats [11,106,107].
Depending on location and conditions, RW may provide marine, estuarine, riverine, la-
custrine, or palustrine habitat [107]. The habitat that ultimately develops on a restoration
site is dependent on the hydrologic regime and microenvironments of the wetland basin.
Many RW projects involve strategic earthmoving to re-contour flooding zones and habi-
tats [11,107]. Excavation may also be necessary to reconnect hydrological sources. Ditch
filling or rerouting, berm or floodwall removal, runoff redirection, and drainage tile re-
moval have all been used to restore a hydrologic regime. In many cases, microtopography
can be introduced into the new wetlands at this stage. Spatial diversity in elevation, woody
debris, slope, and aspect can yield a wetland community that is more diverse and more
interspersed than a uniform wetland basin [11,107].

Once selected, planned, and contoured, an RW must be re-vegetated. Much field
research has been devoted to the question of passive revegetation (i.e., the extent to which
a newly restored wetland will vegetate itself through natural recruitment and selection)
versus active revegetation (the need for managed macrophyte selection and planting) [11].
Certain RW projects may indeed re-vegetate themselves with native hydrophytes, par-
ticularly if they are connected to existing high-quality wetlands, in close proximity to
propagule sources, and/or in possession of a high-quality, viable seed bank. However,
the results of passive revegetation are highly variable and context-specific, particularly
regarding abiotic factors [108–110]. Passively revegetated RW can be vulnerable to invasive
species [111] that can preempt and outcompete native wetland vegetation and result in
an undesirable successional trajectory [16]. Active revegetation—seeding, donor soil, and
planting, along with re-planting and invasive species removal in the first few seasons fol-
lowing restoration [11]—is more costly and labor-intensive but has been shown to facilitate
the establishment of desirable species in some cases [112–114]. The sourcing and selection
of seed can play a critical role in success, as the genetic character of propagules can be used
to establish the local or historic ecotypes of a diversity and functionality suitable to thrive
in current and future environmental conditions [115]. All things considered, the approach
to revegetation should fit the objectives and acceptable outcomes of the RW project and
should, therefore, not be seen as a one-size-fits-all model [110].
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3.3. RW Performance and Management

The choice of revegetation strategy is part of a larger philosophical debate on the
degree to which anthropogenic management should be used to establish and maintain
RW [11]. One approach, which has been called “self-design”, emphasizes the role of the
biogeochemical and hydrological environment in determining how plant communities
will develop in the RW [116,117]. In the extreme view, self-design can be implemented as
passive management, relying solely on natural revegetation, successional development,
and the capacity of ecological communities to self-assemble. However, self-design does
not preclude plant introduction or vegetation management as a means of increasing the
rate of development [118]. At the heart of the self-design approach is the idea that “the
system itself will optimize its design by selecting for the assemblage of plants, microbes,
and animals that is best adapted for existing conditions” [117]. An alternative perspective,
sometimes called the “designer” approach to restoration [11], calls for attention to the
life history strategies of target species in the restoration project. Through the careful
introduction (and reintroduction) of plants and propagules, ecological engineering, and
management of biotic and abiotic factors early in the restoration process, the restorationist
can select individual species to be part of the assembled community [119]. The goal is not
to achieve a particular species complement as an endpoint, but rather to encourage the
establishment of desirable species that would otherwise be overwhelmed by undesirable
invasive species [119]. As Middleton [11] notes, these two views are not mutually exclusive,
but they do conceptualize ecosystem development in different ways. Ultimately, the degree
of human intervention in a RW may depend upon the goals and performance standards of
the project.

