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Abstract: The spatial patterns of the normalized difference vegetation index (NDVI) changes in the
Yangtze River Economic Belt (YREB) and their potential causes during the last four decades remain
unclear. To clarify this issue, this study firstly depicts the spatial patterns of the NDVI changes using
global inventory modelling and mapping studies (GIMMS) NDVI data and Moderate Resolution
Imaging Spectroradiometer (MODIS) NDVI data. Secondly, the Mann–Kendall test, regression
residual analysis and cluster analysis are used to diagnose the potential causes of the NDVI changes.
The results show that the regional mean NDVI exhibited an uptrend from 1982 to 2019, which consists
of two prominent uptrend periods, i.e., 1982–2003 and 2003–2019. There has been a shift of greening
hotspots. The first prominent greening trend from 1982 to 2003 mainly occurred in the eastern
agricultural area, while the second prominent greening uptrend from 2003 to 2019 mainly occurred at
the junction of Chongqing, Guizhou and Yunnan. The greening trend and shift of greening hotspots
were slightly caused by climate change, but mainly caused by human activities. The first greening
trend was closely related to the agricultural progress, and the second greening trend was associated
with the rapid economic development and implementation of ecology restoration policies.

Keywords: temporal and spatial variation of vegetation; human activities; residual analysis;
cluster analysis

1. Introduction

As a natural link between soil, atmosphere and water, vegetation plays a fundamental
role in the ecosystem by participating in energy exchange and the carbon cycle [1,2]. Vege-
tation change is usually considered as an indicator of environmental changes and human
activities. Therefore, it is of great scientific significance to study the spatial–temporal
characteristics of vegetation changes and their underlying mechanism, which is currently
a research hot topic. In recent years, scholars have usually used remote sensing data to
monitor vegetation change and have proposed many vegetation indices, such as the nor-
malized difference vegetation index (NDVI), the ratio vegetation index (RVI), the difference
vegetation index (DVI), etc. Among them, NDVI is the most widely used and widely
recognized vegetation index [3–5]. Due to advances in remote sensing technology and
improvements in datasets, long-term NDVI datasets have been widely used to monitor
vegetation dynamics [6].

Vegetation change is influenced by climate, land-use change and other anthropogenic
factors [7]. Many studies have shown that change in precipitation as well as temperature
over a time period significantly impact NDVI variations [8]. Vegetation coverage is posi-
tively correlated with precipitation in most dry areas, whereas in humid areas, there was
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a negative correlation between vegetation conditions and heavy rainfall [9,10]. In recent
years, large-scale human economic and ecological activities have had a great impact on the
environment [11]. Anthropogenic factors play a more important role in spatial–temporal
change of vegetation [12]. For example, to improve the quality of the ecological environ-
ment, the Chinese government has implemented many vegetation restoration programs,
including the Natural Forest Conservation Program (NFCP), the Grain for Green Project
(GGP),and the Yangtze River Basin (YZRB) shelterbelt construction project [13,14]. There-
fore, under the realistic conditions of global warming and intensified human activities, it
is necessary to clarify the mechanism behind vegetation change. Meanwhile, due to the
complex mechanisms of vegetation change, quantifying the contributions of main drivers
to vegetation changes remains a challenge.

Many studies focus on the impacts of climatic factors (temperature and precipitation)
on vegetation changes, in which regression or correlation analysis has been commonly
conducted [15]. In some areas, such as Sahel, Red River Basin and Inner Mongolia, precipi-
tation plays a key role in vegetation changes [11,16], while in other areas like the Tibetan
Plateau [17], vegetation changes are mainly determined by temperature. Many previous
studies only focused on climatic factors, while others in recent years took climatic factors
and anthropogenic factors as independent variables. Some statistical and machine learn-
ing methods have been used to identify the effects of natural and anthropogenic drivers
separately [18,19]. These studies deepened our understanding of the potential causes of
vegetation change and provide a reference for studying this issue. In other studies, the
regression relationships between NDVI and climatic factors were established, and then
NDVI residuals (defined as differences between the predicted and observed NDVI values)
are considered as a consequence affected by human activities [20,21]. Furthermore, the
residual analysis method is used to distinguish between the impact of climate change and
ecological restoration projects on vegetation. The residual analysis is scientific and concise,
and has been used widely [14,22]. Therefore, based on the residual analysis method, in-
corporating multiple time scale analyses into the assessment of the relative importance of
climate variations and anthropogenic activities will be helpful to understand the dominant
factors affecting vegetation change in different regions [19].

