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Abstract: The accurate and timely monitoring of land cover types is of great significance for the scien-
tific planning, rational utilization, effective protection and management of land resources. In recent
years, land cover classification based on hyperspectral images and the collaborative representation
(CR) model has become a hot topic in the field of remote sensing. However, most of the existing CR
models do not consider the problem of sample imbalance, which affects the classification performance
of CR models. In addition, the Tikhonov regularization term can improve the classification perfor-
mance of CR models, but greatly increases the computational complexity of CR models. To address
the above problems, a local nearest neighbor (LNN) method is proposed in this paper to select the
same number of nearest neighbor samples from each nearest class of the test sample to construct
a dictionary. This is then introduced into the original collaborative representation classification
(CRC) method and CRC with Tikhonov regularization (CRT) for land cover classification, denoted
as LNNCRC and LNNCRT, respectively. To verify the effectiveness of the proposed LNNCRC and
LNNCRT methods, the classification performance and running time of the proposed methods are
compared with those of six popular CR models on a hyperspectral scene with nine land cover types.
The experimental results show that the proposed LNNCRT method achieves the best land cover
classification performance, and the proposed LNNCRC and LNNCRT methods not only further
exclude the interference of irrelevant training samples and classes, but also effectively eliminate the
influence of imbalanced training samples, so as to improve the classification performance of CR
models and effectively reduce the computational complexity of CR models.

Keywords: land cover classification; hyperspectral images; collaborative representation; sample
imbalance; local nearest neighbors

1. Introduction

Land cover refers to the biophysical properties of the Earth’s surface, which is the
most obvious indicator of changes in the Earth’s surface [1–3]. The accurate and timely
monitoring of land cover types is important for the scientific planning, rational utilization,
effective protection and management of land resources [4]. With the rapid development
of remote sensing technology, rich remote sensing data sources are provided for the mon-
itoring of land surface information in large areas, such as spaceborne or airborne RGB
images [5], multispectral images [6], hyperspectral images [7], and so on. Among them,
RGB and multispectral images can provide better spatial features for ground objects. Still,
they can only obtain spectral information from several discrete bands, which can easily
produce the phenomenon of “same objects with different spectra” and “foreign objects with
same spectra”, leading to the difficulty of correctly distinguishing between similar land
types, such as forest land and cultivated land. For hyperspectral remote sensing images,
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each pixel contains hundreds of narrow and continuous spectral bands, which provide
abundant spectral and spatial information for the classification of ground objects [8,9]. In
view of the advantages of hyperspectral images (HSI), many scholars have applied this
technology to the research field of land cover classification [10–12].

Furthermore, most researchers choose statistic-based classification algorithms to es-
tablish land cover classification models, such as support vector machines [13], random
forests [14], sparse logistic regression [15], and so on. However, such algorithms usually
assume that sample data follow normal or multimodal distributions [16] and require a
large number of labeled samples for training to fit the models. However, the lack of labeled
samples in hyperspectral images can not satisfy the distribution hypothesis of data and
will affect the fitting performance of the models.

In the past few years, representation-based classification methods have received great
attention. The main idea of these methods is that a test sample is classified through the
linear representation of training samples without assuming any data density distribu-
tion [17]. Additionally, this kind of algorithm does not need a complex training process,
so it avoids the influence of the number of training samples on the model fitting perfor-
mance. Representation-based classification methods, i.e., sparse representation classifica-
tion (SRC) [18] and collaborative representation classification (CRC) [19], were originally
proposed for face recognition. The essential difference between these two methods is
that SRC utilizes `0-norm or `1-norm regularization to solve the representation coefficient
of each test sample, while CRC utilizes `2-norm regularization. Reference [19] indicates
that CRC is more advantageous than SRC. On the one hand, CRC can obtain a closed-
form solution, which makes its computational efficiency higher than SRC. On the other
hand, collaborative representation can classify test samples more accurately than sparse
representation.