Many RW projects use one or more reference wetlands, or historic reference conditions,
to evaluate success [120,121]. A reference wetland ostensibly represents the desirable
structure and function of similar ecosystems in the region of interest. The idea has emerged
from the Leitbild concept of river restoration in Germany and Austria; Leitbild refers to
the ideal or undisturbed state of an ecosystem [122]. The identification and measurement
of one or more such benchmarks can be used to set the parameters and expectations for
the restoration work. Middleton [11] notes that, while the reference ecosystem approach
can be useful in RW, the goal of matching RW conditions to reference conditions may be
unachievable. This is because the RW and reference sites may have different land use
legacies and different site impairments—leading to irreconcilable differences in ecological
development—or changes in regional biota and climate that could make historical reference
conditions untenable [11]. Moorhead [121] adds that the reference ecosystem concept can
be problematic, given the differences in successional state (reference systems typically
being mature, while restored systems are early successional), and the inherent variability
that exists even among potential reference sites. According to Moorhead, RW goals should
not be to duplicate the conditions of reference sites, but rather to establish “self-supporting
and self-maintaining” ecosystems. The maturation of these systems, Moorhead suggests, is
better measured with the general structural and functional attributes of early and late-stage
ecosystems than with specific points of comparison to a reference ecosystem [121].

Even so, many RW—particularly mitigation wetlands—are undertaken with specific
performance indicator goals. Targets for RW evaluation can be placed in several cate-
gories [123]. Structural metrics consider physical aspects of the wetland environment,
such as the vegetated percentage, degree of habitat interspersion, or macrophyte biomass.
Structural metrics can also be used to quantify landscape-level patterns of land use and
connectivity. Measures of taxonomic diversity and evenness, particularly of macrophytes,
are common, and often include indices of species quality. For example, the floristic quality
index and associated coefficient of conservatism can be used to evaluate vegetation quality,
based on species tolerance [124]. Indicator species are also commonly used to denote the
presence or absence of particular communities or site conditions. Functional metrics are
measures of ecosystem processes, such as nutrient processing, organic matter accumulation,
and productivity, as well as process surrogates, such as trophic composition and functional



Land 2022, 11, 554 11 of 21

diversity. Finally, taxonomic composition can be used as a direct comparison of species
abundance with reference wetland composition [123].

Brudvig et al. [125] suggest that these attribute categories occur with different de-
grees of variation in RW systems. Structural metrics, according to Brudvig et al., may
be established with the greatest degree of certainty. Diversity and function are subject
to stochastic events and are more difficult to predict. The metric that is most subject to
variation, according to Brudvig et al., is taxonomic composition. Developmental variation
thus makes RW performance evaluation a challenge. RW are designed as open systems
that are expected to progress through succession. The RW target goals are likely to be
characteristics of late-successional reference systems that will emerge, if they emerge at
all, many years after the initial RW design and management phases. Indeed, the ultimate
goal of a self-maintaining ecosystem may well be incompatible with the rigid metrics of
particular functional rates or species lists.

3.4. RW Ecosystem Services and Limitations

In contrast with CW, the ecosystem services offered by RW are both broader and more
variable (Table 2; Figure 1). While CW are intended to ameliorate specific contaminants for
the duration of their existence, RW are ecosystems with attributes, structures, and functions
that will change over time. RW also occur in a much wider contextual range than CW, as
they are situated in different landscapes with different levels of degradation, degree of
connection, and stress and disturbance regimes. Even in similar RW projects, successional
trajectories and attributes can be highly variable, and this translates to variable ecosystem
services [125].

Table 2. Examples of Ecosystem Services provided by restored wetlands (RW). Based on Ecosystem
Services categories of the Millennium Ecosystem Assessment as applied to wetlands [4,66,67].