In recent decades, the Yangtze River Economic Belt (YREB) has experienced economic
take-off and population growth. At the same time, the local climate has also changed
significantly due to the impact of global warming. Specifically, the local precipitation and
temperature have increased in recent decades [23,24]. The region is affected by both strong
human disturbance and climate change, and the local NDVI has increased significantly.
Therefore, the YREB has complete research elements, which is an excellent research area.
Previous studies of the YREB were mainly focused on ecosystem services, carbon emissions
and policies of ecological protection [23,25–27]. While the changes of NDVI and the driving
factors behind them remain unclear, this paper aims to address this issue. It is also expected
to be an exemplary for relevant research in other regions.

Therefore, this study attempts to reveal the spatial and temporal characteristics of
vegetation change using the NDVI data that span the time series over the last four decades in
the YREB as an example. Section 2 introduces the study area, data sources and methodology.
The results are presented in Section 3. In Section 4, the potential uncertainties are discussed.
Finally, the study is summarized in Section 5.

2. Materials and Methods
2.1. Study Area

The study area is the Yangtze River Economic Belt (YREB), which consists of Sichuan
(SC), Yunnan (YN), Chongqing (CQ), Guizhou (GZ), Hubei (HB), Hunan (HN), Jiangxi (JX),
Anhui (AH) and Zhejiang (ZJ) Provinces as well as Shanghai municipality (Figure 1). The
region spans about 2400 km from east to west and about 1500 km from south to north. The
YREB spans the three major regions of Eastern, Central and Western China, with a total
land area of about 2.05 million km2, accounting for 21.4% of the country. Its population and
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GDP make up 40% of the national total [28]. The population urbanization rate of the YREB
increased from 14.08% in 1978 to 59.58% in 2018, and its urban built-up areas also accounted
for 40.05% of the total area of urban built-up areas in the country. The total agricultural
output value of YREB accounted for 42.92% of the national total agricultural output value,
while its absolute output value rose from 16,324 billion in 2010 to 27,822 billion in 2018 [29].
It is an important grain production area and the most important water conservation area as
well as ecological barrier in China. Most areas are in the humid and semi-humid climate
zone. The complex landscape and diverse climates make the region rich in vegetation types,
which include alpine vegetation, forest and shrub land, grassland and meadow, cultivated
vegetation and swamp, etc. Among them, the cultivated vegetation covers the largest area,
accounting for 37.6% of the study area, and is mainly distributed in the Sichuan Basin, the
Huang Huai Plain and the Jianghan Plain. The second is shrub and forest land, which
account for 45.1% of the study area (Figure 1).
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Figure 1. The vegetation types in the YREB (Plant science data center, Chinese Academy of Sciences
(edited by Zhang Xinshi), 2007) and the location of the study area in China (green shading in the
top-right corner).

2.2. Data Sources
2.2.1. NDVI Dataset

Two global NDVI datasets were used in this study. One of the NDVI datasets is derived
from the Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling
and Mapping Studies (GIMMS). The latest version of the GIMMS NDVI dataset is named
NDVI3g (third generation GIMMS NDVI from AVHRR sensors). The GIMMS NDVI data
were accessed from: https://ecocast.arc.nasa.gov/data/pub/gimms, accessed on 10 May
2021. It is named the GIMMS3g NDVI dataset hereinafter. The other NDVI dataset is re-
trieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurement data.
The MODIS NDVI data were accessed from: https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 13 May 2021. It is named the MODIS NDVI dataset hereinafter. The reading
and preprocessing of remote sensing images are carried out in Python and processed with
gdal package. The GIMMS3g NDVI dataset has a spatial resolution of 0.0833◦, and a time
interval of half a month. It spans the period from 1981 to 2015. The maximum value com-
posite (MVC) method was used to acquire monthly NDVI data and reduce the influence of
clouds and aerosols in the atmosphere [30]. This dataset has been widely used to study the
long-term changes of vegetation cover in many regions [31,32].

The Terra MODIS NDVI dataset is provided by the land Distributed Active Archive
Center (LP daac/nasa) for Land Processes of NASA MODIS. In this study, the MOD13a2
V6 product was used. For the purpose of minimizing the effects of noise, we retrieved the
monthly NDVI with the maximal value composites (MVCs). It has a spatial resolution of

https://ecocast.arc.nasa.gov/data/pub/gimms
https://ladsweb.modaps.eosdis.nasa.gov/
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1 by 1 km, and a time interval of 16 days. This dataset was started in 2000 and has been
updated until now. It is also being extensively used to study vegetation dynamics [33].

