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Abstract: Evaluating how meteorological drought affects areas covered by natural ecosystems is
challenging due to the lack of ground-based climate data, historical records, and weather station
observation with limited coverage. This research tests how the surface reflectance–derived indices
(SRDI) may solve this problem by assessing the condition and vegetation dynamics. We use long–
term, monthly surface reflectance data (26 hydrological years, 1992/93–2017/18) from Landsat
5 TM, 7 ETM+, and 8 OLI/TIRS satellites and calculated the following five SRDI: Normalized
Difference Vegetation Index (NDVI), Land Surface Temperature (LST), Vegetation Health Index
(VHI), Normalized Difference Water Index (NDWI), and Modified Soil Adjusted Vegetation Index
(MSAVI). The SRDI allows us to detect, classify, and quantify the area affected by drought in the
Guadalupe Valley Basin (GVB) via correlations with the Reconnaissance Drought Index (RDI) and
the Standardized Precipitation Index (SPI) (weather station-based data). For particular SRDI–RDI
and SRDI–SPI combinations, we find positive seasonal correlations during April–May (IS2) and for
annual (AN) values (MSAVI IS2–RDI AN, R = 0.90; NDWI IS2–SPI AN, R = 0.89; VHI AN–RDI AN,
R = 0.86). The drought–affected GVB area accounted for >87% during 2001/02, 2006/07, 2013/14,
and 2017/18. MSAVI and NDWI are the best meteorological drought indicators in this region, and
their application minimizes the dependence on the availability of climatic data series.

Keywords: chaparral vegetation; drought monitoring; surface reflectance–derived drought indices;
meteorological drought indices; spatial–temporal variation; semi–arid Mediterranean region

1. Introduction

Drought is a periodic phenomenon caused by recurrent decreases in precipitation over
a prolonged period; it can affect a vast proportion of the Earth’s surface, reducing the qual-
ity of life and affecting the livelihoods of millions of people worldwide [1]. The American
Meteorological Society (AMS) classified drought into the following four types: meteorologi-
cal, agricultural, hydrological, and socioeconomic [2,3]. A meteorological drought is caused
by recurrent below–average precipitation over a given area during an abnormally long
period and is often a precursor of other types of droughts. When meteorological droughts
persist for a considerable length of time, the societal impacts are caused by the interplay
between natural events (e.g., precipitation deficiency) and human water use demands
(e.g., agriculture practices) [4], resulting in a supply–demand scenario that consequently
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diminishes surface and groundwater resources. During meteorological droughts, a com-
bination of reduced water supply and water quality deterioration impacts agricultural
productivity (even reaching crop failure), reduces hydropower generation, promotes habitat
disturbance, and even affects recreational, economic, and social activities [2,5]. Therefore,
monitoring the incidence and status of meteorological drought is critical for planning
strategies to mitigate its harmful effects across vast areas and time frames.

Many environmental indicators have been employed to quantify meteorological
droughts, such as changes in soil moisture, air humidity, temperature, rainfall, streamflow
volume, evaporation, and water transpiration from plants [6]. On the other hand, different
drought indices have been proposed by combining these indicators in relation to the inten-
sity, duration, severity, and spatial extension of the drought event. However, most indices
rely on quantifying drought using ground–based meteorological data [2,7–9]. The primary
limitations of the use of meteorological drought indices (particularly in developing coun-
tries) are the low availability of weather stations providing hydro–climatic data coverage
for large territories and the generally small length of the ongoing meteorological records,
thus resulting in a reduced resolution to characterize the spatial extent and intensity of
drought [10–13].

Regarding the detection of meteorological drought, two worldwide–used meteorologi-
cal drought indices are the Standardized Precipitation Index (SPI) [7] and the Reconnais-
sance Drought Index (RDI) [8]. The SPI considers only precipitation as a climatic input and
assumes that the precipitation variability is higher than the temperature variability [14].
However, extremely high temperatures and heatwaves amplify drought impacts (e.g., in
the NW–Mexico and the SW–United States) that could modify these assumptions [12,15,16].
Based on the relationship between precipitation and potential evapotranspiration, the RDI
describes the water deficit in plants more realistically than indices based only on precip-
itation [17]. In order to characterize the spatial extent of meteorological drought events,
the following two approaches can be taken: (a) Using indices for drought assessment with
climatic ground–based data that often generalize or extrapolate the temporal and spatial
measurements obtained from a few sites and periods to evaluate areas without data. The
inconvenience of this method is that it can lead to errors in data analysis and drought
monitoring and forecasting; (b) employing remote sensing–based methods for drought
monitoring derived from satellite observations, which may solve the common lack of tem-
poral data availability and also allow for expanding the spatial extent of weather ground
observations [18–20]. For instance, in regions with low–density ground–based weather
observation networks, remote sensing data may be the only available, cost–effective source
of information. Satellites are critical contributors to large–scale drought monitoring [21].

