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Abstract: The degradation of soil, vegetation and socio-economic transformations are a huge threat
to Africa’s land production. This study aimed to (i) assess the soil and land productivity of standing
biomass and (ii) determine the effect of rainfall on the standing biomass in Eastern Africa. Soil
productivity was determined using the Soil Productivity Index (SPI) and a simplified model was
developed to estimate the Net Primary Productivity (NPP). The SPI indicators used included soil-
organic matter, texture, soil moisture, base-saturation, pH, cation-exchange-capacity, soil-depth and
drainage. The inputs of the simplified model are: MODIS Soil Adjusted Vegetation Index (SAVI),
soil erosion, soil nutrient content and input, rainfall, land-use/cover and agro-ecological zones. The
findings reveal that the countries with the most productive soils are Mauritius, Rwanda and South
Sudan—while, for standing biomass, the countries with the highest spatial extent are Mauritius
(97%), Rwanda (96%), Uganda (95%), South Sudan (89%), Ethiopia (47%) and Kenya (36%). Standing
biomass is dominant in biomes such as natural forests, woodlands, croplands, grasslands, wetlands
and tree-plantations. High land productivity was attributed to soil quality and management, land
policy reforms, favourable climatic conditions and sustainable land husbandry activities. Rainfall
was significantly correlated with standing biomass in most of the studied countries (p < 0.05) except
Djibouti and Rwanda. Therefore, monitoring soil health, use and land reforms are key to sustaining
vegetative biomass.

Keywords: land productivity; SAVI; soil erosion; QGIS; soil fertility; Africa

1. Introduction

In the past three decades, the demand for land by humans is steadily increasing
worldwide. By this, more and more land is being converted for agricultural purposes
at the expense of natural vegetation [1]. About 42% of the earth’s human population is
highly engaged in agriculture for survival throughout the year [2]. In Sub-Saharan Africa,
agriculture employs between 60 and 80% of the population masses [3], and contributes
over 36.4% of countries’ GDP [4] and 60% of export earnings [5]. Despite this contribution,
unsustainable agricultural activities are one of the major threats to soil health and associated
land productivity. This is due to the intensification of unsustainable agricultural practices,
vegetation degradation and mismanagement [6,7].

Land productivity refers to the capacity of a given soil to produce crop yield and
support standing biomass in an ecosystem. In addition to human alteration, the state of land
productivity is influenced by natural factors such as precipitation, soil chemical-biological-
physical status, topography, the incidence of pests and diseases and land management [8]
and the level of land degradation. The latter is the most pressing environmental problem
that requires urgent attention in the global south because, if it is not attended to, it will

Land 2022, 11, 730. https://doi.org/10.3390/land11050730 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11050730
https://doi.org/10.3390/land11050730
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-1933-337X
https://orcid.org/0000-0002-3407-6375
https://doi.org/10.3390/land11050730
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11050730?type=check_update&version=2


Land 2022, 11, 730 2 of 19

result in severe consequences such as food insecurity and chronic poverty. This has affected
the world for centuries and is more pronounced in the developing world [9]. For example,
in Ethiopia, the major causes of land degradation are rapid population increase, severe
soil loss, deforestation and intensive crop cultivation [10]. As a result, the unending
activities are responsible for soil nutrient deficit, extreme soil erosion, desertification, and
conflicts [11,12], hence presenting a threat to vulnerable ecosystems and socio-economic
development [13,14].

Therefore, frequent monitoring of land productivity is important for the sustenance of
ecosystem services and goods. GIS and remote sensing tools are handy to monitor standing
biomass [15,16]. The GIS tools can indirectly be utilised to evaluate land productivity such
as through the development and integration of indices, mapping and interpolation [17]. The
robust tools of GIS and earth observation can be effectively utilised to assess the potential of
land productivity of any place in the world. It is also partly because they can ably monitor
biomass on a large area of land at any given period of the year.

From our literature search, this study acknowledges that there is limited literature
available related to land productivity assessments in Africa [18–20]. This is due to the
value and importance attached to land for food production and hence the survival of most
communities across the world, particularly in Sub-Saharan Africa [21–23]. This study,
therefore, bridges this knowledge gap by providing a methodology for assessing land
productivity at macro and micro levels, but also investigates productivity across a spectrum
of different terrestrial biomes and agro-ecological zones and their causes.

The specific objectives of this research were to (i) assess the soil productivity and land
productivity of standing biomass and (ii) determine the effect of rainfall on the standing
biomass in Eastern Africa.