2.2.2. Meteorology Data

The meteorological data used in this study include monthly temperature and precipi-
tation from 130 meteorological measurements stations. They span from 1982 to 2019 and
are provided by the National Climate Data Center of China (http://data.cma.cn/, accessed
on 21 June 2021).

2.2.3. Social and Economic Data

This study also used agricultural and economic inventory data as a measure of human
activities. There are two indicators, namely, the Gross Domestic Product (GDP) per capita,
and agricultural employees as a percentage of total population. These inventory data were
derived from the statistical yearbooks of each province. The data span the period from 2000
to 2016. These yearbooks are available at: http://www.stats.gov.cn/tjsj/ndsj/, accessed on
6 June 2021.

2.3. Methods

Firstly, we depicted the temporal changes in the NDVI and their spatial variations.
Secondly, the NDVI changes were divided into two parts, driven by climate factors and
non-climate factors, respectively. Thirdly, we clustered the NDVI variations driven by non-
climate factors to observe the spatial characteristics. Finally, we analyzed the relationship
between NDVI changes driven by non-climatic factors and human activity indicators.

2.3.1. NDVI Prediction in the Growing Season with Temperature and Precipitation

With the temperature and precipitation in the same period as independent variables
and NDVI as a dependent variable, multiple regressions were carried out for NDVI pre-
diction in the growing season (expression (1)). The model was calibrated, respectively,
for each prefecture because it is convenient to analyze the mechanism of prefecture-level
administrative divisions, and the error caused by the differences within the prefecture is
acceptable. Thus, for each prefecture, we obtained a unique prediction model as well as
the predicted NDVI time serial (i.e., NDVIpre) with local climate data and residual NDVI
time serial (i.e., NDVIres). The NDVIres could be considered as contributions of non-climate
factors and may be hence connected to human activities. The regression models and the
relationship between the NDVIobs, NDVIpre, and NDVIres are as follows:

NDVIpre = αP + βT + ε (1)

NDVIres = NDVIobs − NDVIpre (2)

where, P and T denote the standardized warm seasonal precipitation and temperature,
respectively. NDVIpre and NDVIobs denote the predicted and observed NDVI, NDVIres
denotes the residues which could not be predicted with precipitation and temperature, α
and β denote the regression coefficients, and ε denotes the intercept from the calibrations.
The construction of the multiple regression model is carried out in Python and processed
with the statsmodels package.

2.3.2. Cluster Analysis of the NDVIres TIME Serials

Cluster analysis is a quantitative method to classify the samples. Its basic principle
is to cluster the samples by quantitatively determining the closeness between samples
based on their own attributes with a certain similarity or difference index. The K-means
clustering method was used in this study. It has the advantages of being simple and easy
to understand [34].

There are 136 prefectures in the whole study area, and each prefecture has an NDVIres
serial. The K-means clustering analysis was carried out on the 136 NDVIres serials. Here,

http://data.cma.cn/
http://www.stats.gov.cn/tjsj/ndsj/
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we specified the cluster K. Firstly, the K NDVIres serials were randomly selected as the
initial cluster centers. Then, the Euclidean distance (expression (3)) to these cluster centers
was calculated for each remaining NDVIres serial. They were assigned to the class with
the closest distance. Next, the new center point was calculated for each class. The process
continued to iterate until the new center no longer changed. Eventually, the meanly
NDVIres serials were calculated for each class. Through comparing them with each other,
the individual characters of each class of NDVIres serials are highlighted.

d =

√√√√ 2019

∑
i=1982

(xi − yi)
2. (3)

where i = 1982, 1983, . . . , 2019 denotes the year, and xi and yi donate value of serials x and
y in year i.