In particular, moderate spatial and temporal resolution Landsat satellites (e.g., 5, 7, 8)
with integrated multispectral sensors (e.g., TM, ETM+, OLI/TIRS) have provided remote
sensing–based surface reflectance data to characterize vegetation, temperature, and water
conditions since the 1980s. As droughts modify the water status of vegetation, the surface
reflectance–derived vegetation indices monitor their resulting reflectance changes [22]. The
most applied surface reflectance–derived index for monitoring vegetation dynamics is the
Normalized Difference Vegetation Index (NDVI) [23]. NDVI is a ratio of the maximum
reflection of radiation in the near-infrared band (NIR) and the maximum absorption of
radiation in the red band (R). In conjunction with the NDVI, satellite–based Land Surface
Temperature (LST), derived from thermal infrared (TIR) data, is also used to evaluate the
status and evolution of natural vegetation and drought monitoring [14,24–26]. Overall,
the NDVI and LST are expected to have the following strong negative correlation: Higher
NDVI and lower LST values would indicate more soil water content and less evaporation,
resulting in increased vegetation greenness [24,27]. Given that NDVI and other vegetation
indices are principally related to vegetation biophysical parameters (e.g., chlorophyll leaf
content or greenness [28]), which are controlled by variations in soil water content, their
spectral signature may be distorted in sparsely vegetated sites due to increased LST and
surface albedo. As a consequence, other indices have been developed to monitor the
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drought and desertification process. Some of these indices integrate LST and NDVI, such as
the Vegetation Condition Index (VCI) and the Temperature Condition Index (TCI), which
are then integrated into a Vegetation Health Index (VHI) for drought detection [27]. Other
indices include the Modified Soil Adjusted Vegetation Index (MSAVI), which focuses on
the soil background influence on vegetation cover [29,30]; the Normalized Difference Water
Index (NDWI) [31], formulated to estimate soil moisture and vegetation canopy water
content due to variations in transient soil water availability, aiming towards a fast water
shortage indicator for rapid drought monitoring (e.g., [32]).

This study evaluates the performance of five surface reflectance–derived spectral
indices (NDVI, LST, VHI, MSAVI, NDWI) for detecting meteorological drought and the spa-
tial extent of drought in areas covered by native vegetation in the semi–arid Mediterranean
region of the Guadalupe Valley Basin (GVB), Baja California, Mexico. Since 1998, GVB has
experienced periods of low rainfall and a succession of dry periods [12,33]. However, the
lack of updated climatic data at weather stations, missing data, and data series < 20 years,
have difficult the delimitation of the spatial extent of the meteorological drought, partic-
ularly over the drought–tolerant vegetation. The main objectives of this study are the
following: (1) to establish the relation between surface reflectance–derived spectral indices
and meteorological drought indices (RDI, SPI) at seasonal and annual scales; (2) to deter-
mine which surface reflectance–derived index (or indices) best reproduces meteorological
drought detection; (3) to apply a simple per–pixel model on Landsat datasets to establish
the long–term spatial coverage of meteorological drought in the study area. These results
can be employed as a methodology to assess the spatial extent of drought, detect vulnerable
areas, quantify the spatial coverage of drought on vegetation, evaluate temporal change,
and minimize the dependence on climatic data series when analyzing meteorological
droughts in the natural ecosystem of the highlands of the GVB and elsewhere with similar
climatic conditions.

2. Materials and Methods
2.1. Study Area

The study area comprises the Guadalupe Valley Basin (GVB) (centroid coordinates;
32◦06′01′′ N, 116◦33′13′′ W), located 37 km north of the city of Ensenada in Baja California,
Mexico (Figure 1a). Hydrographically, it includes the Guadalupe Valley and its aquifer
(Guadalupe aquifer). The GVB comprises the central portion of a larger basin (Guadalupe
Basin) with runoff flowing east-west (from the Sierra de Juárez to the Pacific Ocean). The
geomorphology of the GVB (315 km2) is divided into the following two main areas: a
zone with steep topography (highlands, 220 km2), mainly covered by natural vegetation
(Chaparral), and a flat zone, dominated by an agricultural inter-mountain alluvial valley
(95 km2), which constitutes the principal wine producing region in Mexico (Figure 1b,c).

The climate type is semi–arid Mediterranean [34], with rainfall during the cool–winters
(December–March), dry warm–summers (June–September), and the hydrological year
ranges from October to September. Annual precipitation varies from ca. 60 mm to 600 mm,
and the average is ca. 264 mm y−1. Approximately 77% of total rainfall falls in winter and
around 2% in summer; the remaining 21% occurs in the other two intervening seasons. The
average temperature varies from 13 ◦C in December to 25 ◦C in August and an annual
18.3 ◦C [12]. This region is included in the California Floristic Province, a hot spot of biologi-
cal diversity. The main vegetation types in the GVB highlands are evergreen sclerophyllous
chaparral and Diegan coastal sage scrub vegetation species [35,36]. The natural ecosystem
presents low anthropogenic disturbance. The slope gradient (Slo) in the GVB was calcu-
lated using a 5–m digital elevation model (DEM) from the Mexican National Institute of
Statistics and Geography (INEGI, [37]). The slope surface was reclassified considering a
Slo ≤ 8◦ and Slo > 8◦ to fragment the agricultural valley and natural zones, and further
visual inspection with Google Earth imagery and field observations. For the purpose of
this study, GVB will refer only to hillslopes (highlands) above 8◦. Elevation and slope
gradient in the valley range from 270 to 460 m (average, 331 m) and 0–8◦ (average, 2◦),
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excluding small hilly areas immersed on the valley surface with steeper slopes (Figure 1b,c).
Elevation and slope gradients in the GVB range from 274 to 1350 m (average, 584 m) and
0–73◦ (average, 18◦), including areas with slopes of less than 8◦ that occupy small valleys
located in the highlands (Figure 1b,c). The dominant slope gradient in GVB ranges from
14 to 23◦.
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2.2. Meteorological–Based Drought Indices