2. Materials and Methods
2.1. Study Area

The ten African countries selected to determine the state of land productivity are
located in Eastern Africa. These include Djibouti, Eritrea, Ethiopia, Kenya, Mauritius,
Rwanda, Somalia, South Sudan, Sudan and Uganda. They cover a landmass of about
224,006 km2 (Figure 1). These countries were selected by the Global Monitoring for Envi-
ronment Security (GMES) and Africa Programme. The objective of the GMES and Africa
Programme is to address the growing needs of African countries to access and use Earth
Observation (EO) data for the implementation of sustainable land development policies
across the continent. This study was conducted between 2019 and 2020. The climate of stud-
ied countries can be broadly classified into arid to semi-arid (Horn of Africa), tropical (East
Africa) and mild tropical maritime climate for Mauritius. The semi-arid areas experience a
unimodal rainfall pattern while those in the tropical regions enjoy a bimodal pattern. On
average, the studied countries receive total seasonal rainfall amounts of more than 500 mm
which can support plant life. The study area’s annual average temperature ranges from
21 ◦C to 31 ◦C. The coldest temperatures are recorded in Mauritius and the hottest in Khar-
toum [24]. The soils that support productivity are composed of Humic Latosols, Ferralsols,
Acrisols, Nitosols, Lithosols, Vertisols, and Fluvisols [25,26]. Rudimentary smallholder
subsistence farming is the main socio-economic activity in the region [27].

2.2. Datasets Collected and Used

The proposed methodology of land productivity was developed using freely available
global earth observation datasets. However, this method can also be applied on customised
data. The spatial datasets that were downloaded and used to assess land productivity
included Globcover (2009), Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model (30 m), Food and Agriculture Organisation (FAO) soil data (2019), Climate Hazards
center InfraRed Precipitation with Station data (CHIRPS) rainfall data (2001–2020), MODIS
Soil Adjusted Vegetation Index (2001–2019) and land-use/cover (2015). The downloaded
datasets were re-projected to WGS ESPG 4326 and collated with the national datasets
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(Table 1). Each dataset was independently processed (such as inserting factor ratings) to
meet the model requirements. The limitations of global spatial datasets used include coarse
resolution and duplication of datasets. However, the global datasets were validated with
country-specific information and they collated well.
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Table 1. List of datasets and associated sources.

Datasets Source

Soils (with physio-chemical properties and FAO legend) http://www.fao.org/soils-portal/ (accessed on 22 July 2020)

Climate data (rainfall) https://data.giss.nasa.gov/impacts/agmipcf/agmerra/
(accessed on 24 July 2020)

Topography (Digital Elevation Model) https://earthexplorer.usgs.gov/ (accessed on 4 August 2020)
Vegetation Indices (SAVI) https://earthexplorer.usgs.gov/ (accessed on 6 June 2020)

Land use/cover https://earthexplorer.usgs.gov/ (accessed on 2 July 2020)
Administrative boundaries http://geoportal.rcmrd.org/ (accessed on 2 July 2020)

Protected areas https://www.protectedplanet.net/ (accessed on 2 July 2020)
Population National Bureau of Statistics (accessed on 4 August 2020)
Drainage http://tapiquen-sig.jimdo.com (accessed on 2 July 2020)

Agro ecological zones http://geoportal.rcmrd.org/layers/servir%3Aafrica_
agroecological_zoning (accessed on 12 July 2020)

2.3. Development of Land Productivity Methodology
2.3.1. Approach Used

An earth observation-based land productivity approach was adopted by this study.
The approach proposed was based on the concepts of interacting human–environment sys-
tems [28], Millennium Ecosystem Assessment [29] and the Drivers–Pressures–State–Impacts–
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Responses model [30,31]. These frameworks are preferred as the basis of reporting human–
environment interactions to inform decision-making processes to curb land degradation.

This methodology takes into consideration recent efforts by Conservation Interna-
tional in designing the Trends.Earth tool [32]. Trends.Earth offers data and tools to inform
the assessment of land degradation state, trend and performance (https://trends.earth/
docs/en/index.html (accessed on 16 August 2020)). This platform uses cloud computing
to process massive satellite images into usable information. It assesses land trends through
three indicators: land productivity, land cover and soil carbon [33]. However, this approach
does not factor in soil and social-economic information that have been recognized to influ-
ence land productivity, hence misreporting, for example, on seasonally used agricultural
land, and harvested woodland plantations. However, the Trends.Earth tool recognises
agro-ecological zones as a unit of state and performance comparison, and the determina-
tion of the relative productivity state is arbitrary. To bridge this gap, the proposed land
productivity methodology intends to accurately define the above-ground productivity state
and appropriate soil productivity. The definition of the above-ground productivity state is
based on Mukuralinda et al. [34] productivity index—one of the robust statistical-based
productivity indices. The latter assume that land productivity and degradation are the two
extreme states of productivity. Any given state is a linear combination of the two extreme
states, whose productivity index is given by the polarization index, similar to the NDVI,
but where the parameters used in the polarisation index are the coefficients of the extreme
states in the linear model used to define a given above ground productivity.