3. Results
3.1. Temporal Variations in NDVI and the Spatial Pattern
3.1.1. Temporal Variations of the Regional Mean NDVI Values

In the YREB, the correlation between GIMMS and MODIS data is low (Figure 2), and
does not meet the requirements for fusion. According to the Mann–Kendall test on the
GIMMS NDVI3g, the turning point was in 2003 (Figure 3). For the above two reasons,
they are divided into two time series, one using GIMMS data from 1982 to 2003, and the
other using MODIS data from 2003 to 2019. While the NDVI values of the two sets of
data have a slight gap, the trend of NDVI in the common period of the two sets of data is
consistent. Figure 2 shows that the regional mean growing season (May–September) NDVI
in the YREB increased significantly during the period from 1982 to 2019. The rising trend of
NDVI shows that the surface was greening and the vegetation coverage was improved [35].
The upward trend did not maintain a constant speed, but it occurred mainly in the 1980s
and the 21st century, during which a downward trend occurred. Specifically, from 1982
to 1997, there was a peak in 1997. Then, NDVI has continued to increase since 2003 and
peaked again in 2019. Between the two uptrend sessions, there was a slight declining trend.
To be specific, from 1982 to 1992, when the first peak occurred, the increase rate was as
high as 0.019 per decade. Then, since 2000, both the GIMMS3g and MODIS data consis-
tently showed a prominent uptrend again. According to MODIS data, NDVI increased by
0.02 per decade from 2003 to 2019.
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3.1.2. Spatial Variations of NDVI Trends during the Warm Season

Figure 4 shows the spatial patterns of the NDVI trends for each period. We found that
the hotspots of NDVI changes shifted from one period to another. During 1982–2003, the
NDVI uptrend existed over approximately 81.7% of the study area. It mainly existed in the
north of Jiangsu and Anhui, Hubei, Hunan and the west of Yunnan. In the north of Jiangsu,
the NDVI uptrend was the largest, with an increasing rate of up to 0.1 per decade, making
it a hotspot of surface greening. This could be explained by the increase of crop yield due to
the development of modern agriculture [7]. Meanwhile, the areas where NDVI decreased
during this period mainly existed in the Yangtze River Delta urban agglomeration, the
Wuhan urban agglomeration and the Chengdu-Chongqing urban agglomeration, among
which the Yangtze River Delta urban agglomeration changed most significantly. The NDVI
change rate of the Yangtze River Delta is approximately −0.07 per decade, which is the
much larger than other areas. This result was consistent with the findings of Jiang et al.
(2022) [35].

From 2003 to 2019, the NDVI uptrend accounted for 79.3% of the study area. The most
distinct uptrend occurred at the junction of Chongqing, Guizhou and Yunnan (Figure 4b),
with an increase rate of more than 0.1 per decade. Taken together, there was a distinct
greening belt from Chongqing to east Yunnan province. In addition, NDVI also increased
significantly in Hubei and Hunan. Meanwhile, among the extensive uptrend of NDVI,
there were also NDVI decline with a rate of approximately −0.05 per decade in the western
Sichuan and Yunnan as well as a larger NDVI decline with the rate of −0.1 per decade in
the northern Zhejiang.

The abovementioned findings highlight the prominent greening trend over the study
area from 1982 to 2019, with two distinct greening periods. During 1982–2003, NDVI
generally increased throughout the whole study area except for the Chengdu Chongqing
urban agglomeration, the Wuhan urban agglomeration, the Yangtze River Delta urban
agglomeration and their nearby areas. This seems to indicate that the existence of an urban
agglomeration will hinder the increase of NDVI [19]. During 2003–2019, the greening
hotspot existed at the junction of Chongqing, Guizhou and Yunnan. The reason for this
may be related to the Ecological Restoration Projects (ERPs) implemented by the Chinese
government in the mountainous areas of Southwest China since the late 1990s [36]. Over-
all, NDVI in the whole study area generally has an uptrend, and there is no large-scale
degradation except for a few metropolis areas in the Yangtze River Delta.
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3.2. Variations of NDVI with Climate Factors

Figure 5 shows the confidence levels of the NDVI prediction models with both pre-
cipitation and temperature as the predictors for each prefecture during the period from
1982 to 2003. The results from the original interannual variations (Figure 5a) show that
climate factors have few effects on the changes of NDVI. In order to explore the long-term
trend changes, the five-point smoothing method is used in the driving analysis below. The
policies and activities of the Chinese government are mainly based on periods of five years,
namely five-year plans. After removing the interannual variations by using the five-point
smoothing method, the significant models exist in 64.7% of prefectures (Figure 5b), which
mainly existed in the Jiangxi, Hunan and Hubei provinces. Among them, the positive
correlations with precipitation account for as much as 29.4% of the prefectures and the
positive correlations with temperature account for 0.177 of the prefectures. It is noted that
as an exception there are also negative correlations with precipitation and temperature in,
for example, the Yangtze River Delta.
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Figure 5. Confidence levels of the growing season NDVI prediction model with temperature and pre-
cipitation as predictors calibrated with the original annual data (a) and with the five-year smoothed
data (b) from 1982 to 2003 (the circles and dots denote negative and positive correlations, respec-
tively, with p < 0.1; red denotes the correlation between NDVI and temperature, and blue denotes
precipitation).

