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Abstract: The socio-economic consequences of the Xylella fastidiosa epidemic represent a global prob-
lem that can only be addressed through tailored, local solutions. The selection of public interventions
is not a trivial task for policy makers, as they must weigh many different interests (e.g., private
profit, ecosystem services, usability, preservation and growth of real estate value, amenities, and land
protection). The present paper addresses this challenge by building participatory scenarios based on
“fuzzy cognitive maps,” with the aim of identifying effective, acceptable, and efficient policy mixes
to address the Xylella epidemic. The work investigates the case of southern Salento (Italy)–an olive
production area at the epicentre of the global Xylella outbreak–to identify the most suitable actions for
regenerating the landscape. To this end, the most efficient policy mixes are determined according to
three possible policy perspectives, which provide different weights for effectiveness and acceptability.
The results show that the proposed methodological approach may assist policy makers in coping
with multifaceted policy challenges.

Keywords: policy mixes; iso-utility sets; policy perspectives; Xylella fastidiosa; fuzzy cognitive maps

1. Introduction

Xylella fastidiosa (Xf ) is an insect-vectored bacterial plant pathogen that originated
on coffee plants in Costa Rica. Subsequently, it appeared in southern Italy, southern
France, Spain (i.e., Balearic Islands), Germany, China, and Iran. Outbreaks cause a sig-
nificant economic impact in the agricultural sector. The microorganism affects more than
350 species, including many woody and herbaceous plants, crops, and weeds [1]. Although
many plants are asymptomatic hosts, in some species, Xf induces severe and even lethal
changes, such as plume disease (in peach trees), oleander leaf scorch, and citrus canker.
This characteristic, coupled with its capacity to spread through a large number of host
plants, represents a tremendous threat to the agricultural landscape, given the widespread
presence of susceptible species.

The threat of Xf has become most evident in Salento—a large area in the Apulia region
(southern Italy), known for its centuries-old olive groves. Here, Xf has provoked rapid
olive tree desiccation, resulting in one of the worst phytosanitary emergencies in the world.
Approximately 22 million plants have been infected and nearly 6.5 million olive trees have
died [2], generating significant (direct and indirect) economic and social consequences.
Direct effects include the reduction of agricultural incomes, the contraction of agri-food
production, and negative externalities throughout the value chain. Indirect effects stem
from the severe destruction of the rural landscape (Figure 1), which has an adverse impact
on tourism, property values, and quality of life for local residents. Indeed, beyond the
direct use values generated, the olive groves in Salento provide recreational, aesthetic, and
educational benefits that contribute to health, security, and social relations, thus improving
residents’ well-being [3]. These effects are the most difficult to analyze, due to the intricate
interactions between various landscape elements.
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Figure 1. Salento’s landscape devastation due to Xylella fastidiosa infection [4]. 

A landscape is a complex system in which a number of actors (e.g., farmers, produc-
ers, citizens, tourists, public institutions) interact with a variety of objectives (e.g., profit, 
ecosystem services, usability, the preservation and growth of real estate values, amenities, 
land protection); through this interaction, they generate particular system properties (re-
lating to land use), such as agricultural, rural, urban, industrial, and touristic vocation, or 
a mixture of these [5]. Accordingly, an analysis of individual behaviours is not sufficient 
to understand the outcomes of a landscape system, as the system is, in part, determined 
by the interactions among actors [5]. 

In most planning practices, complexity is addressed through the identification of sub-
systems (i.e., ecological, landscape, and socio-economic), which are assigned specific ob-
jectives and actions [6]; however, this reductionist approach can lead to inconsistencies or 
conflict, stemming from the complex interactions among subsystems. For example, a pol-
icy intervention may have non-linear outcomes, due to the adaptive responses (i.e., stra-
tegic behaviour, ignorance, non-rationality) of actors to the policy and other context vari-
ables [7, 8]. The Xf epidemic has disrupted local systems at the landscape, naturalistic-
environmental, and socio-economic levels, dramatically changing both land use opportu-
nities and living conditions. For this reason, it is essential that policy makers obtain com-
prehensive knowledge about the current state of these systems and the possible effects of 
any policy decisions on the local community and landscape. 

The complex systems approach emphasises the importance of empirically capturing 
relevant knowledge from experiential actors and stakeholders [9]. The framework as-
sumes that individuals who live and operate within and near the system have embedded 
knowledge of the system’s components and mechanisms. Thus, local stakeholders are so-
licited to provide insight into the system state and functioning [10], in order to support 
policymakers in successfully designing preferred interventions. 