Therefore, the land productivity approach proposed considered the aspects of Soil
Productivity and Net Primary Productivity-(NPP). Figure 2 shows the land productivity
model. This model considers factors that influence ecosystem biomass production such as:

1. Climate and climatic variables (rainfall, etc.);
2. Ecosystem structural elements (like soil properties, slope, drainage, etc.);
3. Vegetation health (trend);
4. Human interactions (physical infrastructure, land use, demographic data, etc.).
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Figure 2. Land productivity model.

The Soil Productivity Index (SPI) indicators used in the model were soil organic matter,
texture, moisture availability, gravel content, base saturation, pH, CEC, soil depth and
drainage. However, the Net Primary Productivity (NPP) indicator used was the Soil-
Adjusted Vegetation Index (SAVI). The overlay of soil and land productivity provides
rich information on the overall potential of land productivity in a given area. A detailed
description of processes followed to define SP and NPP are presented below.

https://trends.earth/docs/en/index.html
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2.3.2. Soil Productivity Index

The Soil Productivity Index was based on the Food and Agriculture Organisation
(FAO) soil classification and Soil Productivity Index. The FAO soil classification provides
inherent agricultural productivity of different soils, and infers them as low, moderate,
high and very highly productive soils. This represents the potential of a given soil to
produce crops or biomass. The inherent agricultural productivity of the soils of the targeted
countries was based on FAO classification. However, soil fertility was not included in the
methodology due to limited country specific data.

Factor ratings were defined for each range of diagnostic parameters used in the SPI
and the different layers associated with these diagnostic parameters were reclassified to
read the factor rating before the calculation of the SPI. Refer to Tables 2–10 for detailed
factor ratings of soil depth, cation exchange, slope, soil texture, drainage, base saturation
and pH, organic matter, soil moisture and slope depth. However, the soil gravel content
did not significantly affect the soil productivity outcome; therefore, it was not considered in
the final Soil Productivity Index. The soil productivity classes of very high and high were
computed to estimate the most productivity coverage of soils while the intensities of very
low and low were used to define countries with low productive soils.

The values of the SPI were standardized and reclassified based on the FAO factor
rating scheme as shown below:

(a) Above 75—Very high productivity;
(b) <75—High productivity;
(c) <50—Moderate productivity;
(d) <30—Low productivity;
(e) <20—Very low productivity.

Table 2. Factor ratings of soil depth (cm).

Soil Depth Classification Codes Class Factor Rating

Very shallow P1 <10 20

Shallow P2 10–30 50

Fairly deep P3 30–90 70

Deep P4 90–120 85

Very deep P5 >120 100

Table 3. Factor ratings of Cation Exchange Capacity (cmol·kg−1).

CEC Code Class Factor Rating

Low A0 <5 20

Moderate A1 <20 50

Good A2 <40 75

Very good A3 >40 100

Table 4. Factor ratings of slope (%).

Slope Code Class Factor Rating

Flat E1 0–2’ 20

Rolling E2 2–8’ 50

Moderately steep E3 8–15’ 70

Steep E4 15–25’ 85

Very steep E5 >25 100
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Table 5. Factor ratings of soil texture.

Texture Code Description Factor Rating

Very low T1, T2 Stony or gravel soils, extremely
coarse textured soil 20

Low T3, T5 Dispersed clay of unstable structure
or Heavy textured soils 50

Moderate T6 Medium heavy soils 70

High T7 Soils of averaged or balanced texture 85

Very high T4 Light textured soils 100

Table 6. Factor ratings of drainage.

Drainage Code Description Factor Rating

Very poor D1 Marked water logging all year round 20

Poor D2 Moderate water logging for 8 days to 2 months 50

Moderate D3b Water logging for brief period less than 8 days
each time 70

Good D3a Good drainage-water table is sufficiently low 85

Well D4 Well drained soils 100

Table 7. Factor ratings of base saturation and pH.