Figure 6a shows that climate factors also have few effects on the interannual variations
of NDVI from 2003 to 2019. After removing the interannual variations by using the five-
point smoothing method, the significant models exist in 77.9% of prefectures (Figure 6b),
which mainly existed in the Jiangxi, Hunan and Hubei provinces. Among them the
positive correlations with precipitation account for as much as 41.1% of the prefectures
and the positive correlations with temperature account for 59.5% of the prefectures. Taking
together the findings presented in Figures 5 and 6, the climate factors may have little effect
on the inter-annual variations of NDVI. At the time scale of longer than five years, the
NDVI variations are significantly correlated with precipitation and temperature in some
prefectures. From 1982 to 2003, the significant correlations with temperature took a smaller
area than those with precipitation, while, from 2003 to 2019, it is the reverse [37].
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Figure 6. Confidence levels of the growing season NDVI prediction model with temperature and pre-
cipitation as predictors calibrated with the original annual data (a) and with the five-year smoothed
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spectively, with p < 0.1; red denotes the correlation between NDVI and temperature, and blue
denotes precipitation).

Figure 7 shows the spatial patterns of NDVIpre slopes using the prefecture-level pre-
cipitation and temperature data as well as the NDVIres by subtracting the predictions from
the observations. We found that the NDVIpre exhibited an uptrend in some prefectures;
however, the slope of the uptrend was much weaker than that of the NDVIobs, and its spatial
distributions (Figure 7a) were different from the observations shown by Figure 4a. During
the period from 1982 to 2003, the correlation coefficient is only 0.39 between the spatial
variability of the NDVIpre slope and the NDVIobs slope, while the correlation coefficient
reaches as high as 0.77 between the spatial variability of NDVIobs and NDVIres (Figure 8a,b).
From 2003 to 2019, the correlation coefficient between the spatial variability of NDVIobs
and NDVIpre was only 0.27, which is also much smaller than the correlation coefficient of
0.8 between the spatial variability of NDVIobs and NDVIres (Figure 8c,d). These findings
suggest that the spatial variability of NDVIobs was more explained by that of non-climate
factor-induced NDVI slopes that by the climate factors-induced NDVI slopes. Taking
together the above findings, the climate changes may contribute to the NDVI uptrend in
some prefectures but this could not explain such large spatial variability in the NDVI slope
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over the study area. The spatial variability of the NDVI slope over the study area may be
caused by non-climate factor changes. This is consistent with previous research [14].
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Figure 8. Scatter plots of the observed NDVI changes against the predicted NDVI (i.e.,
NDVIpre) changes using the precipitation and temperature (left panel (a,c)) and its residuals
(NDVIres, right panel (b,d)) at the prefecture level from 1982 to 2003 (top panel (a,b)) and from
2003 to 2019 (bottom panel (c,d)).
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3.3. The Modes of the Changes in the NDVIres

The main modes of NDVIres derived from cluster analysis and their spatial patterns
for the 1982–2003 and 2003–2019 periods are, respectively, shown by Figures 9 and 10.
From 1982 to 2003, the NDVIres changes could be grouped into four classes. Class I is
mainly characterized by a decline trend. It mainly existed in the Yangtze River Delta urban
agglomeration and in the Sichuan Basin Chengdu-Chongqing urban agglomeration, which
underwent rapid urbanization with conversion from cropland to building area. Class II is
mainly characterized by approximate trendlessness. It mainly existed in the mountainous
areas of Sichuan and Yunnan, with a low population density and low urbanization. Class
III is mainly characterized by uptrend in 1980s and a slight uptrend during 1990s. It mainly
existed in Hubei and Hunan Province as well as Chongqing Municipality. Class IV is
mainly characterized by a prominent uptrend before 1997 and a decline thereafter. It mainly
existed in northern partitions of Jiangsu and Anhui provinces, which is a typical agriculture
area of China.