Given the advantages of the collaborative representation (CR) model, it has been
widely used in HSI classification in recent years. Li et al. proposed a CR-based classifier
that couples nearest-subspace classification (NSC) with a distance-weighted Tikhonov
regularization for HSI classification, called nearest regularized subspace (NRS) [20]. In
other words, NRS is the Tikhonov regularization version of NSC. Moreover, Li et al. in-
corporated Tikhonov regularization into the original CRC for HSI classification, denoted
as CRT [21]. The main difference between NRS (NSC) and CRT (CRC) is that the former
uses training samples of each class to independently represent each test sample (called
pre-partitioning). In contrast, the latter uses all training samples from different classes to
simultaneously represent each test sample (called post-partitioning). The experimental
results in references [20,21] show that both NRS and CRT provide a higher classification
accuracy than the original NSC and CRC, which indicates that the Tikhonov regulariza-
tion can effectively improve the classification performance of CR models. Therefore, the
Tikhonov regularization has been applied to many improved collaborative representation
classifiers, such as kernel CR with Tikhonov regularization (KCRT) [21], discriminative
kernel CR and Tikhonov regularization (DKCRT) [22], structure-aware CR with Tikhonov
regularization (SaCRT) [23], and so on. Tikhonov regularization makes the training sam-
ples similar to the test samples through large weight vector coefficients by calculating
the Euclidean distance between the test sample and all the training samples to improve
the classification performance of CR models. However, the Tikhonov regularization term
greatly increases the computational complexity of CR models.

Furthermore, the selected dictionary greatly influences the classification performance
of CR models [24]. All of the aforementioned CR models collaboratively represent the
test sample through the dictionary constructed by all training samples, which may make
the training samples that are irrelevant to the test sample produce a negative impact on
the weight vector coefficient, resulting in the misclassification of the test sample. To solve
this problem, many researchers introduced the nearest neighbor (NN) method into CR
models. Li et al. proposed a local within-class CR-based NN (LRNN) method, in which
k-nearest training samples adjacent to the test sample were selected from each class to
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represent the test sample through the way of pre-partitioning [16]. Wei et al. proposed a
CRC method based on k-nearest neighbors (KNN-CRC) [25]. This method first chooses the
k nearest neighbors of each test sample from all the training samples, then utilizes these
nearest neighbor training samples to collaboratively represent the test sample. On this
basis, Yang et al. proposed a multiscale joint CRC method with locally adaptive dictionary
(MLJCRC) [26]. The above-mentioned methods construct the dictionary by selecting the
training samples that are nearest to the test sample. Different from these methods, Su et al.
proposed a K-nearest class CRT (KNCCRT) method for HSI classification, in which the
training samples from the K-nearest classes of each test sample were utilized to construct
the dictionary and collaboratively represent the test sample [24]. KNCCRT not only takes
advantage of Tikhonov regularization to improve classification performance, but also
eliminates the classes that are irrelevant to the test samples to a certain extent, so as to
reduce the computational complexity of CR model.

Most of the existing CR models do not consider the imbalance of training samples for
each class in the dictionary. In practical land cover classification tasks via hyperspectral
remote sensing images, the imbalance of training samples for each class is widespread,
which may produce a great impact on the performance of classifiers [27–32]. Some CR
models can only passively construct dictionaries using given training samples, such as NRS
(NSC), CRT (CRC), KCRT, etc. The more serious the imbalance of training samples is, the
more influence they have on the classification performance of these methods. Some CR
models construct adaptive dictionaries by excluding training samples or classes that are ir-
relevant to test samples, such as KNN-CRC, MLJCRC, KNCCRT, and so on. However, these
methods do not take the imbalance of training samples into account. The LRNN method
considers the imbalance of training samples; the same number of nearest neighbors of test
samples are selected from the training samples of each class to construct a dictionary [16].
However, this method utilizes all classes, in which the classes that are irrelevant to the test
samples may have an impact on classification performance.

To address the aforementioned problems, a local nearest neighbor (LNN) method
is proposed in this paper and introduced into the original CRC and CRT methods for
land cover classification, denoted as LNNCRC and LNNCRT, respectively, in which the
LNNCRT method is the Tikhonov regularized version of LNNCRC. For the proposed
methods, firstly, the same number of nearest neighbors of the test sample is selected from
the training samples of each class by Euclidean distance, and a local density measurement
method is designed to measure the similarity between the test sample and the selected
training samples from each class. Then, the K-nearest classes of each test sample are selected
by the designed local density to construct a dictionary. Each nearest class is composed
of the same number of nearest neighbor samples selected in the first step. Finally, the
constructed dictionary represents and classifies the test sample.