Within the complex systems approach, the analytical tool of “fuzzy cognitive maps” 
(FCMs) may be applied to capture the complexity of a system. Compared with other tech-
niques of soliciting embedded knowledge (e.g., Q methodology, [11]; multi-criteria deci-
sion analysis, [12]; full interviews; [10]), FCMs are more manageable and flexible. Thus, 
they are able to depict dynamic systems, as they acknowledge feedback and loops among 
variables and provide a representation and analysis of causal relationships [7]. Moreover, 
FCMs allow for a complete investigation of scenarios, even when only verbal information 
is available (and including when this information is expressed in non-technical and/or 
vague or imprecise language). This helps to overcome the typical challenge of a lack of 
data on emergent or novel phenomena. Finally, FCMs are a powerful simulation tool that 
can identify likely system evolution paths according to both natural trends and external 
interventions [13]. From a policy perspective, it is worth noting that external interventions 
are based on a rational framework and a shared stakeholder vision of the system. This 
allows for relatively legitimated policies to be implemented, leading to improved sustain-
ability within the policy cycle. 

Figure 1. Salento’s landscape devastation due to Xylella fastidiosa infection [4].

A landscape is a complex system in which a number of actors (e.g., farmers, producers,
citizens, tourists, public institutions) interact with a variety of objectives (e.g., profit, ecosys-
tem services, usability, the preservation and growth of real estate values, amenities, land
protection); through this interaction, they generate particular system properties (relating
to land use), such as agricultural, rural, urban, industrial, and touristic vocation, or a
mixture of these [5]. Accordingly, an analysis of individual behaviours is not sufficient to
understand the outcomes of a landscape system, as the system is, in part, determined by
the interactions among actors [5].

In most planning practices, complexity is addressed through the identification of
subsystems (i.e., ecological, landscape, and socio-economic), which are assigned specific
objectives and actions [6]; however, this reductionist approach can lead to inconsistencies or
conflict, stemming from the complex interactions among subsystems. For example, a policy
intervention may have non-linear outcomes, due to the adaptive responses (i.e., strategic be-
haviour, ignorance, non-rationality) of actors to the policy and other context variables [7,8].
The Xf epidemic has disrupted local systems at the landscape, naturalistic-environmental,
and socio-economic levels, dramatically changing both land use opportunities and living
conditions. For this reason, it is essential that policy makers obtain comprehensive knowl-
edge about the current state of these systems and the possible effects of any policy decisions
on the local community and landscape.

The complex systems approach emphasises the importance of empirically capturing
relevant knowledge from experiential actors and stakeholders [9]. The framework assumes
that individuals who live and operate within and near the system have embedded knowl-
edge of the system’s components and mechanisms. Thus, local stakeholders are solicited to
provide insight into the system state and functioning [10], in order to support policymakers
in successfully designing preferred interventions.

Within the complex systems approach, the analytical tool of “fuzzy cognitive maps”
(FCMs) may be applied to capture the complexity of a system. Compared with other
techniques of soliciting embedded knowledge (e.g., Q methodology, [11]; multi-criteria
decision analysis, [12]; full interviews; [10]), FCMs are more manageable and flexible.
Thus, they are able to depict dynamic systems, as they acknowledge feedback and loops
among variables and provide a representation and analysis of causal relationships [7].
Moreover, FCMs allow for a complete investigation of scenarios, even when only verbal
information is available (and including when this information is expressed in non-technical
and/or vague or imprecise language). This helps to overcome the typical challenge of a
lack of data on emergent or novel phenomena. Finally, FCMs are a powerful simulation
tool that can identify likely system evolution paths according to both natural trends and
external interventions [13]. From a policy perspective, it is worth noting that external
interventions are based on a rational framework and a shared stakeholder vision of the
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system. This allows for relatively legitimated policies to be implemented, leading to
improved sustainability within the policy cycle.

For these reasons, in the present study, we built participatory scenarios based on the
FCMs approach, with the aim of identifying effective, acceptable, and efficient policy mixes
for renewing the rural landscape of Salento, which has been significantly affected by the
Xf epidemic. To this end, we primarily investigated the southern part of Salento, which
represents the olive production area that has been most severely hit by Xf. We obtained a
thorough understanding of local stakeholders’ perceptions of the territory, identifying the
most important system variables (including the interactions between these variables) and
trends in the system evolution. Subsequently, we developed a fully shared scenario among
stakeholders, thereby improving the selection of efficient protection/regeneration policy
mixes among the most effective and/or acceptable ones and reducing the risk of policy
failure.

The remainder of the paper is structured as follows: Section 2 describes the materials
and methods; Section 3 presents and discusses the results; and, Section 4 ends with some
concluding remarks.