Drought indices based on weather–station datasets have been used as agents for
meteorological drought evaluation [2]. This research uses two of the most widely used
drought indices for monitoring meteorological drought, the RDI and SPI. The RDI is
based on the relationship between precipitation and potential evapotranspiration fluxes
(Figure 2), thus providing a long–term trend for temperature and precipitation [8]. The
SPI is calculated by fitting historical precipitation into a Gamma probability distribution
function and re–transforming it to a normal distribution [7]. The data are fitted to a mean
of zero in both indices and a standard deviation of one; this allows for identifying historical
wet, dry, and neutral periods (positive, negative, and zero values, respectively) (Table 1).
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Figure 2. Monthly precipitation (P) and potential evapotranspiration (PET) from Agua Caliente
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Table 1. Drought severity classification according to the Standardized Precipitation Index (SPI)
modified from [7], applied to the classification of drought in the Guadalupe Valley Basin, Baja
California, Mexico.

Drought Classification SPI

Normal (NOR) >−0.5
Abnormally dry (AD) −0.5 to −0.8

Moderate drought (MD) −0.8 to −1.3
Severe drought (SD) −1.3 to −1.6

Extreme drought (ED) −1.6 to −2
Exceptional drought (ExD) <−2

RDI and SPI were calculated with monthly precipitation and potential evapotranspira-
tion data (from mean temperature) obtained from the Agua Caliente (AC) weather station
of the Mexican National Water Commission (CONAGUA) during the 1979–2016 period and
the Guadalupe Valley (CIC) weather station of the Ensenada Center for Scientific Research
and Higher Education (CICESE) for 2017–2018 period (location, Figure 1; data, Figure 2).

Potential evapotranspiration was calculated using monthly mean temperature with
Thornthwaite’s methodology [38]. We tested the meteorological sensitivity and surface
reflectance–derived spectral indices to drought conditions in the region on an annual (AN)
and seasonal basis. Seasons were divided into wet (WS), dry (DS), and the following
two intervening hydrological seasons (IS): IS1, October–November, WS, December–March,
IS2, April–May, and DS, June–September [39]. In subsequent analyses, the precipita-
tion, RDI, and SPI time–series from October 1992 to September 2018 were used congru-
ently with Landsat time–series data (26 hydrological years, 1992/93–2017/18) per each of
these seasons.

2.3. Imagery Processing

We compiled a terrain precision correction (L1TP) 30–m Landsat monthly dataset from
October 1992 to September 2018, covering 26 hydrological years. Data were acquired from
the U.S. Geological Survey (USGS) EarthExplorer website [40] (Landsat 5 TM, 1992–2011;
Landsat 7 ETM+ and Landsat 8 OLI/TIRS from 2012–2018). In total, we processed
307 Landsat tiles Path 39/Row 38 and Path 40/Row 38 (<10% cloud cover) that encom-
passed the study area in QGIS 3.14.16 with GRASS 7.8.3 [41,42]. Moreover, a 5–m spatial
resolution DEM from INEGI was used to delineate the basins, the hydrographic network,
and hillslope zones within GVB (Figure 1).

Landsat datasets were missing data for six months (December 1994; February 1995;
April 1999; November 2013; January 2014; December 2016) due to cloud cover and no data
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from the EarthExplorer platform. The original data (spectral bands) were corrected for
atmospheric effects, and the original image format of Digital Numbers was converted to
radiance and then into surface reflectance with the semi–automatic classification plug–in
in QGIS 3.14.16 [43]. Moreover, inter–calibration of spectral bands between TM, ETM+,
and OLI sensors was performed [44]. Then, we calculate the NDVI as the ratio between re-
flectance in the near–infrared (NIR) minus the reflectance of visible red (R) band of the elec-
tromagnetic spectrum and the sum of the NIR and R bands (NDVI = (NIR-R/NIR + R)) [23]
and land surface emissivity by the logarithmic relationship between temperature emissivity
and NDVI as described in [45]. The LST [46,47] was computed with the spectral radiance
conversion to at–sensor brightness temperature, land surface emissivity, and NDVI. The
details of the image preprocessing are described in Table 2. To avoid human disturbances
(e.g., irrigation), we eliminated the agricultural land (flat slopes within GVB); then, each
image was clipped to the GVB boundaries to obtain the hillslope surface of the GVB.
Monthly Landsat bands were stacked, and surface reflectance–derived spectral indices
were calculated per dataset (NDVI, VCI, TCI, VHI, MSAVI, NDWI).

Table 2. Spectral bands preprocessing procedure. Radiometric and atmospheric corrections, bright-
ness conversion to temperature, and the Normalized Difference Vegetation Index calculation steps
for 307 tiles of Landsat. Datasets covered 26 hydrological years in the Guadalupe Valley Basin, Baja
California, Mexico.