Ecosystem Service Representative RW Performance Selected Sources

Provisional 36% greater provisioning services than degraded wetlands [126]

Cultural Recreational benefits >$130,000 USD/ha·yr [127]

Supporting Regional nutrient and water cycling [128]
Regional ecosystem connectivity [128]

Regulating 29–90% retention of BOD, COD, TSS, TN, TP from river water [117,129]
Thousands of plant species supported in RW [11]
>30 macroinvertebrate taxa; >180 of bird species, including species of concern [130,131]
Stormwater retention [77]
Carbon sequestration 84 g C m−2 yr−1 [130]
Net GHG emission [132]

Still, a great deal of experimental evidence demonstrates that RW provide a wide range
of ecosystem services. In a large meta-analysis, Meli et al. [126] found that RW significantly
increased the diversity of vertebrates, vascular plants, and invertebrates as compared with
degraded wetlands, and that RW diversity did not significantly differ from that of natural
reference wetlands. RW outperformed degraded wetlands in every category of provisional,
supporting, and regulating service, while providing similar cultural services [126]. For
all categories combined, RW were found to support 43% more ecosystem service than
degraded wetlands, but 13% less than natural wetlands [126]. Meli et al. caution that RW
ecosystem services are context-specific and largely dependent on the ecosystem type, site
condition, and RW design [126].

Other scholars have provided evidence that a particular RW may not be able to
provide all ecosystem services equally. Jessop et al. [128] surveyed 30 mitigation wetlands
in Illinois, USA, and found a negative relationship between biodiversity and indicators of
nutrient cycling such as soil organic matter abundance, decomposition rates, and potential
denitrification. They conclude that “optimizing restored wetlands for nutrient storage and
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removal may come at the expense of biodiversity” [128]. Hansson et al. [133] similarly
studied 32 RW in Sweden and found that wetland designs that favor biodiversity do
not always result in the greatest nutrient retention. Specifically, shallow RW with large
surface areas and spatially complex shorelines were found to provide a high biodiversity
of birds, benthic invertebrates and macrophytes, but retained phosphorus less effectively
than deeper basins [133].

The extent to which wetland functions and services are fully restorable is still an open
question. Zedler and Kercher [25] note that some of the factors leading to wetland loss and
degradation on a landscape may inhibit the restoration of wetland functions. For example,
the alteration of flood regimes, soil characteristics, nutrient dynamics, groundwater levels,
and regional climate can limit the functional capacity of RW [25]. In addition, the regional
complement of species may have changed since the natural wetlands were eliminated or
degraded, and RW functions and services may, thus, be limited by regional diversity or
inhibited by invasive species [25].

In the most general sense, a successful RW is one that responds to and changes in
the face of shifting stress and disturbance regimes, and that has the capacity to support a
diverse but transient assembly of species over successional time. Given time, some RW
may approach the functional capacity of pristine natural wetlands. In most cases, however,
the ecological services provided by individual RW should not be expected to replicate those
provided by natural reference wetlands or wetlands that once existed. To fully replace the
wetland services we have lost, we may need to think of multiple complementary wetland
rehabilitation projects that, together, provide comprehensive ecosystem services at the
landscape scale.

4. Integrated Constructed Wetlands

Thus far, this review has demonstrated that CW and RW are contrasting and parallel
approaches to the re-establishment of wetland services on the landscape. They differ in
their objective, design, management, performance objectives, and in the ecosystem services
they can provide. CW and RW services are not mutually exclusive; however, CW, especially
FWS systems, can provide habitat and other ecosystem services in addition to nutrient
retention, just as RW can sequester and transform influent contaminants. In general, though,
CW are not designed for the long-term successional development of wetland habitat, nor
are RW designed to process highly contaminated waste streams.

Many scholars and practitioners have observed that CW and RW are not only compat-
ible, but synergistic, such that their use in combination may be able to achieve a broader
range of ecosystem services on the landscape than either could alone [23,134,135]. CW and
RW, in combination, are known as Integrated Constructed Wetlands (ICW); [22,23]. The
ICW concept has roots in the whole-ecosystem studies of HT Odum and KC Ewel [34,136],
and in the integrated small watershed research of Bormann and Likens [137,138]. Initially
developed in Ireland [22], the ICW concept has since been applied elsewhere, but has yet
to become the standard for wetland replacement [139]. Harrington et al. [140] present ICW
as an ecosystem approach (after the Convention on Biodiversity 2010) to water quality and
land-use management on a watershed scale. The ICW attributes suggested by Harrington
et al. include: that influent contaminants are maintained below the threshold of macrophyte
toxicity prior to entering the system; that the ICW design incorporates multiple sequential
wetland cells; that the cells predominantly feature shallow habitat with dense emergent
vegetation; and that the entire system be managed for ecosystem services beyond water
quality improvement [140].