2. Materials and Methods

The FCMs technique, which gathers and analyzes relevant information from local
stakeholders on system variables and their interactions, was applied to create participatory
scenarios. Furthermore, FCMs were used to analyze the future evolution of the system
through the application of fuzzy inference, representing the collected information in a
computational model [14]. First employed in psychology research [15], this participatory
method was later extended to decision making problems using neural network infer-
ence [16]. The benefit of the technique is that, as stakeholders share critical information,
decision makers gain a deeper understanding of local community needs; this allows them
to develop effective, acceptable, and efficient policy interventions, while simultaneously
reducing conflict [7].

FCMs frame actors’ perceptions of a system in cognitive maps of variables that are
interconnected through a set of causal relations. Each relation has a numerical weight,
representing intensity, direction, and sign (positive or negative) [17]. This computational
model is then employed to simulate scenarios starting from differing conditions.

In accordance with Ozesmi and Ozesmi (2004), the approach can be divided into three
macro-steps:

1. construction of the cognitive maps;
2. structural analysis of the cognitive maps;
3. simulation of possible future scenarios.

Step 1. In the present study, this step aims to identify: (i) the system variables and
(ii) their causal relations and related weights. To carry out task (i), we conducted a desk
analysis of the socio-economic context of southern Salento between February and March
2020 through an in-depth investigation of official and grey literature, including scientific
publications, reports, journal articles, and websites. Through this search, we identified
19 variables. The preliminary list was then reviewed by three researchers (one agronomist
with experience in Xf and two economists with expertise in the rural landscape), who
identified the most relevant variables. Then, these variables were classified as: drivers
(i.e., policy interventions) and effects (i.e., the environmental, social, and economic conse-
quences of policy interventions). Task (ii) was performed using an ad hoc questionnaire.
The questionnaire was administered to 13 representatives of local stakeholders (i.e., 7 local
olive oil producers who had been affected by the epidemic, 1 representative of a local
agricultural association, 4 researchers from Apulia universities with competencies in agri-
cultural economics and agronomy, and 1 representative of the Agricultural Department of
the Apulia Regional Government), who were asked to identify the existence of a causal re-
lationship between each couple of variables, indicating its sign (positive when the increase
in one variable causes an increase in the other; otherwise negative) and intensity (rated
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on a three-point scale: 1 (weak), 2 (medium), 3 (strong)). Thus, stakeholders’ perceptions
were transformed into numerical data, which enabled us to create a cognitive map for
each respondent in the form of an n × n adjacency matrix (where n was the number of
variables). Each ai,j matrix element represented the weight of the causal relation between
variables i and j. This information was then grouped into three kinds of maps, representing
three levels of analysis: individual maps (13), category maps (4; i.e., Producers, Local
Agricultural Association, Researchers, Regional Government), and an overall map that
synthesised the perspectives of all stakeholder categories. The elements of the adjacency
matrices were normalised in the range (−1, 1). As this process leads—in step 3—to the
identification of the preferred policy mixes, this method lies in the more general revealed
preferences approach [18].

Step 2. The structural analysis of the cognitive maps employed social network analysis
(SNA) to calculate network and punctual indices [19]. Network indices capture salient
aspects of the entire map, in terms of the number of connections, network density, and
network centralization. Punctual indices characterize the relational profiles of variables,
using out- and in-degree, as well as total degree indices. Table 1 describes these indices in
more detail.

Table 1. Network and punctual indices employed to structurally analyze the cognitive maps.

Index Formula Description

Network indices

Number of connections Nc = |L|
L is the set of the map relations. Number of relations between n variables.

Network density
D = Nc

N(N−1)
N is the number of nodes.

Ratio between the number of actual connections
and the maximum number of possible

connections. This shows the map connectivity
(i.e., how connected or sparse the map is).

Network centralization
C = ∑N

i=1 Td∗−Tdi

∑N
i=1 Td∗−Tdi

Td∗ is the degree of the most central node and
Tdi is the total degree as explained below.

Sum of differences between the degree of the
most central node and the degrees of all other
nodes, divided by the largest theoretical sum.
This reflects the extent to which the network
features one or more very central nodes. It

ranges between 0 (i.e., completely democratic
network, with influence evenly distributed

across all nodes) and 1 (i.e., fully centralized
network, with one variable influencing all

others). This measure is calculated for both out-
and in-degree indices.

Punctual indices

Out-degree od(vi) =
N
∑

k=1
aik

Cumulative strength of connections (aik) exiting
from variable I and reaching the k other

variables.