Image Conversion to Reflectance Equation Equation Notation

Spectral Radiance at the Sensor’s
Aperture (Lλ) [43] Lλ = ML ∗DN + AL (1)

ML = Multiplicative rescaling factor
AL = Additive rescaling factor

DN = Digital number
d = Earth-Sun distance

ESUNλ = Mean solar exo-atmospheric irradiance
θs = Solar zenith angle

Lp = Path radiance
DNmin = Minimum DN value

K1, K2 = Band specific thermal constants
λ = Mean wavelength of emitted radiance

c2 = h ∗ c/s (1.4388 ∗ 10−2 m K)
h = Plank’s constant (6.626 ∗ 10−34 J s)

s = Boltzmann constant (1.38 ∗ 10−23 J K)
c = Velocity of light (2.998 ∗ 108 m s−1)

Top of Atmosphere (TOA)
Reflectance (ρp) [43] ρp =

(π∗Lλ∗d2)
ESUNλ∗cosθs

(2)

Land Surface Reflectance (ρ) [43] ρ =
(π∗(Lλ−Lp)∗d2)

ESUNλ∗cosθs (3)

Atmospheric correction Equation
Dark Object Subtraction Method

(DOS1) [43,48] Lp = ML∗DNmin+AL−0.01∗ESUNλ∗cosθs
π∗d2 (4)

Brightness conversion
to Temperature Equation

Satellite Brightness
Temperature (TB) [43] TB = K2

ln[(K1/Lλ)+1] (5)

Land Surface
Temperature (LST) [46] LST = TB

[1+(TB/c2)∗ ln(e)] (6)

Land Surface Emissivity (e) [45] e = 1.009 + 0.047∗ ln(NDVI) (7)
Surface reflectance vegetation

index Equation

Normalized Difference Vegetation
Index (NDVI) [23] NDVI = NIR−R

NIR+R (8)

2.4. Surface Reflectance–Derived Spectral Indices

Using corrected Landsat data, the biophysical responses of the vegetation to annual
and seasonal climatic conditions, precipitation, and potential evapotranspiration fluxes
included in the RDI and SPI calculation were represented by the values of the NDVI [23],
the LST [46], the VCI, the TCI, the VHI [27], the MSAVI [29] and the NDWI [31]. The VCI
and TCI were estimated from NDVI and LST values following the procedure illustrated in
Table 2.

VCI =
NDVI−NDVI(min)

NDVI(max) −NDVI(min)
(9)
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The VCI equation relates the NDVI values in a determined period using the long–term
minimum NDVI value (NDVI(min)), normalized by the range of NDVI values calculated in
the same period.

TCI =
LST(max) − LST

LST(max) − LST(min)
(10)

The TCI equation was formulated in reversed quotient to the VCI where LST(max)
and LST(min) are the long–term maximum and minimum LST values in a defined period,
based on the assumption that higher temperatures would fare worst for the vegetation
development, and vice versa [24]. A combination of VCI and TCI to form VHI has proven
to be a valuable tool for meteorological and agricultural drought detection in climatic
regions where water availability is the main restriction for the development of natural
vegetation (arid, semi–arid, and sub–humid zones) [13,27,49–51]. We assigned an α value
of 0.5, assuming an even contribution from both indices (VCI, TCI) in the VHI [52] to
drought classification.

VHI = αVCI + (1− α)TCI (11)

The MSAVI was proposed to correct the soil factor (L) in the Soil Adjusted Vege-
tation Index (SAVI, [53]), minimizing soil background reflectance in vegetation spectral
signature [29]. MSAVI was developed aiming to produce a more reliable indicator of vege-
tation spectral signature than NDVI on deciduous vegetation surfaces [29,54]. Therefore, it
could be a better indicator of vegetation greenness and response to meteorological drought
in sparse vegetation sites than NDVI, VCI, and VHI. In equation 4, NIR and R are the
near–infrared and red reflectance bands, respectively.

MSAVI =
2NIR + 1−

√
(2NIR + 1)2 − 8(NIR− R)

2
(12)

We also included the NDWI because it is considered a reflectance–based water–
sensitive vegetation index [31]. The NDWI was calculated as the ratio between reflectance
in the near–infrared (NIR) minus the reflectance of the short–wave infrared (SWIR) band of
the electromagnetic spectrum and the sum of the NIR and SWIR bands.

NDWI =
NIR− SWIR
NIR + SWIR

(13)

2.5. Statistical Analyses

Mean monthly and seasonal (IS1, WS, IS2, DS, AN) surface reflectance–derived indices
values were calculated and extracted with the Zonal Statistics function. The strength and
direction of linear relationships between surface reflectance–derived indices and meteo-
rological drought indices were evaluated by means of correlation coefficients (R), using
Pearson correlations, either in a seasonal or annual time frame for the entire period (October
1992 to September 2018), only for hillslopes within the GVB. A standardized deviation from
the long–term mean was calculated to find anomalies in the surface reflectance–derived
indices by applying the Standardized Anomaly Index (SAI) [55]. Lastly, we compare
the seasonal response of vegetation with the meteorological drought indices (RDI, SPI)
as follows:

SAIi =
xi − x

σ
(14)

where xi, x, and σ are the seasonal mean of reflectance–based indices, the long–term
mean, and the standard deviation, respectively. Then, simple linear regression models
were developed with the surface reflectance–derived spectral indices best correlated with
RDI and SPI in hydrological seasons to apply a per–pixel correction and establish the
drought–affected area in the GVB highlands during 1992/93–2017/18 hydrological years.
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3. Results
3.1. Linking Climatic and Biophysical Parameters