Base Saturation and pH Code Class Factor Rating

Very low N1 BS < 15%, pH:3.5–4.5 20

Low N2 BS 15–35%, pH:4.5–5 50

High N3 BS 35–50%, pH:5–6 85

Very high N4 BS 50–75%, pH:6–7 100

Moderate N5 BS > 75%, pH:7–8.5 70

Table 8. Factor ratings of organic matter (%).

Organic Matter Code Description Factor Rating

Very low O1 Very little organic matter < 1% 20

Low O2 Little organic matter 1–2% 50

Moderate O3 Average organic matter 2–5% 70

High O4 High organic matter >5% 85

Very high O5 Very High organic matter >5% and C/N over 25 100

Table 9. Factor ratings of soil moisture content (%).

Code Description and Classes Factor Rating

O1 Very little organic matter, less than 1% 20

O2 Little organic matter, 1–2% 50

O3 Average organic matter content, 2–5% 70

O4 High organic matter content, over 5% 85

O5 Very high content but C/N over 25 100
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Table 10. Factor ratings of topography (slope depth—cm).

Soil Depth (P)

Code Description Factor Ratings

P1 Rock outcrops with no soil cover or very shallow cover 20

P2 Very shallow soil, <30 cm 30

P3 Shallow soil, 30–60 cm 50

P4 Fairly deep soil, 60–90 cm 70

P5 Deep soil 90–120 cm 85

P6 Very deep soil > 120 cm 100

2.3.3. Estimation of Soil Erosion

Soil loss was estimated based on the Revised Universal Soil Loss Equation (RUSLE).
Only the potential soil loss was determined (Management factor P = 1). This process is
important to understand reductions in land productivity. Soil loss was computed based
on erosivity, erodibility, slope length and cover factor. Rainfall erosivity was determined
based on Moore [35]:

= 0.029 × (3.96 × P + 3122)− 26 (1)

• where P is the mean annual precipitation in mm. P was determined for 30 years using
CHIRPS rainfall data.

• Various approaches can be used to estimate soil erodibility. In this method, erodibility
was estimated based on Morgan [36].

• Slope length was estimated based on Moore et al. [37]. This is expressed in the
equation as:

LS =

(
Flow length(or Flow Accumulation)× Cellsize

22.13

)0.4
×

(
sinslope
0.0896

)1.3
. (2)

• Cover factors were extracted from Panagos et al. [38] as summarised below in Table 11:

Table 11. C cover factors for Soil Erosion Assessment.

No Land Use/Cover Types C Factor

1 Trees cover areas 0.13

2 Shrubs cover areas 0.3

3 Grassland 0.3

4 Cropland 0.5

5 Vegetation aquatic or regularly flooded 0

6 Lichen Mosses/Sparse vegetation 0.45

7 Bare areas 0.9

8 Built-up areas 0.9

10 Open water 0

Soil loss was reclassified using FAO [39] classification scheme as presented below:

a. 0–2 ton/ha/yr—Very low
b. 2–10 ton/ha/yr—Low
c. 10–50 ton/ha/yr—Moderate
d. 50–90 ton/ha/yr—High
e. Above 90 ton/ha/yr—Very high
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2.3.4. Net Productivity Index

Net Primary Productivity (NPP)/standing biomass is one of the most important param-
eters in describing the functioning of any ecosystem [40–42]. The MODIS (MOD13Q1) Soil
Adjusted Vegetation Index (SAVI) (2001–2019) data were downloaded and used to deter-
mine the country-specific status of land productivity. MODIS (SAVI) and CHIRPS (rainfall
data) were used to investigate if rainfall had a significant impact on standing biomass.

2.3.5. Land Productivity Classification Scheme

The classification scheme of land productivity was developed in consideration of ago-
ecological zones of the studied countries where the standing biomass value range thresholds
were defined using eight percentiles and aggregated into a realistic land productivity
scheme that is acceptable. To compute the spatial extent of land productivity status, the
intensity classes of very high, high and slightly high were considered while extremely low,
very low and low classes were used to establish countries with the least productivity of
standing biomass.

2.4. Effect of Rainfall on Land Productivity

Reference monitoring points were generated in each agroecological zone in the studied
countries and used to assess the relationship between rainfall and Soil Adjusted Vegetation
Index using regression models between the 2001 and 2019 periods. Depending on the
number of agroecological zones in each country, the monitoring points were Kenya (7),
Uganda (8), Rwanda (3), Sudan (9), South Sudan (2), Somalia (6), Ethiopia (10,) Eritrea (2)
and Djibouti (2).