The main contributions of this article are as follows:

(1) A local nearest neighbor (LNN) method is proposed and introduced into the origi-
nal CRC and CRT methods for land cover classification, denoted as LNNCRC and
LNNCRT, respectively, which can effectively select the nearest neighbors and nearest
classes of each test sample from all the training samples, so as to further exclude the
interference of irrelevant samples and classes.

(2) The proposed LNNCRC and LNNCRT methods utilize the same number of nearest neigh-
bors from each nearest class of the test sample to construct dictionary, which can effectively
eliminate the influence of imbalanced training samples on classification performance.

(3) Due to the exclusion of the interference of irrelevant samples and classes in a further
step, the proposed LNNCRC and LNNCRT methods can not only effectively improve
the classification performance of CR models for land cover types, but also reduce the
computational complexity of CR models.
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2. Materials and Methods
2.1. Data Collection

In this paper, a land cover classification experiment was carried out using the Pavia
University hyperspectral scene provided by the Telecommunication and Remote Sensing
Laboratory, Pavia University. This hyperspectral scene was acquired by a Reflective Optics
Spectrographic Imaging System (ROSIS) sensor mounted on a flight platform. Additionally,
the hyperspectral image contains 610 × 340 pixels with a high spatial resolution of 1.3 m,
and it provides 103 available spectral bands in the range of 0.43–0.86 µm. Moreover, the
hyperspectral scene mainly includes nine land cover types, i.e., asphalt, meadows, gravel,
trees, painted metal sheets, bare soil, bitumen, self-blocking bricks, and shadows. the false-color
image and ground truth map of the hyperspectral scene are shown in Figure 1.
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Figure 1. (a) False-color image, and (b) ground truth map.

There are 42,776 labeled samples (pixels) in this hyperspectral scene, and the number of
samples for each class is extremely unbalanced. To evaluate the classification performance
of the proposed methods under the condition of unbalanced training samples, 10% of the
labeled samples in each class are randomly picked as the training samples, 20% of the
labeled samples in each class are randomly picked as validation samples, and the remaining
samples are as test samples, in which the validation samples are utilized to optimize the
parameters of the classification models. The specific division of samples is shown in Table 1.
Since it is difficult to obtain the real label information of pixels in actual hyperspectral
images, this paper attempts to classify a large number of test samples with a small number
of training samples. Therefore, the number of training samples selected in this paper is
significantly lower than that of test samples.
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Table 1. The division of samples for each class in the hyperspectral scene.

No. Class Total Samples Training Samples Validation Samples Test Samples

1 Asphalt 6631 663 1326 4642
2 Meadows 18,649 1865 3730 13,054
3 Gravel 2099 210 420 1469
4 Trees 3064 306 613 2145
5 Painted metal sheets 1345 135 269 942
6 Bare soil 5029 503 1006 3520
7 Bitumen 1330 133 266 931
8 Self-blocking bricks 3682 368 736 2577
9 Shadows 947 95 189 663

All classes 42,776 4278 8555 29,943

2.2. Classification Methods

The KNCCRT method attempts to employ K-nearest classes of each test sample to
construct the dictionary and linearly represent the test sample [24]. Additionally, the
proposed LNNCRC and LNNCRT methods in this paper are inspired by the KNCCRT
method, in which LNNCRT is the Tikhonov regularized version of LNNCRC. Different
from the KNCCRC and KNCCRT methods, the proposed LNNCRC and LNNCRT methods
not only consider the K-nearest classes of each test sample, but also take the same number
of nearest neighbors of each test sample in the within-class training samples into account,
so as to exclude the training samples irrelevant to the test samples to a considerable extent
and eliminate the influence of imbalanced training samples on classification performance.
Furthermore, a local density measurement method is designed to select the K-nearest
classes of each test sample instead of simply using Euclidean distance as the measure of
similarity. To verify the effectiveness of the proposed LNNCRC method, it is compared
with the non-regularized version of KNCCRT (i.e., KNCCRC). In this section, the principles
of the KNCCRC, KNCCRT, LNNCRC, and LNNCRT methods are introduced, respectively.

Suppose that X = [x1, x2, · · · , xN ] ∈ RB×N represents a HSI land cover scene with C
classes and N labeled training samples, where B represents the number of hyperspectral
bands. Additionally, Xl = [xl,1, xl,2, · · · , xl,Nl

] represents the training sample set of the lth
class, l ∈ {1, 2, · · · , C}, where Nl is the number of the training samples in the lth class, and
∑C

l=1 Nl = N. Consequently, X can also be denoted as X = [X1, X2, · · · , XC].