In the Guadalupe Valley Basin (GVB), during the study period (October 1992–September
2018), the occurrence of meteorological droughts comprised time intervals with high tempera-
tures and low precipitation. Drought periods were successfully visualized by the monthly
and seasonal time–series of the NDVI, and LST hillslopes values, as well as the daily and
seasonal precipitation datasets from Agua Caliente and CICESE weather stations (Figure 3).
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Figure 3. (a,b) Highlands average surface reflectance-derived monthly Normalized Difference
Vegetation Index (NDVI) and Land Surface Temperature (LST) (L5, L7, L8 represents Landsat datasets),
(c) daily precipitation (P) from Agua Caliente and Guadalupe Valley weather stations, Baja California,
Mexico, from 1992/93 to 2017/18 hydrological years, the x-axis indicates month/year. (d–f) Seasonal
NDVI, LST, and P, respectively; (IS1, intervening season 1; WS, wet season; IS2, intervening season
2; DS, dry season). Broken lines represent annual mean historical values (NDVI, 0.24; LST, 28 ◦C;
P, 245 mm). The x-axis indicates the hydrological year.

The NDVI values from each season provided information on the GVB’s historical
and recent greenness variability. Figure 3a shows the time series of NDVI calculated
with Landsat 5, 7, and 8 datasets. From 2013 onwards, the NDVI values were calculated
with Landsat 8 (dark green line) and Landsat 7 (light green line). Oddly, the Landsat
8 NDVI values from 2013 onwards increased after the inter–calibration process, which
does not coincide with the daily (Figure 3c) and seasonal (Figure 3f) precipitation records.
Therefore, all further analyses and results are presented from the Landsat 5 and 7 datasets.
We corrected the Landsat 7 striped band errors with the GRASS 7.8.3 r.fillnulls function
included in QGIS 3.14.16 [41,42]. The NDVI values showed a seasonal progression with
peak values during IS2 (April–May), WS (December–March) and a minimum through
IS1 (October–November), DS (June–September) (Figure 3a,d), which are inverse to the
LST values. Overall, NDVI peak values (NDVI ≥ 0.4) occurred at the end of WS and
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during IS2 (e.g., 1992/93, April; 1995/96, March; 1997/98, April; 2000/01, April; 2012/13,
March; 2016/17, March), preceded by the maximum accumulated rainfall during WS of
146–504 mm (Figure 3f) and the lowest LST values (on average 13–23 ◦C) (Figure 3b),
due to the delay of biomass production. Lower NDVI values (NDVI ≤ 0.2) occurred
regularly between June and July and remained nearly constant from months (e.g., July 97 to
September 97) to years (e.g., April 02–February 03, July 05–January 08, June 13–January 15)
(Figure 3a). In those periods, precipitation in WS did not exceed 125 mm, and maximum
LST values identified mainly in DS, and IS2 ranged from 31 to 36 ◦C (Figure 3e). Overall,
lower NDVI values (Figure 3a,d) strongly corresponded with the driest hydrological wet
seasons and years. For instance, WS precipitation in 2001/02 (54 mm), 2005/06 (74 mm),
2006/07 (65 mm), 2013/14 (48 mm), 2017/18 (49 mm). In the studied climatic period
(1992–2018), the 2017/18 hydrological year stands as the driest year in our record (annual
precipitation = 58 mm) (Figure 3c,f).

3.2. Seasonal and Annual Correlations

There were strong correlations between seasonal NDVI, LST, and precipitation (Table 3).
For instance, LST and precipitation negatively co–vary for WS and AN (R = −0.74–−0.82),
resulting in lower LST values during rainy periods. Moreover, strong positive correlations
(from R = 0.73 to 0.81) between NDVI and precipitation were found in AN, IS2, WS, and
DS. Water availability enhanced vegetation greening responses during (WS), development
(IS2), and water shortage (DS), which diminished greenness throughout the hydrological
seasons (Table 3). Seasonal and annual variation in vegetation greenness (NDVI, Figure 3a,d)
and its correlation with precipitation and LST showed a clear positive linear response with
precipitation (WS R = 0.69; AN R = 0.81) and moderate–weak negative associations with
LST (WS R = −0.24; AN R = −0.56). Both factors (precipitation and LST) affected the NDVI
(positively/negatively), but the correlations pointed to precipitation as the primary seasonal
control on NDVI more than LST.

Table 3. Seasonal Pearson’s correlation coefficients between the Land Surface Temperature (LST), the
Normalized Difference Vegetation Index (NDVI), and Precipitation (P) in the Guadalupe Valley Basin,
Baja California, Mexico.