4.1. ICW Properties and Context

As we have seen, CW and RW both provide important functions to ecologically
impoverished landscapes. Over the past five-plus decades, however, CW and RW research
and development have rarely informed one another or been combined into holistic efforts
to replace wetland services. McInnes et al. [139] speculate that this lack of integration
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may “stem from narrow disciplinary framing of legacy regulations or a lack of vision by,
and appropriate support tools for, planners and managers”. Clearly, there are barriers to
integration, including cost, land availability, regulatory requirements, technical difficulties,
resistance to change, and disconnection between regulators, ecologists, engineers, land-use
planners, and regulators [139,141]. Mitsch [142] suggests that the disconnect is primarily
between ecologists and engineers, or more broadly between the disciplines of restoration
ecology and ecological engineering. The benefits to CW and RW integration are equally
clear. First, the functional capacity of integrated systems has the potential to exceed that of
either system alone [143]. Second, integration allows for spatial and temporal heterogeneity,
allowing for different functional loci in space and time [144]. Third, integrated systems
allow for the coupling of ecological processes, such that the biological, chemical, and
physical processes of one ecosystem are linked to processes of other ecosystems within
the landscape [145]. Fourth, and encompassing the previous three, landscapes that are
designed to integrate wetland functions optimize and maximize ecological services by
supporting both human and natural systems [146,147]. These benefits of ICW systems are
not merely theoretical; they have been demonstrated in practice.

4.2. ICW Objectives, Design, and Performance

The purpose of ICW systems is to ameliorate the pollutants from a wastewater stream
while also providing a long-term, successional habitat for wetland-dependent species and
providing provisional, supporting, regulating, and cultural services as appropriate to the
setting. The goal is not to provide all ecological services at all times, but rather to couple
treatment processes with wetland ecosystem functions in ways that are integrated with
the socioecological character of the landscape. Scholz et al. [23] describe ICW objectives as
follows: “the explicit integration of (a) the containment and treatment of influents within
emergent vegetated areas using (wherever possible) local soil material; (b) the aesthetic
placement of the wetland structure into the local landscape with the intention of enhancing
the site’s ancillary values; and (c) enhanced habitat diversity and nature management”.

ICW can take different forms. Commonly, a CW is built to receive and treat wastewater
by some combination of subsurface and/or free surface flow cells. The CW effluent then
flows into an RW before entering a receiving body of water. Scholz et al. [23] describe
an ICW in Ireland consisting of sequential FWS cells that intercept agricultural runoff
before discharging into a stream. Similar designs are described in the US by Ludwig and
Wright [148] and in Sudan by Ladu et al. [149]. Yan et al. [150] use an alternative ICW
hybrid design in which domestic wastewater from a septic system enters a subsurface
CW before discharging into an RW. Zhang et al. [151] similarly use an intricate series of
HSF, VF, and FSW cells to treat domestic wastewater while providing a wetland habitat
in China. Boets et al. [152] describe a hybrid system for treating pig manure in Belgium
that incorporates eight cells of both FWS and subsurface design. Alternative ICW designs
feature RW with floating treatment wetlands, either in the RW itself or in the river, lake, or
lagoon water that supplies the RW [153].