In-degree id(vi) =
N
∑

k=1
aki

Cumulative strength of connections (aki) entering
variable i and coming from other k variables.

Total degree Tdi = od(vi) + id(vi)
Sum of the in- and out-degree indices. This

shows how a variable is connected to others and
the cumulative strength of its links.

Variables were then classified into the following three types: senders, transmitters, and
receivers. Senders have a positive out-degree and a zero in-degree index, and therefore,
they serve as stimuli for the rest of the system (i.e., they send stimuli but do not receive
any). Transmitters have both a positive out- and a positive in-degree index; they receive
stimuli from senders and other transmitters, spreading them to the rest of the system.
Receivers have a zero out-degree and a positive in-degree index, thus representing the
ends of the system; they can be used to monitor the system’s performance and the effects
of any changes due to external pressure. In general, it is not necessary for all categories
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of variables (i.e., senders, transmitters, receivers) to be present in real systems, as their
distribution depends exclusively on stakeholder perceptions.

Step 3. In this step, we simulated possible future scenarios by means of FCMs. Simu-
lations described the potential evolution of the system according to stakeholder percep-
tions, with the aim of verifying whether internal trends would converge toward system
equilibrium.

To this end, data from step 1 were used to feed a computational model formed of an
n × 1 vector (V) (representing the initial values of the n variables) and the n × n adjacency
matrix (A) (containing the weights of the causal relations between variables). The model
was run in an initialization phase (t0) and a number of reiteration phases (t1, . . . , tn). At t0,
the n values of V were arbitrarily set to 1 [12]. Subsequently, to determine the new state of
V at each t, V was multiplied by A1. This process was reiterated until V stopped changing,
thereby identifying the system as being in a steady state (s.s). This allowed us to predict
how the system would evolve in the context of no external intervention. The calculation
described above provided the basis for reasonable intervention scenarios, which simulated
policy drivers—both individually and in combination. More specifically, simulations were
created by manipulating the value of certain variables that could act as policy drivers. The
selected variables were set to their maximum value (=1) to generate changes in the s.s. of
other variables. Policy mixes were assessed according to the degree of change they effected
in the s.s. of relevant variables. As stakeholder interests may differ from those of policy
makers, we defined three assessment criteria:

(i) effectiveness, operationalized as the sum of changes in the s.s. of the variables embody-
ing policy objectives;

(ii) acceptability, measured as the sum of changes in the s.s. of target variables (i.e.,
variables representing stakeholder viewpoints). As the policy perspective is unique,
effectiveness was computed for the collective map, whereas complexive acceptability
was calculated as the sum of each category’s acceptability; and

(iii) efficiency, which concerned the number of policy drivers in the mix (assuming that
mixes that achieve the same objective with fewer (costly) policy drivers are more
efficient). Since no information was available for the costs of policy instruments, the
underlying simplification assumed a comparable cost of implementation for all policy
drivers. Section 3.3 reports the identification process of policy objectives and target
variables.

Criteria (i), (ii), and (iii) informed the selection of the preferred policy mixes, as follows.
First, measures of effectiveness and acceptability were combined into a synthetic measure
of social utility, obtained as the algebraic sum of the effectiveness and acceptability values
associated with each mix. This allowed us to identify mixes with the same level of utility
(iso-utility sets). Second, the efficiency criterion was operationalized in consideration of
three policy maker perspectives, based on the following principles:

• social utility maximization, which prefers mixes with the highest social utility and the
fewest policy drivers;

• effectiveness maximization, which prefers mixes with the highest effectiveness and
the fewest policy drivers; and

• constrained effectiveness maximization, which prefers mixes with the highest effec-
tiveness, non-negative acceptability, and the fewest policy drivers.

3. Results
3.1. Construction of the Cognitive Maps

The final set of variables achieved from the desk analysis was composed of 16 variables,
including 5 drivers and 11 policy effects (i.e., 3 environmental, 5 social, and 3 economic), as
described in Table 2.
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Table 2. Description of the system variables.

N. Variables Abbreviation Type Description

1 Land-use planning LUP Policy driver Aims at protecting soil and vegetation and mitigating
hydrogeological risk.

2 Public participation PUB Policy driver
Promotes interaction between institutions and the

community, enabling residents to contribute to
decision making and planning.

3 Environmental regulation ENR Policy driver
Aims at protecting and preserving the environment

by enforcing specific environmental norms for
ecosystem conservation.

4 Income diversification DIV Policy driver Includes measures to improve the diversification and
stabilization of farmers’ income.

5 Local development
agencies LOC Policy driver

Refers to local action plans for rural development,
promoted by local groups (i.e., public-

private partnerships).