P P LST

LST IS1 WS IS2 DS AN NDVI IS1 WS IS2 DS AN NDVI IS1 WS IS2 DS AN
IS1 −0.18 −0.20 −0.07 −0.33 −0.25 IS1 0.07 −0.03 0.00 0.47 0.02 IS1 −0.25 −0.36 −0.08 −0.18 −0.15
WS −0.28 −0.82 −0.17 −0.28 −0.82 WS 0.41 0.69 0.02 0.33 0.73 WS −0.51 −0.24 −0.54 −0.32 −0.33
IS2 −0.06 −0.59 −0.34 −0.23 −0.59 IS2 0.20 0.78 0.28 0.31 0.78 IS2 −0.72 −0.20 −0.64 −0.54 −0.62
DS −0.01 −0.59 −0.47 −0.37 −0.60 DS 0.11 0.76 0.25 0.32 0.74 DS −0.68 −0.26 −0.59 −0.49 −0.63
AN −0.21 −0.74 −0.36 −0.42 −0.77 AN 0.28 0.79 0.17 0.40 0.81 AN −0.70 −0.28 −0.63 −0.49 −0.56

Strong Moderate Weak Negligible

The Pearson’s correlation coefficient analysis of five surface reflectance–derived spec-
tral indices (NDVI, LST, VHI, MSAVI, NDWI) with the meteorological drought indices (RDI,
SPI) across the hydrological seasons showed a consistently higher correlation for MSAVI
than for VHI, NDWI, NDVI, and finally LST (Table 4). In seasonal terms, surface reflectance–
derived spectral indices presented the weakest correlations in IS1 (October–November) and
the highest association in AN (annual) and IS2 (April–May). Meteorological drought indices
presented the lowest association in both intervening seasons and in DS (June–September)
and the most robust correlations during AN and WS (December–March). Overall, sur-
face reflectance–derived vegetation indices MSAVI, NDWI, and VHI consistently showed
stronger associations (R = 0.73–0.90) with meteorological drought indices (RDI AN, WS;
SPI AN, WS) across almost all hydrological seasons (WS, IS2, DS, AN). Due to RDI and
SPI’s close relationship with precipitation, the strongest correlations between LST–RDI and
LST–SPI occurred during WS and AN (R = −0.74–−0.83). The robust associations between
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NDWI–RDI and NDWI–SPI were found mainly during seasons with high water availability
(WS, IS2) and in the annual context (R = 0.73–0.89) (Table 4).

Table 4. Seasonal Pearson correlation coefficients (Annual, AN; Intervening Season 1, IS1; Wet Season,
WS; Intervening Season 2, IS2; Dry Season, DS) for vegetation/water indices (Normalized Difference
Vegetation Index, NDVI; Land Surface Temperature, LST; Vegetation Health Index, VHI; Normalized
Difference Water Index, NDWI; Modified Soil Adjusted Vegetation Index, MSAVI) and meteorological
drought indices (Reconnaissance Drought Index, RDI; Standardized Precipitation Index, SPI) in the
Guadalupe Valley Basin, Baja California, Mexico. p-Value < 0.01 for all cases.

NDVI LST VHI
Seasons AN IS1 WS IS2 DS AN IS1 WS IS2 DS AN IS1 WS IS2 DS
RDI AN 0.80 0.00 0.73 0.79 0.73 −0.78 −0.26−0.83 −0.59 −0.60 0.86 0.19 0.86 0.81 0.75
RDI IS1 0.33 0.17 0.41 0.24 0.18 −0.26 −0.23−0.33 −0.11 −0.08 0.33 0.25 0.43 0.22 0.17
RDI WS 0.80 0.01 0.73 0.77 0.74 −0.74 −0.26−0.79 −0.55 −0.54 0.84 0.19 0.85 0.78 0.74
RDI IS2 0.10 0.00 −0.03 0.22 0.16 −0.38 −0.14−0.16 −0.40 −0.45 0.21 0.09 0.04 0.32 0.27
RDI DS 0.40 0.31 0.33 0.36 0.35 −0.45 −0.37−0.35 −0.19 −0.40 0.45 0.42 0.37 0.33 0.39
SPI AN 0.78 −0.03 0.72 0.77 0.71 −0.77 −0.26−0.82 −0.58 −0.60 0.84 0.17 0.84 0.79 0.74
SPI IS1 0.31 0.12 0.40 0.23 0.17 −0.23 −0.16−0.32 −0.09 −0.09 0.30 0.17 0.42 0.20 0.16
SPI WS 0.78 −0.09 0.69 0.77 0.74 −0.76 −0.20−0.82 −0.59 −0.61 0.83 0.10 0.83 0.80 0.76
SPI IS2 0.09 −0.04 −0.05 0.22 0.16 −0.36 −0.11−0.16 −0.37 −0.43 0.20 0.06 0.02 0.31 0.26
SPI DS 0.36 0.34 0.30 0.29 0.30 −0.41 −0.41−0.30 −0.16 −0.35 0.40 0.46 0.33 0.27 0.34

NDWI MSAVI Correlation level
Seasons AN IS1 WS IS2 DS AN IS1 WS IS2 DS
RDI AN 0.82 0.15 0.75 0.88 0.68 0.88 0.03 0.67 0.90 0.84 Very Strong
RDI IS1 0.49 0.03 0.54 0.41 0.37 0.43 0.10 0.50 0.32 0.29 Strong
RDI WS 0.74 0.17 0.67 0.83 0.60 0.87 0.05 0.66 0.87 0.83 Moderate
RDI IS2 0.30 −0.07 0.19 0.30 0.44 0.15 −0.12−0.01 0.24 0.26 Weak
RDI DS 0.03 −0.40 −0.02 0.23 0.09 0.24 −0.04 0.11 0.30 0.27 Negligible
SPI AN 0.81 0.12 0.73 0.89 0.69 0.85 −0.03 0.65 0.88 0.82
SPI IS1 0.50 −0.01 0.54 0.42 0.39 0.42 0.04 0.49 0.32 0.28
SPI WS 0.77 0.13 0.68 0.88 0.65 0.85 −0.04 0.61 0.89 0.83
SPI IS2 0.27 −0.08 0.17 0.28 0.41 0.14 −0.17−0.02 0.24 0.25
SPI DS −0.02−0.43 −0.07 0.19 0.07 0.19 −0.04 0.09 0.23 0.21