2.5. Validation of Land Productivity Maps

To confirm the accuracy of the developed maps, the mandated national institutional
stakeholders in partnership with the GMES Africa programme through the Regional Centre
for Mapping of Resources for Development (RCMRD) were selected and consulted. These
included members of the public, private sector and community-based organisations. Project
consultations were virtually conducted at the peak of the COVID-19 pandemic, using a
validated interview guide and responses recorded. The guide thought to investigate the
status of land productivity, indicators, causes and effects. The Zoom video communication
platform was used to interview the respondents primarily because it is secure and reliable.
In all the studied countries, a second in-country validation of the products was conducted
through the presentation of findings in a face-to-face nationally organised workshop upon
easing the pandemic lockdowns. The national key informants were formally invited for a
day’s validation workshop and further provided feedback on the land productivity outputs.

3. Results
3.1. Soil Productivity Index

This study reveals that the SPI in the studied countries was dominant from “Very
Low” to “Low” (74.2%). In other words, the majority of these soils fall under low and
very low Soil Productivity Indices. Those with “High” to “Very High” productivity indices
only represent 11.8% of the studied countries (Table 12 and Figure 3). At the country level,
the most productive soils are found in Mauritius (79%), Rwanda (40%) and South Sudan
(19%) in terms of spatial extent—whereas, the countries with the least productive soils are
Djibouti (96%), Eritrea (92%), Kenya (84%) and Sudan (80%) (Table 13).
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Table 12. Regional-scale of soil productivity for the studied countries.

SPI Area (km2) %

Very Low 1,604,887 30.2
Low 2,338,109 44.0

Moderate 750,347 14.1
High 436,166 8.2

Very High 189,527 3.6
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Figure 3. Soil Productivity status of the studied countries.
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Table 13. Soil Productivity Index for the studied countries.

Intensities Djibouti Eritrea Ethiopia Kenya Mauritius Rwanda Somalia South Sudan Sudan Uganda

Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) %

Very Low 2290 10.0 47,213.0 38.4 244,224.4 21.3 230,020.8 38.8 2075.3 8.5 196,711.9 29.4 22,722.91 3.61 820,584.41 44.04 38,233.9 15.8

Low 19,792 86.2 65,677.1 53.4 499,035.8 43.6 268,143.8 45.2 4383.0 17.9 310,203.3 46.3 343,576.29 54.55 673,948.91 36.17 152,801.3 63.3

Moderate 587 2.6 7344.5 6.0 297,146.2 26.0 49,116.9 8.3 335.4 21.5 8300.9 33.8 75,375.4 11.2 144,531.60 22.95 131,914.60 7.08 34,397.8 14.3

High 281 1.2 2761.0 2.2 92,003.6 8.0 22,298.1 3.8 1225.3 78.5 995.3 4.1 82,203.0 12.3 48,413.01 7.69 177,142.46 9.51 6737.5 2.8

Very high 12,032.9 1.1 23,798.2 4.0 8797.6 35.8 5528.6 0.8 70,558.41 11.20 59,509.202 3.2 9071.0 3.8
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3.2. Characteristics of the Land Productivity Classes

The characteristics of the eight land productivity classes are hereby presented in
Table 14. The low classes are differentiated by the extent of bare patches and sparse grass-
lands and/or shrubs—while moderate to very high land productivity was differentiated by
the extent of the standing biomass.

Table 14. Description of the different land productivity classes.

Class Description

Extremely Low These are portions of land that are entirely bare or rocky

Very Low These are portions of land that are bare to some extent

Low These are portions of land that are characterised by sparse grasslands,
shrubs with bare patches

Slightly Moderate
Portions of land with slightly moderate standing biomass (closed

vegetation e.g., Closed evergreen or deciduous forest, Mosaic
vegetation (grassland/shrubland/forest)/cropland)

Moderate
Portions of land with moderate standing biomass (closed vegetation

e.g., Closed evergreen or deciduous forest, Mosaic vegetation
(grassland/shrubland/forest)/cropland)

Slightly High
Portions of land with slightly high standing biomass (closed vegetation

e.g., Closed evergreen or deciduous forest, Mosaic vegetation
(grassland/shrubland/forest)/cropland)

High
Portions of land with high standing biomass (closed vegetation e.g.,

Closed evergreen or deciduous forest, Mosaic vegetation
(grassland/shrubland/forest)/cropland)