6 Monumental olive tree
areas MON Effect

(environmental)

Areas of high natural and ecological value
characterized by the significant presence of centuries

old olive trees with a trunk diameter of at least 1
metre and at least 1.5 metres of above-ground growth.

7 Ecosystem services ECO Effect
(environmental)

Supply services (i.e., biomass produced by the
ecosystem and consumed in the form of food, fibre,

timber, etc.), regulatory services (which support
ecosystem functioning by regulating the climate,

pollutant uptake, water quality, etc.), support services
(necessary for the provision of all other services, such
as soil formation, photosynthesis, the nutrient cycle,
etc.), and cultural services (i.e., intangible, spiritual,

and intellectual benefits deriving from contact
with nature).

8 Natural resources NAT Effect
(environmental)

Natural resources, strictly speaking (i.e., those that
are closely related to nature, including water, soil,

flora-fauna, rivers, etc.)

9 Job opportunities JOB Effect
(social)

Ability of the local labour system to provide suitable
jobs for local communities, including

marginalized people

10 Place branding BRA Effect
(social)

Ability of a territory to develop a competitive identity
according to its authentic characteristics and vocation.

11 Social and cultural inertia SCI Effect
(social)

Community resistance to change (i.e., to adopt
adaptation and mitigation measures directed at

landscape regeneration), based on individual and
group social habits.

12 Openness OPE Effect
(social)

Transparent local decision making through the honest
and effective disclosure of relevant information (i.e.,

how governments conduct public business and
allocate resources) to the local community.

13 Environmental awareness ENV Effect
(social)

Increased capacity of the local community to
understand the fragility of their environment and the

importance of its protection.

14 Production loss PRO Effect
(economic)

Reduction in olive oil production due to the
Xf epidemic.

15 Tourism TUR Effect
(economic)

Whole set of multipurpose activities and services to
sustain tourist flows to the relevant area.

16 Agricultural sector loss of
competitiveness COM Effect

(economic)

Loss of comparative and competitive advantage of
the agriculture sector due to higher costs, reduced

resources, and reduced production quality, caused by
the Xf epidemic.

The questionnaire described above (second task of step 1) was administered between
April and May 2020. Respondents were first contacted via telephone and informed about
the research aims. Subsequently, those who agreed to be interviewed were asked to fill
in, according to their views, the 16 × 16 matrix of variables and the weights of possible
causal relationships. Respondents received this material by email and were provided with
telephone support to perform the task. Figure 2 reports the category and overall cognitive
maps.
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Table 3. Network indices.

Maps Number of
Connections Density

Out-Degree
Centralization

(OdC)

In-Degree
Centralization

(IdC)

Producers 229 0.95 0.05 0.05
Local Agricultural

Association 145 0.6 0.35 0.28

Researchers 179 0.75 0.27 0.27
Regional Government 97 0.4 0.42 0.49

Overall 229 0.95 0.05 0.05

The network indices reveal that stakeholders perceived the system as very intercon-
nected, with only one category with fewer than 100 connections. This was reflected in an
overall map density of 0.95.

The Local Agricultural Association and the Regional Government maps produced the
highest centralization measures. On the one hand, this reflects the significant presence of
control forces in the system; however, in the case of the Regional Government map, the high
OdC and even higher IdC suggest that most of the stimuli flowed toward one, or only a
few variables, which could be considered as the end of the system, and therefore, markers
of the policy drivers’ action. In contrast, the Local Agricultural Association map exhibited
a lower IdC than OdC, indicating that the stimuli sent by the controlling forces reach all
parts of the system fairly equally. The Researchers map shows a perfect balance of OdC and
IdC. Finally, the Producers network was almost complete and very decentralized, reflecting
a very high density; as this was the largest map, it also represented the lower bound of the
overall map, which exhibited almost the same metrics.

The punctual indicators (Table A1) formed a very intricate system of (almost exclu-
sively) transmitters, representing the “connective fabric” of the structure [6]. No senders
existed, whereas only one receiver (JOB) emerged in the Regional Government map. This
means that each element was able to both receive and spread stimuli to other parts of
the system. Moreover, the analysis revealed that some variables (i.e., those with higher
centrality, marked in green) played the role of transmitter more markedly than others.