3.3. Meteorological–Based and Surface Reflectance–Derived Drought Indices

Per–pixel surface reflectance–derived spectral indices were standardized with the long–
term average and standard deviation in VHI AN, NDWI IS2, and MSAVI IS2 (Figure 4).
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Figure 4. Meteorological drought and predicted surface reflectance–derived spectral drought indices
in the Guadalupe Valley Basin, Baja California, Mexico, during 1992/93–2017/18 hydrological years.
(a) Annual (AN) Reconnaissance Drought Index (RDI); standardized values (S) of Vegetation Health
Index (VHI) and Modified Soil Adjusted Vegetation Index (MSAVI) during intervening season 2 (IS2).
(b) Annual Standardized Precipitation Index (SPI) and standardized values of Normalized Difference
Water Index (NDWI) during IS2.

The meteorological drought indices (RDI, SPI) did not show representative differences
in their values. Positive/negative values indicate wet/dry years, respectively. Consecutive
wet years are infrequent and only occurred in 2009/10–2011/12, while periods with several
dry years were more frequent (1995–1997, 1998–2000, 2001–2004, 2005–2009, 2012–2016).
The results indicate that the duration of dry periods was increased for the studied years.
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The driest hydrological years from 1992 to 2018 were 2001/02, 2006/07, 2013/14, and
2017/18 (Figure 4). The surface reflectance–derived spectral drought indices that showed
higher correlations with RDI and SPI (VHI, NDWI, MSAVI) were included in a multiple
regression analysis, indicating that they are robust to predicting RDI and SPI in selected
hydrological seasons (multiple R2 = 0.86–0.90, adjusted R2 = 0.73–0.81, with p-Values far
lower than 0.01) (Table 5). The IS2 standardized values of NDWI and MSAVI were selected
to obtain the RDI AN and SPI AN predictor values to perform pixel–correction and establish
the spatial extension of meteorological drought on the GVB during the study period (NDWI
in Figure 5; MSAVI in Figure 6).

Table 5. Linear regression models for three selected surface reflectance-derived drought indices (VHI,
NDWI, MSAVI) and seasons (intervening season 2, IS2; annual, AN) and the annual meteorological
drought indices (Reconnaissance Drought Index, RDI; Standardized Precipitation Index, SPI) to assess
drought classification, affected area, and duration at the Guadalupe Valley Basin, Baja California, Mexico.

Variable Multiple
R

Adjusted
R

Intercept
(I)

Coefficient
(C) p-Values

VHI AN–RDI AN 0.86 0.73 −5.2862 12.7159 1.82 × 10−8 (I);
2.34 × 10−8 (C)

NDWI IS2–SPI AN 0.89 0.79 0.9202 13.8414 1.52 × 10−6 (I);
1.07 × 10−9 (C)

MSAVI IS2–RDI AN 0.90 0.81 −3.9754 26.9899 2.27 × 10−10 (I);
2.74 × 10−10 (C)
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Figure 5. Spatial distribution of Normalized Differential Water Index standardized predicted values in
the intervening season 2 (IS2) to classify annual drought severity and spatial extent from 1992/93 to
2017/18 hydrological years at the Guadalupe Valley Basin, Baja California, Mexico. During the
1993/94 hydrological year, there was a missed area due to incomplete Landsat 5 TM scene data.
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Figure 6. Spatial distribution of Modified Soil Adjusted Vegetation Index standardized predicted
values in the intervening season 2 (IS2) to classify annual drought severity and spatial extent from
1992/93 to 2017/18 hydrological years at the Guadalupe Valley Basin, Baja California, Mexico. During
the 1993/94 hydrological year, there was a missed area due to incomplete Landsat 5 TM scene data.

3.4. Surface Reflectance–Derived Drought Assessment

The drought severity classification and drought–affected areas were calculated based
on standardized NDWI IS2 and MSAVI IS2 predicted values from 1992/93 to 2018/19
hydrological years. Both drought classification maps (Figures 5 and 6) agree on the detection
of drought trends. The spatial patterns of drought were classified according to SPI class
values in Table 1, from exceptional drought to normal conditions (from light to dark
colors). Seasonal and annual differences (dry/wet years) can be monitored with surface
reflectance–derived vegetation/water indices (Table 3). In the MSAVI IS2 historical record
(Figure 6), the drought–affected area in the GVB (Figure 7) showed only seven years of
normal hydrological conditions, according to Table 1. Under normal conditions, a relatively
stable period occurred between 2007/08 and 2011/12 (five years). Dry conditions affected
at least 50% of the GVB surface for 11 years in two–year cycles during 1995/96–2006/07,
interrupted by years with annual precipitation≥ 245 mm (historical mean, Figure 3f). Then,
a sequence of dry years occurred from 2012/13 to 2015/16 and 2017/18 (Figure 7). The
driest ten–year sequence affected a high percentage of the GVB area. The overall GVB area
affected by moderate to exceptional drought during this extreme anomaly ranged from
99% in 2017/18, 96% in 2006/07, 87% in 2013/14, 73% in 2005/06, and 58% in 2014/15
(Figure 7). A fire scar (ca. 11 km2) was detected during the period of 2006/07–2007/08
in the southern limit of the GVB, and by 2008/09, the vegetation apparently recovered
(Figures 5 and 6).
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Figure 7. Drought classification and affected areas identified with the Modified Soil Adjusted
Vegetation Index standardized predicted values in the intervening season 2 (IS2) at the Guadalupe
Valley Basin, Baja California, Mexico (AD–abnormally dry; MD–moderate drought; SD–severe
drought; ED–extreme drought; ExD–exceptional drought). The x-axis indicates the hydrological year.