2.2.1. Principle of KNCCRC

Firstly, K-nearest classes of the test sample y are chosen from the whole training sample
set X by computing the Euclidean distance between y and training samples of class-specific
Xl, l ∈ {1, 2, · · · , C}. Its formula is expressed as

d(Xl , y) = min {‖Xl − y‖2} (1)

Through Equation (1), K-nearest classes of the test sample y can be found. Additionally,
the corresponding nearest classes are used to reconstruct the dictionary and represent the
test sample, in which the reconstructed dictionary can be written as X̂K = [X1, X2, · · · , XK]
(K < C). Then, the representation coefficient vector α corresponding to the reconstructed
dictionary X̂K for the test sample is solved by `2-norm regularization, i.e.,

α = arg min
α∗
‖y− X̂Kα

∗‖2
2 + λ‖α∗‖2

2 (2)
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where λ is a global regularization parameter, which is utilized to make trade-off between
the residual part and the regularization term. The representation coefficient vector α in
Equation (2) can be obtained with a closed-form solution in the form of

α = (X̂
T
KX̂K + λI)

−1
X̂

T
Ky (3)

where I represents the identity matrix. The obtained coefficient vector α is separated into K
different class-specific weight coefficient vectors according to the class labels of the training
samples in the reconstructed dictionary X̂K, i.e., α = [αT

1 ,αT
2 , · · · ,αT

C]
T .

Finally, the test sample y is represented by the class-specific coefficient vector αl and
corresponding dictionary Xl . Additionally, the class label of y is assigned to the class with
the minimum residual, which is

class(y) = arg min
l=1,··· ,K

‖y− Xlαl‖2
2 (4)

2.2.2. Principle of KNCCRT

The KNCCRT method introduces the Tikhonov regularization term into the KNCCRC
method. In the same process as with KNCCRC, K-nearest classes of the test sample y are
selected by Equation (1) to reconstruct the dictionary X̂K. Then, the solution equation of
the representation coefficient vector α corresponding to the reconstructed dictionary X̂K for
the test sample y can be expressed in the following form:

α = arg min
α∗
‖y− X̂Kα

∗‖2
2 + λ‖Γ̂Kα

∗‖2
2 (5)

where the Tikhonov regularization term Γ̂K is denoted as the following form:

Γ̂K =

 ‖y− x1‖2 0
. . .

0 ‖y− xN(K)
‖

2

 (6)

In Equation (6), N(K) represents the number of training samples contained in the recon-
structed dictionary X̂K, i.e., ∑K

l=1 Nl = N(K). Additionally, the closed-form solution of the
coefficient vector α can be derived as

α = (X̂
T
KX̂K + λΓ̂T

K Γ̂K)
−1

X̂
T
Ky (7)

Finally, the obtained coefficient vector α is separated into K different class-specific
weight coefficient vectors, and the class label of the test sample y is assigned to the class
with the minimum residual according to Equation (4).

2.2.3. Principle of the Proposed LNNCRC Method

Firstly, k-nearest neighbors of the test sample y are selected from the class-specific Xl
utilizing the Euclidean distance, i.e.,

d(xl,i, y) = ‖xl,i − y‖2 (8)

where xl,i represents the ith sample in the class-specific Xl, and the selected k-nearest

neighbors can be written as X(k)
l = [xl,1, xl,2, · · · , xl,k], l ∈ {1, 2, · · · , C}.

The training samples contained in X(k)
l are regarded as the local nearest neighbors of

y in the lth class. Then, the similarity between y and each class-specific X(k)
l is evaluated
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by calculating the density of local nearest neighbors. The specific formula is expressed
as follows:

ρl =
k

∑
i=1

exp(−‖xl,i − y‖2) (9)

where xl,i is the ith training sample in the class-specific X(k)
l . The larger the value of ρl

is, the more similar the test sample y is to the class-specific X(k)
l . The values of ρl for all

classes are sorted in ascending order, and the K top-ranked class-specific X(k)
l are selected

to reconstruct the dictionary, which only contains K-nearest classes of the test sample y and

k-nearest training samples of y in each class, denoted as X̂
(k)
K = [X(k)

1 , X(k)
2 , · · · , X(k)

K ] (K < C).