To further explore the role played by each variable in collecting and sending input,
differences between the in- and out-degree indices were calculated, following relativization
to make the maps comparable. Table A2 reports these differences in the form of a visual
representation, with blue (red) bars indicating whether the out-degree index was higher
(lower) than the in-degree index, and bar size expressing the width of the difference.
Accordingly, transmitters were divided into two groups: net stimuli spreaders (blue bars)
and net stimuli recipients (red bars). Looking at the overall map (column 5), as expected,
policy drivers were largely stimuli spreaders, since they sent much more input than they
received. This was particularly the case for LOC and DIV, which were perceived as net
spreaders by all stakeholders, excluding producers. A similar (albeit more limited) influence
was exerted by LUP and ENR, which were mainly perceived as spreaders. PUB represented
an exception, since it was considered more subject to receiving external stimuli than sending
stimuli, being the only driver with a red bar.

In contrast to the policy drivers, policy effects were mainly considered net stimuli
recipients. For instance, JOB was perceived as a net stimuli recipient by all stakeholder
categories (columns 1–4), and wide agreement among actors was also registered for NAT,
BRA, and COM. The opposite dynamics emerged for MON and ENV, which were mainly
perceived as net stimuli spreaders.

3.3. Simulation of Possible Future Scenarios

To assess the effectiveness and acceptability of policy mixes, we first identified policy
objectives and target variables.

System variables related to landscape regeneration (i.e., MON, ECO, and NAT) were
thought to represent environmental interests and, accordingly, selected as policy objectives.



Land 2022, 11, 763 9 of 14

On the other side, variables thought to represent the interests of each stakeholder category
were as follows:

• PRO and COM for the Producers map, which aimed at reducing the negative im-
pact of the Xf epidemic on production, and indirectly, on the competitiveness of the
agricultural sector;

• PRO and COM for the Local Agricultural Association map, as they are representative of
all actors involved in the sector;

• ECO and COM for the Researchers map, as the experts interviewed were specialised in
agronomy (with a focus on ecosystem services) and agricultural economics; and

• NAT and COM for the Regional Government map, in line with the most relevant func-
tions of the Agriculture Directorate of the Regional Government (i.e., the sustainable
management and protection of forests and natural resources and the competitiveness
of agri-food chains).

We then focused on the effects of the policy drivers on the aforementioned vari-
ables, in terms of change in s.s. To this end, we simulated all possible solutions (i.e., all
31 combinations of policy drivers): five referring to each single policy driver, ten referring
to two-driver policy mixes, ten referring to three-driver policy mixes, five referring to
four-driver policy mixes, and a final policy mix formed of all policy drivers. Figure 3 shows
policy mixes according to their effectiveness, acceptability, and efficiency.
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Figure 3. Effective, acceptable, and efficient policy mixes.

In the figure, points are associated with specific levels of effectiveness (horizontal
axis) and acceptability (vertical axis). Effectiveness increases along the X axis (moving
rightwards), whereas acceptability increases along the Y axis (moving upwards). Although
all mixes exhibit positive effectiveness, some have negative acceptability (situated below
the red line). Mixes with the same level of social utility are connected via a dotted line,
forming iso-utility sets (with utility increasing the further rightward and upward they
move). Colored curves identify the most efficient mixes (i.e., those achieving the objectives
with the fewest policy drivers) according to, respectively, the principles of:

• social utility maximization (yellow curve, connecting mixes with the most straightfor-
ward upward and rightward trajectory and the fewest policy drivers);

• effectiveness maximization (green curve, connecting mixes with the most straightfor-
ward rightward trajectory and the fewest policy drivers); and
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• constrained effectiveness maximization, subject to a minimum (non-negative) accept-
ability (light blue curve, connecting mixes above the red line with the most straightfor-
ward rightward trajectory and the fewest policy drivers).

As is evident in Figure 3, the set of efficient mixes change according to the policy
maker’s perspective. Exceptions are represented by LOC (a potential efficient driver in the
case of both social utility maximization and constrained effectiveness maximization) and
ALL (a potentially efficient mix in the case of both constrained effectiveness maximization
and effectiveness maximization).

Since the yellow curve (i.e., social utility maximization) reflects both effectiveness
and acceptability criteria, it resembles a typical frontier, moving constantly upward and
rightward. A trade-off between acceptability and effectiveness may occur if policy makers
follow either of the other two maximization principles. Indeed, the light blue curve shows
that the increase in effectiveness associated with movement from the two- to three-driver
mix (i.e., from ENR-LOC to PUB-DIV-LOC) corresponds to a large acceptability reduction.
What is the cause of this trade-off? It can be traced back to DIV, which is the most effective
but least acceptable individual policy driver. According to the Regional Government, the
effectiveness of DIV stems from its potential to trigger the multifunctionality of agriculture
through complementary activities such as agri-tourism, social agriculture, educational
farms, local services provided, and typical crafts. This generates greater environmental
conservation by farmers, with a positive impact on landscape regeneration. In contrast,
Producers and Local Agricultural Associations view DIV as unacceptable, mainly due to
concerns that this driver could lead to too much change in producer practices.