Very High
Portions of land with very high standing biomass (closed vegetation

e.g., Closed evergreen or deciduous forest, Mosaic vegetation
(grassland/shrubland/forest)/cropland)

3.3. Land Productivity Status

This study shows that, in the studied countries, about 10.8% of the land is of “Very
high” land productivity (Table 15). About a third of the region is “Extremely low “ to “low,
a third is “Slightly moderate” to “Moderate”, and a third is of “Slightly high” to “Very
High” land productivity. At the country level, the countries with the highest spatial extent
of standing biomass are Mauritius (97%), Rwanda (96%), Uganda (95%), South Sudan
(89%), Ethiopia (47%) and Kenya (36%), while the least spatial extent of standing biomass
is found in Djibouti (99.8%), Eritrea (69.7%), Sudan (62.1%) and Somalia (38.9%) (Table 16
and Figure 4).

Table 15. The regional spatial extent of land productivity in the studied countries.

Land Productivity Area (km2) %

Extremely Low 71,818 1.3

Very Low 907,988 16.6

Low 900,543 16.4

Slightly Moderate 883,370 16.1

Moderate 784,025 14.3

Slightly High 1,031,753 18.8

High 310,141 5.7

Very High 592,291 10.8
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Table 16. Country specific status of land productivity for the studied countries as per 2019.

Intensities Djibouti Eritrea Ethiopia Kenya Mauritius Rwanda Somalia South Sudan Sudan Uganda

Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) %

Extremely Low 4062.65 19.0 10,155 8.42 13,967 1.23 1969 0.3 2.7 0.25 409 1.56 693 0.11 99 0.01 33,609 1.63 6852 3.06

Very Low 16,724.80 78.4 46,544 38.59 66,545 5.87 25,838 4.4 3.2 0.3 130 0.49 25,106 3.97 198 0.03 726,185 35.23 714 0.32

Low 500.14 2.3 27,331 22.66 70,300 6.20 60,284 10.2 3.2 0.3 106 0.4 219,666 34.78 1148 0.17 520,585 25.25 620 0.28

Slightly
Moderate 43.08 0.2 23,185 19.22 225,314 19.86 133,223 22.6 6.4 0.6 132 0.5 180,249 28.54 9308 1.39 311,255 15.1 655 0.29

Moderate 7.35 0.03 10,591 8.78 225,747 19.90 156,783 26.6 21.2 1.98 367 1.4 126,328 20 65,965 9.82 196,119 9.51 2096 0.94

Slightly High 2.07 0.010 2747 2.28 267,703 23.60 109,102 18.5 80.1 7.48 7446 28.36 68,041 10.77 312,420 46.52 231,528 11.23 32,684 14.59

High 0.05 0.0002 50 0.04 86,590 7.63 29,013 4.9 65.8 6.14 8606 32.78 7770 1.23 116,289 17.32 25,643 1.24 36,114 16.12

Very High 0 0 23 0.02 178,351 15.72 73,148 12.4 888.8 82.95 9060 34.51 3764 0.6 166,154 24.74 16,630 0.81 144,272 64.41
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Figure 4. State of land productivity.

3.4. Causes of High and Low Land Productivity Status

As explained by the key informants, the dominant standing vegetative biomass was
categorised as natural forests, woodlands, croplands, grasslands, wetlands and tree plan-
tations. They attributed the High Land productivity status to the best soil quality and
management (such as fertilization and irrigation), agricultural policies, climatic conditions
and land husbandry activities (terraces, trenches, land consolidation), while they explained
the low standing vegetative biomass by the high magnitude of soil erosion, floods and
droughts, mining activities, urbanisation, low soil fertility, high clay content in the soils
and poor farming methods, especially over-cultivation.

In addition, the determinants of soil productivity as reported by the key informants
were soil moisture content, soil drainage, soil depth, soil texture/structure, soluble salt
concentration, organic matter, mineral exchange capacity and overgrazing. The reported
regions of high and low productivity in the ten studied countries are shown in Table 17.
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Table 17. Land productivity status in the studied countries.