The multi-cell designs that are common to many ICW share some characteristics with
hybrid CW systems. Indeed, hybrid CW have been shown to support wetland biodiversity
and associated ecosystem services [63,70,73,154]. ICW differ from hybrid CW in that they
include cells which are: (1) hydrologically connected to ground or surface water other than
the wastewater stream; (2) designed primarily to support biological diversity; (3) connected
with other ecosystems in the landscape; and (4) open to the adaptive cycle of succession.
While the multi-cell design facilitates the multi-faceted nature of ICW, this is not always
necessary. ICW that receive pollutants in low concentrations may combine processes in a
single basin. For example, Mitsch et al. [117] designed a FSW system for ambient river water
that showed both effective improvement in water quality and habitat provision [90,129].

At the broadest conception of performance, ICW systems may be evaluated according
to the IUCN Integrated Wetland Assessment Toolkit, developed in 2009 [155]. In this
approach, wetlands are evaluated not only for their physical (e.g., hydrological and water
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quality) and biological (e.g., biodiversity) attributes, but also for their contributions to local
livelihoods, to the regional political economy, and to regional socio-ecological systems. Such
analyses require a significant investment of time and resources and are seldom incorporated
into the evaluation of a single ICW system. Most ICW systems are measured in terms of
water-quality improvement, biodiversity, and/or socioeconomic benefits. For example,
van Biervliet et al. [156] report a significant nutrient retention, along with a significant
increase in avian species richness for an ICW system in the UK. Becerra-Jurado et al. [157]
show that ICW support a macroinvertebrate species richness similar to nearby natural
aquatic environments; Boets et al. [152] also report macroinvertebrate richness increases in
an ICW in Belgium. Harrington and McInnes [158] note significant nutrient retention and
numerous cultural, provisioning, supporting, and regulating services provided by ICW
systems in Ireland.

4.3. ICW Ecosystem Services and Limitations

ICW systems seek to expand and extend ecosystem services by coupling wetland
habitats and functions with the socio-ecological landscape. Ideally, ICW would contribute to
the full range of ecosystem services, much as natural wetlands may have done prior to their
conversion to other land uses (Table 3; Figure 1). In practice, ICW ecosystem services are not
all equally amenable to assessment. The most straightforward evaluation is for nutrient and
contaminant treatment, measured in terms of inflow–outflow comparison in the manner
of traditional CW. For this there is abundant evidence of ICW success in the removal or
retention of nutrients, oxygen-demanding wastes, and suspended solids, mostly from
agricultural, livestock, and pre-treated municipal waste streams [141,156,159]. Biodiversity
is also easily evaluated, and multiple studies confirm the capacity of ICW to support
native plants and animals [117,152,157]. Ancillary ecosystem services are more difficult to
quantify and are not as commonly measured. Everard et al. [141] and McInnes et al. [139]
use stakeholder engagement to qualitatively evaluate the socioecological efficacy of ICW.
Mao et al. [144] develop a comprehensive scoring system for evaluating ICW ecosystem
services, using the visitation rates of local residents as a surrogate for socioecological
benefits. While such studies provide positive evidence for a wide range of ecosystem
services, they also indicate the need for a better system to assess these services. Many
methods exist for the valuation of ecosystem services [160], but there is no standardized
approach for the evaluation of ICW systems, or indeed ecosystems in general.

Table 3. Examples of Ecosystem Services provided by integrated constructed wetlands (ICW).
Based on Ecosystem Services categories of the Millennium Ecosystem Assessment as applied to
wetlands [4,66,67].

Ecosystem Service Representative ICW Performance Selected Sources

Provisional Biomass, freshwater provisioning [158]

Cultural High degree of recreational value [158]

Supporting Regional nutrient and water cycling [141]
Regional ecosystem connectivity [141]

Regulating >90% retention of BOD, COD, TSS, TP, TN from mixed sources [154,158,161]
Potential for high plant diversity [11,63]
>17 macroinvertebrate taxa; 27 bird species [154,156]
Stormwater retention [77]
Carbon sequestration ~84 g C m−2 yr−1 [130]
Net GHG emission [132]

It must also be acknowledged that ICW may not be appropriate for all situations.
Contaminants that are particularly toxic may inhibit the ecological development of an ICW,
for example. Leaching is much more likely in an ICW than in a traditional, impervious
CW system, so wastewater streams with potential groundwater contaminants may not be
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appropriate for an ICW. Nuisance plant and animal control and disturbance management
are likely to be more complicated in an ICW, particularly in its developmental stages. In
addition, ICW have greater land area, cost, and management requirements than either tradi-
tional stand-alone CW or RW. Still, where appropriate and feasible, ICW offer tremendous
advantages in terms of holistic wetland replacement.