Finally, considering the two-driver mix (DIV-LOC), the green curve is superior to the
blue curve, as it involves greater efficiency in the landscape regeneration process with a
minimally negative level of acceptability. A similar result is evident for the three-driver
mix on the green curve (ENR-DIV-LOC), which achieves higher effectiveness than even the
four-driver mix on the light-blue curve (LUP-PUB-DIV-LOC), in the face of a minimum
gain in acceptability.

4. Conclusions

In this work, FCMs were applied to identifying sustainable policy actions for renewing
the rural landscape of Salento, which has been significantly affected by the Xf epidemic, by
including the criteria of effectiveness and acceptability in the analysis. To this end, actors
who are representative of local stakes were interviewed in order to obtain a clear perception
of the territory, along with a technical and social viewpoint. This system representation
was used to build a scenario analysis based on different policy actions.

Such a methodology allows policy makers to easily identify the most effective and
acceptable protection/regeneration policy mixes and to visualise the perception gap among
the various stakeholders’ groups. Moreover, it is useful to find out which policy mixes
match more than one criterion. When this does not occur, a trade-off between effectiveness
and acceptability should be considered. Indeed, the adoption of the minimum acceptability
perspective (i.e., the effectiveness maximization constrained by non-negative acceptability)
represents a way for this trade-off to emerge, providing a rational basis for negotiation and
reducing, at the same time, the risk of policy failure.

Although the analysis lacked information on budgetary constraints and the preferred
maximization principle, such information is already available to policy makers, who are in
charge of allocating financial resources according to a specific political orientation. In other
words, following the presented framework, the public decision maker need only choose:
(i) the curve that best represents his or her political orientation and (ii) the mix that reflects
the highest utility, given the available budget.

Due to the unavailability of information on the cost of policy instruments, the paper
lacks a policy cost analysis; however, this limitation does not negatively impact the ro-
bustness of the investigation or the methodological framework, since policy mixes can be
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easily reordered according to cost. Further empirical analyses might include an appraisal
of policy costs, which is beyond the scope of this paper.
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Appendix A

Table A1. Punctual indices.

Producers Local Agric. Assoc. Researchers Apulia Region Gov. Overall
N. Concepts Outd. Ind. Central. Outd. Ind. Central. Outd. Ind. Central. Outd. Ind. Central. Outd. Ind. Central.
1 Land-use planning 7.82 6.18 14.00 3.33 8.00 11.33 5.50 4.90 10.40 4.33 5.33 9.67 7.39 6.57 13.96
2 Public participation 2.53 4.94 7.47 2.33 6.33 8.67 2.50 2.50 5.00 6.67 2.00 8.67 2.96 4.5 7.46
3 Environmental

regulation 6.94 5.47 12.41 3.67 4.67 8.33 3.30 2.70 6.00 3.33 3.33 6.67 5.79 4.79 10.57
4 Income diversification 2.82 3.12 5.94 9.67 4.67 14.33 2.90 2.70 5.60 3.67 2.67 6.33 3.46 3.18 6.64
5 Local development

Agencies 4.88 5.35 10.24 10.00 4.00 14.00 5.30 3.30 8.60 6.00 1.00 7.00 5.57 4.32 9.89

6 Monumental olive trees
areas 5.71 4.18 9.88 5.67 3.00 8.67 5.00 4.70 9.70 2.00 4.67 6.67 5.5 4.39 9.89

7 Ecosystem services 5.71 5.65 11.35 8.00 7.67 15.67 3.20 5.20 8.40 3.33 4.67 8.00 5.54 5.82 11.36
8 Natural resources 5.35 6.18 11.53 9.00 5.67 14.67 3.80 4.30 8.10 3.33 4.00 7.33 5.5 5.68 11.18
9 Job opportunities 4.47 4.82 9.29 6.33 9.67 16.00 1.70 2.90 4.60 0.00 7.33 7.33 3.07 4.86 7.93
10 Place branding 6.06 5.53 11.59 8.00 9.00 17.00 2.20 3.40 5.60 3.33 6.33 9.67 5.39 5.43 10.82
11 Social and cultural

inertia 2.12 3.29 5.41 8.67 8.67 17.33 4.00 2.70 6.70 5.33 2.00 7.33 1.64 2.96 4.61
12 Openness 4.06 3.71 7.76 4.33 5.67 10.00 3.30 1.60 4.90 1.33 2.67 4.00 4.11 3.64 7.75
13 Environmental

awareness 5.65 5.00 10.65 7.00 9.00 16.00 4.80 4.80 9.60 7.00 1.00 8.00 6.43 5.46 11.89
14 Production loss 3.35 3.12 6.47 9.33 7.33 16.67 1.80 1.90 3.70 0.33 1.00 1.33 2.00 2.39 4.39
15 Tourism 6.12 5.71 11.82 5.00 5.00 10.00 2.70 3.70 6.40 1.67 4.00 5.67 4.86 5.5 10.36