Land Productivity Status

No Country Most Productive Regions Least Productive Regions

1 Uganda West, central, east Karamoja (Northern eastern)

2 South Sudan Equatorial region Bahr el Ghazal

3 Sudan Darfur, South Kordofan and Blue
Nile (& central region) Northern region

4 Rwanda Northern region Southern and western

5 Somalia

Lower Jubba, Middle Jubba, Lower
Shabelle, Middle Shabelle, Bay,
Gado, Bakol, Hiraan, Part of Awdal,
Part of north east

Nugal, Sool, East (Bari), Part of
Sanaag, Part of North East
(Waqooyi Galbeed)

6 Kenya

Uasin Gishu, Trans Nzoia and parts
of Lake Victoria basin. Others
include Muranga, Nyeri, Meru and
Tharaka-Nithi (Mountain areas and
western parts of Kenya)

Samburu, Kitui, Garissa, Tana
River, Mandera, Turkana,
Marsabit, Baringo, West Pokot,
Kajiado, Kilifi, Wajir and
Makueni

7 Ethiopia Addis Ababa, Harari, Dire Dawa,
Gambella, Benishangul Gumuz Amhara, Oromia, Tigray, Somali

8 Eritrea
The western part of Eritrea (Gash
Barka and some part of Anseba) and
areas along the coastal zones

The Danakil area, Northern part,
and central part of Eritrea

9 Djibouti Tadjourah region, and the Mabla
Mountains near Obock, Dorra, Balho Randa, Obock, Ali Addeh, Dikhil

10 Mauritius
Northern, eastern and southern i.e.,
Pamplemousses, Grand Bale, Quatre
Bornes, Roches Noires

Western part i.e.,
Noyale–Chamarel-Bel Ombre,
Port Louis –Signal Mountain,
Balaclava-Grand
Baie–Goodlands, Roche
noire-Bras D’Eau–Belle
Mare-Trou D’Eau Douce-Grand
Riviere Sud Est, Quatre
Soeurs-Grand Sable-Bois Des
Amourettes-Mahebourg-Blue
Bay-Le Bouchon

3.5. Effect of Rainfall on Land Productivity

The results showed a positive and strong relationship between rainfall and standing
biomass in Kenya, Eritrea, Mauritius and South Sudan. The correlation is significant
and moderate in Uganda and poor in Djibouti and Rwanda (Figure 5). The positive
relationship implies that rainfall has a significant contribution to triggering and sustaining
the availability of standing biomass compared to the countries that provided weaker
correlations. As per interviewed key informants, the additional parameters which could
have influenced standing biomass include topography, management and policy reforms.
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Figure 5. Relationship between SAVI and Rainfall (2001–2019) in the studied countries.

4. Discussion
4.1. Soil Productivity Index

This study has shown that an equal proportion of land has a “Very Low” to “Low”,
“Slightly moderate” to “Moderate” and” High” to “Very High” SPI. This confirms the
diversity in terms of the environmental and soil-forming factors in the region [8] and the
claims by Sanchez and Logan [43] that some soils of the region are acidic, infertile and
often incapable of sustained agricultural production. Land productivity in Eastern Africa
is highly influenced by the state of soils in their natural environment and the amount of
rainfall received. Soils of high productivity are deep, permeable, with sufficient nutrient
content and supply, and do not have water stress. It is worthwhile to note that most of the
soils in the region have strong acidity of soluble Aluminium, which is toxic for most crop
species. These include Ferralsols, Acrisols, Cambisols and Vertisols. Zake [44] noted, for
example, that more than 70% of the land in Uganda is covered by Ferralsols, Vertisols and
Acrisols. This is one of the reasons why about 10% of the soils in Uganda are productive.
According to Msanya [45], about 52% of Tanzania is covered by Cambisols, Ferralsols and
Vertisols. The SPI results are in line with Eswaran et al. [8] and report that about 16% of
the land on the continent is of High soil productivity, 13% of medium and about 55% of
them are unsuitable for any form of cultivated agriculture except nomadic grazing. The
regional use of inorganic fertilizers, irrigation and adoption of soil and water conservation
and climate-smart agriculture has remained very low.

It is worthwhile to note that, although the results are in line with previous authors’ obser-
vations in the region, deviations from reality on the ground could be induced by the accuracy
of the model used, the choice of factors, their relative importance and their resolutions.
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4.2. Net Primary Productivity