Then, the reconstructed dictionary X̂
(k)
K is employed to represent the test sample y,

and the representation coefficient vector α is solved according to Equation (10), i.e.,

α = arg min
α∗
‖y− X̂

(k)
K α∗‖

2

2 + λ‖α∗‖2
2 (10)

Additionally, the closed-form solution of the coefficient vector α in Equation (10) can be
denoted as

α = ((X̂
(k)
K )

T
X̂
(k)
K + λI)

−1

(X̂
(k)
K )

T
y (11)

Finally, LNNCRC method allocates class label to the test sample y in the same way as
the KNNCRC and KNNCRT methods; the obtained coefficient vector α is separated into K
different class-specific weight coefficient vectors, and the class label of y is assigned to the
class with the minimum residual, i.e.,

class(y) = arg min
l=1,··· ,K

‖y− X(k)
l αl‖

2

2 (12)

2.2.4. Principle of The Proposed LNNCRT Method

The LNNCRT method is the Tikhonov regularized version of LNNCRC. As the same
with LNNCRC, k-nearest neighbors of the test sample y from each class-specific Xl and
K-nearest classes of the test sample y are selected using Equations (8) and (9), respectively,

to reconstruct the dictionary X̂
(k)
K . Then, the reconstructed dictionary X̂

(k)
K is employed to

represent the test sample y, and the representation coefficient vector α is solved according
to Equation (13), i.e.,

α = arg min
α∗
‖y− X̂

(k)
K α∗‖

2

2 + λ‖Γ̂(k)
K α∗‖

2

2 (13)

The Tikhonov regularization term Γ̂
(k)
K is expressed as the following form:

Γ̂
(k)
K =


‖y− x1‖2 0

. . .
0 ‖y− xN̂(K)

‖
2

 (14)

where N̂(K) is the number of training samples contained in the reconstructed dictionary

X̂
(k)
K . The closed-form solution of the coefficient vector α can be denoted as

α = ((X̂
(k)
K )

T
X̂
(k)
K + λ(Γ̂

(k)
K )

T
Γ̂
(k)
K )
−1

(X̂
(k)
K )

T
y (15)

Finally, in the same process as LNNCRC, the obtained coefficient vector α is separated
into K different class-specific weight coefficient vectors, and the class label of the test sample
y is assigned to the class with the minimum residual according to Equation (12).
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3. Results and Discussion
3.1. Parameter Optimization

In this paper, the proposed LNNCRC and LNNCRT methods are compared with
the CRC, CRT, NSC, NRS, KNCCRC, and KNCCRT methods for land cover classification
performance under their respective optimal parameters, so as to fairly verify the effective-
ness of the proposed methods. In the process of parameter optimization, 10% and 20%
of the labeled samples from each class are randomly selected as the training samples and
validation samples, respectively. Additionally, the overall accuracy (OA) is used to evaluate
the performance of classification models for each parameter. To avoid random error and
any bias, each classification model was run 10 times under each parameter and took the
average value as the final result.

The global regularization parameter λ is the main parameter affecting the classification
performance of CRC, CRT, NSC, and NRS. For the KNCCRC and KNCCRT methods, both λ and
the nearest-class parameter K are the main parameters that affect the classification performance.
Additionally, for the proposed LNNCRC and LNNCRT methods, λ, K, and the local nearest
neighbor parameter k are the three main parameters. It can be seen that λ is the common
parameter for all of the above-mentioned methods. In the optimization process, λ of NSC
and NRS is chosen from the given intervals {3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8}, and λ of the
other methods is chosen from the given intervals {10−3, 3 × 10−3, 5 × 10−3, 10−2, 3 × 10−2,
5× 10−2, 10−1, 3 × 10−1, 5 × 10−1, 1}. The parameter K is chosen from 1 to 9 in intervals of
1, because there are nine land cover types in the acquired hyperspectral scene. Additionally,
the parameter k is chosen from the given intervals {15, 20, 25, 30, 35, 40, 45, 50, 55, 60}. Figure 2
shows the classification performance of the CRC, CRT, NSC, and NRS methods under different
λ values. Additionally, Figure 3 shows the classification performance of the KNCCRC, KNCCRT,
LNNCRC, and LNNCRT methods under different parameters, in which an asterisk (*) is used
to represent the position of the optimal parameters. Moreover, the surface of different colors is
employed to represent the corresponding nearest-class parameter K in the three-dimensional
graph of LNNCRC and LNNCRT, as shown in Figure 3c,d. There is a list of the optimal
parameter settings for each method in Table 2.
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under different parameters.