Land 2022, 11, x FOR PEER REVIEW 11 of 17 
 

mainly characterized by a decline trend. It mainly existed in the Yangtze River Delta urban 
agglomeration and in the Sichuan Basin Chengdu-Chongqing urban agglomeration, 
which underwent rapid urbanization with conversion from cropland to building area. 
Class II is mainly characterized by approximate trendlessness. It mainly existed in the 
mountainous areas of Sichuan and Yunnan, with a low population density and low ur-
banization. Class III is mainly characterized by uptrend in 1980s and a slight uptrend dur-
ing 1990s. It mainly existed in Hubei and Hunan Province as well as Chongqing Munici-
pality. Class IV is mainly characterized by a prominent uptrend before 1997 and a decline 
thereafter. It mainly existed in northern partitions of Jiangsu and Anhui provinces, which 
is a typical agriculture area of China. 

 
Figure 9. Spatial pattern of NDVIres serials classification (above) and temporal variations of NDVIres 
of each class (below) from 1982 to 2003. 

From 2003 to 2019, the NDVIres changes could be grouped into six classes. Classes I–
III share a common character, which is uptrend. For Class I, the uptrend likely started 
around 2010. The uptrend slope of Class I is smaller than Classes II and III. For both Clas-
ses II and III, the uptrend likely started around 2005. The uptrend slope of Class II is much 
larger than that of Class III. Class I mainly exists in the northern partition of the Sichuan 
Basin and the main body of Hunan and Jiangxi provinces. Class II mainly exists in the 
Chongqing Municipality and Class III mainly exists in the Guizhou Province. The above 
areas of Classes I–III are also the hotspots where the forest protection policy was imple-
mented [38]. Class IV is mainly characterized by trendlessness. It mainly existed in the 
western partition of Sichuan Province and main body of Yunnan Province as well as area 
surrounding the Yangtze River Delta. Class V is mainly characterized by a weak uptrend 
and mainly exists in main body of Hubei Province as well as Jiangsu and Anhui provinces, 
which are dominantly covered by arable land. Class VI is mainly characterized by 
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of each class (below) from 1982 to 2003.

From 2003 to 2019, the NDVIres changes could be grouped into six classes. Classes
I–III share a common character, which is uptrend. For Class I, the uptrend likely started
around 2010. The uptrend slope of Class I is smaller than Classes II and III. For both
Classes II and III, the uptrend likely started around 2005. The uptrend slope of Class II
is much larger than that of Class III. Class I mainly exists in the northern partition of the
Sichuan Basin and the main body of Hunan and Jiangxi provinces. Class II mainly exists
in the Chongqing Municipality and Class III mainly exists in the Guizhou Province. The
above areas of Classes I–III are also the hotspots where the forest protection policy was
implemented [38]. Class IV is mainly characterized by trendlessness. It mainly existed
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in the western partition of Sichuan Province and main body of Yunnan Province as well
as area surrounding the Yangtze River Delta. Class V is mainly characterized by a weak
uptrend and mainly exists in main body of Hubei Province as well as Jiangsu and Anhui
provinces, which are dominantly covered by arable land. Class VI is mainly characterized
by trendlessness prior to 2010 and a fast decline thereafter. It takes a small area only in the
norther partition of Anhui Province.
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3.4. The Agriculture Status behind the NDVIres Uptrend from 2003 to 2019

Agriculture practices, as an important human activity, broadly affect vegetation cover-
age. In the last decade, cropland abandonment arose in the study area. Zhang et al. (2019)
compiled the cropland abandonment records from 112 published papers based on field
surveys [39]. Figure 10 shows the majority of abandonment records (85.1%) exist in Classes
I, II and V of the areas in Sichuan, Chongqing, Hubei, Hunan and Anhui provinces. Among
them, there are 27.3% in Class I, 27.3% in Class II and 30.5% in Class V. As illustrated by
Figure 10, the NDVIres in Classes I, II and V are commonly characterized by an uptrend.
These findings suggest that cropland abandonment may co-exist with an NDVI uptrend.

There are many factors for land abandonment, and the main reasons are low agricul-
tural income and shortage of labor forces [39]. Local economic development and industrial
transformation are the economic basis of cropland abandonment. For example, the per
capita GDP of the region increased rapidly between 2002 and 2011. The average annual
growth rates in major abandoned areas of Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Sichuan
and Chongqing were 14.1%, 14.2%, 15.4%, 15.5%, 14.9% and 15.1%, respectively (Table 1).
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It can be seen that the local socio-economic situation is in a period of rapid economic devel-
opment. From the perspective of agricultural employees, there is a significant decline in all
provinces. For example, the proportion of agricultural employees in Anhui and Chongqing
has decreased by 43.3% and 43.9%, respectively (Table 2). At the same time, these provinces
also have frequent abandonment of farming. To sum up, economic development may have
led to local economic transformation, while the shift of agricultural labor forces has led to
abandonment of farming.