Mostly the areas with “High” to “Very High” standing biomass occurred in regions
with “Moderate” to “Very High” SPI and that receive adequate rainfall amount. This
is in line with Lewis et al. [46] observations on the positive relationship between the
Above Ground Biomass (AGB) and rainfall, clay-rich soils; C:N ratio, and soil fertility
computed as the sum of base cations. Areas with high SPI which had low standing
biomass were either used for cultivation or have undergone degradation. In various
Eastern African countries, the private sector and individuals have been encouraged to
invest in tree plantations [47]. The latter can provide affordable wood for industry and
wood-based products for consumers [48]. Hence, its offset will result in the pressure on
wood products from natural forests and vulnerability of forest ecosystems degradation for
their conservation, protection and recreation purposes [49]. However, if well managed,
they can also contribute positively to the provision of environmental and social services
and livelihood support [50]. Unfortunately, the demographic pressure characterizing these
countries and the region and the concomitant of social and economic development is likely
to increase the demand for and consumption of wood products. Subsequently, the standing
biomass will still dwindle due to deforestation for timber and wood supply, and horizontal
expansion of agricultural land. For example, Bullock et al. [51] reported that in the East
African region the rapid economic changes experienced in the past 30 years have been at
the expense of natural ecosystems. Most East and South African nations including Kenya,
Malawi, Rwanda, Tanzania, Ethiopia, Burundi, Zambia and Uganda have communities that
are often involved in the conversion of woody natural habitats to less-woody cultivated
or developed land cover types [16]. From 1990 to 2020, natural forest cover has decreased
by 17% [52]. Deviations from realities from the ground could also be explained by the
resolution of the images used in the study.

Freeman [53] also noted that the average life expectancy increased from 45 to 67 years.
This change in life expectancy coupled with the population growth is likely to double the
population of the region in the next 30 years. The economic changes and population growth
have contributed to the growth of small urban centres in the region [54], hence encroaching
on natural habitats. The increasing demands of growing urban populations on natural
resources put direct and indirect pressures on natural ecosystems in the region [55]. In
addition, the continuous cropping and inadequate replacement of nutrients removed in
harvested materials or loss through erosion and leaching subsequently leads to soil fertility
decline [56] and hence poor standing vegetation biomass. Although agroforestry has also
been promoted in the region, the adoption rate has remained very low [57]. However,
agroforestry is one of the key sustainable management practices which can contribute
significantly to increasing standing vegetation biomass and reducing deforestation [58,59]
as well as promoting biodiversity conservation.

4.3. Effect of Rainfall on Standing Biomass

Generally, rainfall had a significant and strong effect on the standing biomass in all
the countries except Djibouti, Mauritius and Rwanda, where the correlation was very
low. In Uganda, the correlation between annual rainfall and annual standing biomass
was moderate. The relationship between the annual rainfall and standing biomass is
explained by the type of soils, the climate and the type of tree species that grow in the
various ecosystems in the different countries. The growth of trees is reduced or ceases due
to limited water availability in the soils [60–62]. Water retention in the soils is a function of
their depth and permeability. The majority of the soils in Eastern African countries present
a good depth for water storage. For Uganda, the Karamoja region and some parts of the
northern region are under semi-arid conditions and have shallow soils, respectively. The
trees in the Karamoja region are dominated by savannah grassland with scattered acacia
species, while the northern region is dominantly a savannah grassland region. The poor
correlation between rainfall and standing biomass in Rwanda is associated with the status
of land use/cover in the country. Apart from the game reserves and protected areas, most
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of the country is either cultivated land or under settlements. A study by Li et al. [63] shows
that, before 2000, the land-use and land cover (LULC) in Rwanda was mainly converted
from forest and grassland to cropland, with the ratio being 0.72:0.28; however, after 2010,
the LULC was mainly converted from forest to grassland and cropland, with the ratio of
0.83:0.17. The situation in Djibouti is explained by the low SPI and low amount of rainfall.

Therefore, much of this study was conducted in Africa, and the proposed model can
be customised to assess soil and land productivity for any continent. It can also be applied
from national to plot level investigations. The aim is to restore degraded landscapes or
sustain vegetative biomass purposely to increase soil productivity, ecosystem services
and production.

5. Conclusions

This study shows that, over time, the countries with the most productive soils are
Mauritius, Rwanda and South Sudan. Our study further reveals that the countries with the
most productive land are Mauritius, Rwanda, Uganda, South Sudan, Ethiopia and Kenya,
while those with the least standing biomass are Djibouti, Eritrea, Sudan and Somalia. It
also shows an association between SPI and standing biomass. The dominant productive
biomes are natural forests, woodlands, croplands, grasslands, wetlands and tree plantations.
Generally, there is a strong and significant positive correlation between annual rainfall
and standing biomass, except in Djibouti, Uganda and Rwanda. This is favoured by soil
quality, conducive climatic conditions, policies and land husbandry activities. This study
demonstrates the importance of improving soil health, use of sustainable land utilisation,
initiating land reforms and increasing crop-related productivity if land productivity is to
be improved.
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