Table 2. Optimal parameter settings for each method.

Parameters
Methods

CRC CRT NSC NRS KNCCRC KNCCRT LNNCRC LNNCRT

λ 5 × 10−3 5 × 10−2 7.5 7 3 × 10−3 1 × 10−1 3 × 10−2 3 × 10−1

K No application No application No application No application 2 2 2 4

k No application No application No application No application No application No application 40 55

3.2. Land Cover Classification Performance for Different Methods

In this section, the classification performance of the proposed LNNCRC and LNNCRT
methods is compared with that of six other popular methods under the corresponding
optimal parameters. As mentioned earlier, 10% and 20% of the labeled samples from
each class were used as the training set and validation set, respectively, so the remaining
70% labeled samples were selected as the test set to evaluate the land cover classification
performance for each method. Additionally, individual class accuracy, overall accuracy
(OA), average accuracy (AA), and kappa statistic (kappa) were utilized as evaluation
indicators. Similarly, to avoid random error and any bias, each classification model was
run 10 times under the corresponding optimal parameters and took the average value as
the final result. The classification results can be seen in Table 3 and Figure 4, in which the
best classification results are presented in highlighted font in Table 3.
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Table 3. Classification accuracy of different methods for land cover types.

Class CRC CRT NSC NRS KNCCRC KNCCRT LNNCRC LNNCRT

Asphalt 95.99 92.99 96.32 95.51 94.12 92.73 89.83 92.85
Meadows 98.51 99.46 99.83 99.55 98.30 99.24 97.68 98.32

Gravel 23.95 65.15 32.29 44.49 62.30 73.31 65.51 75.17
Trees 82.53 90.28 53.10 82.86 84.61 90.90 92.63 92.38

Painted metal sheets 71.75 98.40 98.25 99.25 81.32 99.18 99.11 99.10
Bare soil 23.82 72.96 34.61 47.80 65.61 81.20 88.05 86.25
Bitumen 0.00 64.91 1.36 33.03 36.94 77.14 75.55 82.23

Self-blocking bricks 47.63 84.21 54.38 92.13 80.10 87.90 88.10 86.60
Shadows 4.11 99.77 36.36 99.41 99.71 99.98 99.91 99.89
OA (%) 74.17 90.59 76.53 86.22 87.08 92.59 91.97 93.04
AA (%) 49.81 85.35 56.28 77.12 78.11 89.06 88.49 90.31
Kappa 0.6358 0.8729 0.6666 0.8103 0.8247 0.9006 0.8931 0.9071

Although both KNCCRC and KNCCRT methods select the K-nearest classes of each
test sample from all the labeled training samples to represent and classify the test sam-
ple [24], they do not consider the impact of the imbalanced number of training samples
from each class on the classification performance; meanwhile, the proposed LNNCRC and
LNNCRT methods select the same number of nearest neighbors of each test sample from
each of K-nearest classes to construct dictionary. Additionally, the results from Table 3
shows that LNNCRC and LNNCRT outperform KNCCRC and KNCCRT, respectively,
which indicates that the proposed methods not only further eliminate the interference of
irrelevant training samples and classes, but also effectively eliminate the influence of imbal-
anced training samples on classification performance. Especially, the proposed LNNCRT
method achieves the highest OA (93.04%), AA (90.31%), and kappa (0.9071) for land cover
classification. Additionally, compared with other methods, the classification noise in the
land cover classification map of LNNCRT is the lowest, as shown in Figure 4i.

Furthermore, the CRT [21], NRS [20], KNCCRT [24], and LNNCRT methods are
the Tikhonov regularized versions of CRC, NSC, KNCCRC, and LNNCRT, respectively.
Additionally, it can be seen from Table 3 that CRT, NRS, KNCCRT, and LNNCRT achieve a
better classification performance than CRC, NSC, KNCCRC, and LNNCRC, respectively,
which further verifies that the Tikhonov regularization term can effectively improve the
classification performance of CR models.
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Figure 4. (a) Ground truth map and land cover classification maps generated by (b) CRC, (c) CRT,
(d) NSC, (e) NRS, (f) KNCCRC, (g) KNCCRT, (h) LNNCRC, and (i) LNNCRT.