Table 1. Gross Domestic Product (GDP) per capita (103 Yuan).

Year
Province

SC CQ GZ HB HN JX AH ZJ

2002–2006 8.02 10.84 4.59 10.13 9.24 8.23 7.68 23.82
2007–2011 18.62 24.43 11.66 24.2 21.61 18.79 17.89 46.61
2012–2016 33.53 48.04 26.55 46.85 38.42 33.04 34.06 73.58

Table 2. Proportion of agricultural employees in the total population (%).

Year
Province

SC CQ GZ HB HN JX AH ZJ

2000 77.6 72.8 81.8 66.4 75 68.4 75 33.7
2010 60.2 50.3 68.9 53.1 55.9 44.4 54.2 14.7
2016 38.6 28.9 57.3 36.8 40.7 30 31.7 12.4

Generally, large-scale abandonment of farming will lead to the reduction of surface
vegetation, but the NDVI in these areas shows an increasing trend. The reason may be that
a large number of labor forces are transferred out, the disturbance of local vegetation by
farmers is suddenly weakened, local vegetation grows naturally under locally appropriate
moisture and heat conditions and vegetation grows better. On the other hand, most of the
abandoned cultivated land is sloping cultivated land with high input and low output. For
example, Sichuan Province has a total of 4520 km2 of cropland, 44.5% of which is located in
the depression areas with a slope < 5◦ and 17% on slopes > 25◦. A large amount of sloping
farmland was returned to forest, and the surface vegetation increased significantly [40,41].
Meanwhile, the Chinese government began to implement the Natural Forest Protection
Program (NFPP) and the Sloping Land Conversion Program (SLCP) at the beginning of
the 21st century [7]. Therefore, under the joint impact of economic development and
environmental policies, the area with high vegetation cover increased significantly [42],
and the NDVI also increased significantly.

4. Discussion

As mentioned above, there has been a significant greening trend across the YREB over
the past four decades. In particular, the surface greening during 2003–2019 was much more
prominent than that during 1982–2003. Meanwhile, the surface greening mainly occurred in
the mountain areas in Sichuan-Chongqing-Guizhou as well as Hunan provinces. Keeping
with existing studies [10], temperature and precipitation changes may partly contribute
to surface greening [11]. However, the spatial variabilities of surface greening were little
explained by climate-induced NDVI changes, while they are mostly explained by NDVI
changes caused by non-climate factors. These prominent surface greenings co-existed with
cropland abandonment, which is derived from industrial development and, hence, labor
transition from primary industrial to the second and third industries [39].

It is undeniable that this study has some deficiencies. First, due to the defects of
NDVI, it may be worth trying to use other vegetation indices as aids to improve the
accuracy, such as EVI and SAVI. In addition, NDVI will also be affected by soil background.
Specifically, the NDVI value of dry soil is lower than that of wet soil [43]. When there are
great differences in soil moisture in the study area, large errors may occur. However, in the
YREB, the soil background has little effect on NDVI and will not affect the experimental



Land 2022, 11, 605 14 of 17

results. Because the YREB belongs to China’s humid and semi humid areas, it is generally
rainy in the growing season and the river network is dense. It can be considered that the
YREB is a relatively moist soil background. The impact of soil can be ignored in this study.

Due to the small amount of data, this paper does not have quality control prepro-
cessing to filter out some low-quality remote sensing data. However, Maximum Value
Composite (MVC) was carried out to eliminate disturbances created by cloud contamina-
tion, atmospheric variability, bi-directional effects and sensor malfunctions. Here we focus
on those stationary changes and trends between years over the long time series and the
processed NDVI data meets our requirements. Our research results are consistent with
previous scholars [14,19], which is reasonable. Therefore, based on the above reasons, the
impact of data quality in the result can be ignored.

In addition, this study only diagnoses and compares the sensitivity between anthro-
pogenic factors and climate to NDVI changes. The complexity of the interaction between
human and vegetation cannot be ignored. For example, Lin et al. (2021) adopted SEM
modeling to better understand and explain the complex interrelationships behind the
spatial temporal change of NDVI [7]. However, the accuracy of the model needs to be
improved. More study on non-linear relationships between the driving factors and NDVI
change should be conducted. In addition, in order to understand the interaction between
humans and vegetation, it is worth collecting more climatic data and socio-economic data,
so that more factors can be considered in the study. Finally, taking a prefecture as a pixel
may ignore the internal differences of physical geographic and socio-economic factors. This
may make our results inaccurate. In order to overcome this deficiency, it is valuable to
collect county-level socio-economic data and use a county as a pixel in the future.