5. CW, RW, and ICW: Summary Assessment

Replacing what we have lost, and continue to lose, in terms of wetland services is no
simple task, but the last 50 years of research have provided some valuable lessons. Clearly,
there is a place for traditional CW, especially in urban environments, where land area is
limited and/or the contaminant in question is particularly toxic. CW have proven to be
quite effective in ideal conditions; however, their efficacy may decline over time, and the
stressful CW environment may limit ecosystem services. Continued research is needed
on the best designs for particular contaminants and best practices to maximize the CW
lifespan. There is also a place for stand-alone RW, particularly when they are situated
where wetlands once existed. Careful design and early successional management have
proven to be quite successful in yielding a high-quality and self-sustaining wetland habitat.
Stressful landscape matrices can make an invasion trajectory a concern; further research on
successional variability and best management practices is needed.

Despite their individual success, CW and RW can offer only partial wetland functions
and services to degraded landscapes. This is due to differences in objective, design, and
management, but also a result of the ecological attributes of these two types of replace-
ment wetlands. In the parlance of EP Odum, CW share some characteristics with early
successional and stressed ecosystems [162,163]. They are dominated by r-type species, with
simple trophic and habitat structure. They feature rapid nutrient turnover of predomi-
nantly extrabiotic nutrients. Additionally, CW are high-management systems, owing to
their relatively low stability and narrow operating parameters. RW share some of these
attributes in early succession, but, as they mature, RW ideally become more diverse and
trophically complex, with a high degree of spatial heterogeneity. Nutrients in a mature RW
are predominantly intrabiotic, and organic detritus play an important role in both nutrient
and trophic dynamics [162,163]. As a combination of early and late successional systems—
or high- and low-stress systems—ICW have the potential to offer a synergistic relationship
between CW and RW (Table 4). Modular, multicell designs offer options for coupling CW
cells with RW habitat, thereby providing both wastewater treatment, long-term habitat
development, functional diversity, and ancillary ecosystem services.

Table 4. Comparison of idealized ecosystem characteristics for constructed wetlands for wastewater
treatment (CW), young restored wetlands (RWy), mature restored wetlands (RWm), and integrated
constructed wetlands (ICW). Attributes adapted from Odum [162,163].

CW RWy RWm ICW

Hydrologic regime closed open open open
Ecological Stress high low low moderate
Inorganic nutrients extrabiotic extrabiotic intrabiotic extra/intra
Dominant life strategy r r r, K r, K
Trophic structure simple simple complex complex
Habitat heterogeneity simple simple complex complex
Nutrient exchange rate rapid rapid slow moderate
Role of detritus low low high high
Stability low low high moderate
Temporal variability low high high moderate
Management effort high high low moderate
Ecosystem services narrow broad broad broad

While the ICW concept has been successfully demonstrated around the world, it is
still in its infancy. There remains a disconnect between CW and RW in terms of theory,
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experimental design, management, and evaluation; this gulf will need to be bridged for
ICW to become mainstream. Further, there is a need for more long-term, landscape-level
studies on the integration of wetland services into the socioecological matrix, and for a
cost–benefit analysis of wetland ecosystem services in these different systems. Finally,
methods for the holistic evaluation of ecosystem services as they apply to ICW need to be
refined and standardized to facilitate assessment within and among sites. These goals are
attainable, and indeed are already being achieved by scholars and practitioners who seek
to connect the built and natural environments for the benefit of both.
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