In addition, compared with other methods, the CRC, CRT, NSC, and NRS methods
have a poor performance for land cover classification. The reason for this is that these
methods all use training samples to construct dictionaries, which contain many training
samples unrelated to test samples, thus affecting the classification performance. Especially,
the CRC method possesses the worst performance for land cover classification, in which
OA, AA, and kappa are only 74.17%, 49.81%, and 0.6358, respectively. Additionally, there
is the most classification noise in the land cover classification map of CRC as shown in
Figure 4b.

3.3. Comparison of Running Time

In this section, the running times of different methods for land cover classification are
compared using the MATLAB R2014a software on a computer with 2.90 GHz CPU and
32 GB RAM. To avoid random error and any bias, each method runs 10 times and takes the
mean running time as the final result, which is shown in Table 4.

Table 4. Running time of different methods for land cover classification.

Methods CRC CRT NSC NRS KNCCRC KNCCRT LNNCRC LNNCRT

Running
time

(seconds)
5.2323 × 101 3.9765 × 104 5.8659 × 103 6.0098 × 103 1.2621 × 104 1.2867 × 104 7.3053 × 101 2.8159 × 102

The results show that the CRT, NRS, KNCCRT, and LNNCRT methods take much
more time than CRC, NSC, KNCCRC, and LNNCRC, respectively, which indicates that
the Tikhonov regularization term can effectively improve the performance of CR models
for land cover classification but significantly increases the running time of CR models.
Compared with the running time of CRT, NRS, and KNCCRT, the proposed LNNCRT
method has the shortest running time, which indicates that the proposed local nearest
neighbor method can effectively reduce the computational complexity of CR models with
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Tikhonov regularization. Moreover, for the CR models without Tikhonov regularization,
the proposed LNNCRC method takes much less time than NSC and KNCCRC. Although
LNNCRC takes slightly more time than CRC, the land cover classification performance
of LNNCRC is significantly better than that of CRC. Therefore, the proposed LNNCRC
and LNNCRT methods not only improve the land cover classification performance of CR
models, but also effectively reduce the computational complexity of CR models.

4. Conclusions

In recent years, the collaborative representation (CR) classification model has been
widely used in land cover classification from hyperspectral images. However, most of the
existing CR models do not take the problem of sample imbalance into account, which may
cause a great impact on the performance of CR models. In addition, many CR models
employ the Tikhonov regularization term to improve their classification performance,
which greatly increases the computational complexity of CR models. To solve the above
problems, the LNNCRC and LNNCRT methods are proposed for land cover classification
from hyperspectral images in this paper, in which LNNCRT is the Tikhonov regularized
version of LNNCRC. The essential idea of the proposed methods is to select the same
number of nearest neighbor samples from each nearest class of the test sample to construct
a dictionary via the designed local nearest neighbor (LNN) method. Additionally, the
conclusions are summarized as follows:

(1) Compared with other methods, the proposed LNNCRT method achieves the best
land cover classification performance, in which the OA, AA, and kappa reach 93.04%,
90.31%, and 0.9071, respectively.

(2) LNNCRC and LNNCRT outperform KNCCRC and KNCCRT, respectively, which indi-
cates that the proposed methods not only further exclude the interference of irrelevant
training samples and classes, but also effectively eliminate the influence of imbal-
anced training samples, so as to improve the land cover classification performance of
CR models.

(3) LNNCRT takes much less time than CRT, NRS, and KNCCRT, and LNNCRC takes
much less time than NSC and KNCCRC, which indicates that the proposed methods
can effectively reduce the computational complexity of CR models.

It can be seen from the experimental results on a hyperspectral scene with nine land
cover types that the proposed LNNCRC and LNNCRT methods not only improve the
classification performance of CR models, but also effectively reduce the computational
complexity of CR models. However, the variations in light condition, physical location and
season usually lead to a shift in the spectral curves of the same ground objects [13], resulting
in a nonlinear structure of the sample data. The linear representation of the proposed CR
models is insufficient for representing this nonlinear structure. In addition, the proposed
methods do not utilize the spatial features of hyperspectral images. In future research,
a spatial–spectral weighting mechanism and kernel function will be introduced into the
proposed CR models to further improve their land cover classification performance.
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