The reasons for the difference between GIMMS NDVI and MODIS NDVI are complex,
some of which are as follows: There are several aspects of AVHRR sensor design that
are not ideal for vegetation trend studies, such as post-launch degradation in sensor
calibrations and drift in the satellite overpass times. The seasonal variations in sun-sensor
viewing geometry (as defined by the Bidirectional Reflectance Distribution Function, BRDF)
combined with sensor drift over time have a large effect on the time series of observed
NDVI for a given location. Additionally, the spectral configuration of the AVHRR sensors
(number of bands, wavelengths covered and the specific band Spectral Response Functions
(SRFs)) does not permit an accurate atmospheric correction scheme to be applied and
absorption and scattering by atmospheric components such as water vapour are a source
of error in AVHRR estimates of surface NDVI. The AVHRR channel 2 (near-infrared band)
covers wavelengths in which there is considerable absorption by water vapour in the
atmosphere, influencing observed NDVI. Therefore, the noise of GIMMS NDVI data cannot
be neglected. Moreover, the near-infrared band and the red band difference between
GIMMS and MODIS will inevitably lead to the difference of NDVI. It is a complex project
to correct the two sets of data, and it is beyond the range of our ability.

It is worth noting that there are more climatic factors than temperature and precipita-
tion that can significantly regulate the vegetation growth. For instance, it is widely reported
that CO2 in the air plays an important role in vegetation growth [44,45]. There is no doubt
about this conclusion. The continuous increase in airborne CO2 concentration over the
last four decades cannot be ignored. Increased atmospheric CO2 concentration can affect
vegetation in many ways. For example, the increased carbon supply can allow for higher
photosynthetic rates and therefore more plant growth [46]. Moreover, the increased carbon
supply can allow plants to maintain photosynthetic rates with lower conductance, thereby
lowering the amount of water lost during gas exchange with the atmosphere [46,47]. In
addition, solar radiation also has an important impact on vegetation growth [48], and
topography and soil will indirectly affect vegetation conditions by affecting human activ-
ities [7]. This reminds us that we can collect more natural factors to improve simulation
accuracy in the future.
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5. Conclusions

The above results show that the YREB has had a significant greening trend in the past
four decades. The greening trend is divided into two periods: 1982–2003 and 2003–2019.
The greening trend from 1982 to 2003 generally increased except for the three major urban
agglomerations, and rapid urbanization may be the main reason for the decrease of NDVI.
Most areas showed an obvious greening trend from 2003 to 2019. Analysis shows that
anthropogenic factors play a dominant role in NDVI changes; the vegetation conditions
in the western hilly areas have been greatly improved, driven by changes in industrial
structure and policies. Meanwhile, climate factors cannot be ignored, and temperature is
particularly important in the process of NDVI increase from 2003 to 2019.

This study supports the important role of human activities in vegetation changes
in the YREB. Moreover, from studies with longer time scales and larger spatial domains,
the main anthropogenic factors affecting NDVI may vary from region to region. This
means that we should pay attention to the anthropogenic domain, adjust measures to
local conditions and pay attention to the division of regions and classification studies in
the future. More abundant human factors should be used to improve the accuracy of the
model. Parameterizing human factors under the currently popular surface model will be a
potential improvement to the land vegetation dynamic model [49]. At the same time, it also
has reference value for studying the impact of greening hotspot transfer on regional surface
energy and atmospheric water flux. This is of great reference value for understanding the
causes of regional climate change, because land vegetation dynamics can feed back to local
and regional climate by regulating surface energy and water flux to the atmosphere [50].

While most studies mainly rely on rough spatial resolution data such as MODIS or
NOAA-AVHRR, in the future, the research on the complex and spatial change process
behind vegetation changes will benefit from the availability of high-resolution satellites
such as Sentinel-2, which has been operational since June 2015. This satellite provides new
prospects for long- and short-term monitoring in the world. In particular, by providing
frequent and high-quality observations in time series, we hope that this information will
become more readily available in the near future, so as to benefit from a wide range of
vegetation problems.
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