16 Agricultural sector loss
of competitiveness 1.53 2.88 4.41 3.00 5.00 8.00 1.90 2.60 4.50 1.33 1.00 2.33 1.93 1.64 3.57
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Table A2. Relativized in- and out-degrees.

(1) (2) (3) (4) (5)
Variables Producers Local Agric. Assoc. Researchers Apulia Region Gov. Overall

N. Name Type Rel.Outd. Rel.Ind. Diff. Rel.Outd. Rel.Ind. Diff. Rel.Outd. Rel.Ind. Diff. Rel.Outd. Rel.Ind. Diff. Rel.Outd. Rel.Ind. Diff.

1 Land-use planning Policy
Drivers 1.00 0.79 0.21 0.33 0.80 −0.47 1.00 0.89 0.11 0.59 0.73 −0.14 1.00 0.89 0.11

2 Public participation Policy
Drivers 0.32 0.63 −0.31 0.23 0.63 −0.40 0.45 0.45 0.00 0.91 0.27 0.64 0.40 0.61 −0.21

3 Environmental
regulation

Policy
Drivers 0.89 0.70 0.19 0.37 0.47 −0.10 0.60 0.49 0.11 0.45 0.45 0.00 0.78 0.65 0.14

4 Income
diversification

Policy
Drivers 0.36 0.40 −0.04 0.97 0.47 0.50 0.53 0.49 0.04 0.50 0.36 0.14 0.47 0.43 0.04

5 Local development
Agencies

Policy
Drivers 0.62 0.68 −0.06 1.00 0.40 0.60 0.96 0.60 0.36 0.82 0.14 0.68 0.75 0.58 0.17

6 Monumental olive
trees areas Impacts (env.) 0.73 0.53 0.20 0.57 0.30 0.27 0.91 0.85 0.05 0.27 0.64 −0.36 0.74 0.59 0.15

7 Ecosystem services Impacts (env.) 0.73 0.72 0.01 0.80 0.77 0.03 0.58 0.95 −0.36 0.45 0.64 −0.18 0.75 0.79 −0.04
8 Natural resources Impacts (env.) 0.68 0.79 −0.11 0.90 0.57 0.33 0.69 0.78 −0.09 0.45 0.55 −0.09 0.74 0.77 −0.02

9 Job opportunities Impacts
(social) 0.57 0.62 −0.04 0.63 0.97 −0.33 0.31 0.53 −0.22 0.00 1.00 −1.00 0.42 0.66 −0.24

10 Place branding Impacts
(social) 0.77 0.71 0.07 0.80 0.90 −0.10 0.40 0.62 −0.22 0.45 0.86 −0.41 0.73 0.73 −0.01

11 Social and cultural
inertia

Impacts
(social) 0.27 0.42 −0.15 0.87 0.87 0.00 0.73 0.49 0.24 0.73 0.27 0.45 0.22 0.40 −0.18

12 Openness Impacts
(social) 0.52 0.47 0.04 0.43 0.57 −0.13 0.60 0.29 0.31 0.18 0.36 −0.18 0.56 0.49 0.06

13 Environmental
awareness

Impacts
(social) 0.72 0.64 0.08 0.70 0.90 −0.20 0.87 0.87 0.00 0.95 0.14 0.82 0.87 0.74 0.13

14 Production loss Impacts
(econ.) 0.43 0.40 0.03 0.93 0.73 0.20 0.33 0.35 −0.02 0.05 0.14 −0.09 0.27 0.32 −0.05

15 Tourism Impacts
(econ.) 0.78 0.73 0.05 0.50 0.50 0.00 0.49 0.67 −0.18 0.23 0.55 −0.32 0.66 0.74 −0.09

16
Agricultural sector

loss of
competitiveness

Impacts
(econ.) 0.20 0.37 −0.17 0.30 0.50 −0.20 0.35 0.47 −0.13 0.18 0.14 0.05 0.26 0.22 0.04
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Note
1 After multiplying, values in V underwent a logistic transformation to keep their values within the range [−1,1]. For further

details on this methodology, see Lopolito et al. (2020).
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