4. Discussion

Traditional drought monitoring methods based on ground–weather observations
depend entirely on weather station data. Incomplete data series and the absence of a
continuous record of the spatial extent of droughts are common issues in Mexico [56–58].
Given that the vegetation development throughout the hydrological year is sensitive to
climatic variation (temperature and precipitation) [59,60], Landsat’s long–term observations
allowed us to derive the surface reflectance–derived spectral indices and to observe changes
in vegetation reflectance induced by meteorological droughts. The strong correlations
between the surface reflectance–derived spectral indices MSAVI, NDWI, and VHI with
both meteorological drought indices (RDI, SPI) (Table 4) allowed us to quantify the drought–
affected hillslope area across the Guadalupe Valley Basin (GVB) over a time span of 26 years.
Therefore, this procedure is suitable to be used to determine the spatial and temporal trends
of meteorological drought in areas lacking adequate coverage of weather stations.

4.1. Seasonal and Annual Responses of NDVI to Precipitation and LST

Temperature and precipitation are the main climatic factors that produce changes in
soil water content and thus modulate vegetation growth and health [59,61]. The NDVI has
been frequently used to study vegetation dynamics in arid and semi–arid areas, the degree
of aridity, and desertification and to assess meteorological drought due to its relationship
with climatic factors (e.g., LST, precipitation) [18,20,62–64]. Significant associations between
NDVI–LST and NDVI–precipitation in all hydrological seasons reflect the tight control of
vegetation reflectance on the upper layer of soil water content [65]; however, there is wide
variability, particularly when the water content is lower, which results in a lowering of
the strength of the correlation between seasonal NDVI–LST. [39] showed that surface soil
water content (ca. 0.4 m) in the mountainous regions of this same study area is enriched
during the wet season (WS) and almost totally depleted towards the end of the dry season
(DS). We found low negative seasonal NDVI–LST correlations, implying a weak control of
temperature on vegetation greenness. Therefore, it is the lack of soil water availability at
the beginning of the hydrological year (IS1) and the gradual replenishment of soil water
content in WS that is the main correlate of greenness. With the increase in soil water content
by precipitation in WS, the degree of correlation between NDVI–LST tends to increase
because of the peak of vegetation development and greenness (IS2) and, later, the gradual
reduction of the soil water content by the end of the hydrological year (DS) (Table 3). In
mid–latitude semi–arid and drylands, the relationships between NDVI and LST typically
show negative correlations [66,67], and vegetation greenness (NDVI), cover, and density
are usually linked with LST changes [49–51,68,69]. Although correlations showed that LST
still exerts a relevant control on the availability of soil water for vegetation development in
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the GVB highlands, the distribution of precipitation over the hydrological seasons (WS, IS2,
DS, AN) exerts a much greater positive control related to the evolution of NDVI (Table 3).
Moreover, variations in precipitation during WS and across the years (Figure 3f) were
reflected in the seasonal NDVI values (Figure 3d) better than LST (Figure 3e).

4.2. Relationships between Surface Reflectance–Derived Spectral Indices and Meteorological
Drought Indices

The NDVI–AN and NDVI–IS2 are strongly associated with meteorological indices
RDI–WS, AN, and SPI–WS, AN (Table 4); however, climatic–related temporal changes in
the drought assessment using only NDVI variations could lead to misinterpretations [27].
Therefore, we include the VHI, NDWI, and MSAVI in the meteorological drought assess-
ment. VHI is a derivative of the inverse relationship between NDVI and LST. If positive
correlations between NDVI and LST are found, the VHI indicates an energy–limited rather
than a soil water–limited region [48,70], and the VHI is inadequate for meteorological
drought monitoring [71]. In our dataset, we found negative correlations between NDVI
and LST, and thus, the VHI adequately described the acclimation of the vegetation to
precipitation and temperature over the study period. VHI preserved the seasonal pattern of
NDVI values but increased the degree of association with meteorological drought indices
(RDI and SPI) in all hydrological seasons, particularly during AN and IS2 (Table 4). There-
fore, VHI results for the GVB support previous studies that identified a strong correlation
between meteorological drought indices and hydrological variables (e.g., [13,70–72]).

Although not as popular as NDVI and VHI for meteorological drought monitoring,
NDWI and MSAVI were the indices with the most robust correlations with meteorological
drought indices, especially during WS and annually in the GVB (Table 4). NDWI has
been found to be responsive to variations in plant leaf water content and soil moisture,
being useful for monitoring drought status from agricultural [32] and natural vegetation at
different spatial and temporal scales [57,72,73]. The MSAVI has been less used for meteoro-
logical drought detection than the other indices evaluated in this research [57]. However,
MSAVI effectively responds to chlorophyll content changes within the intracellular spaces
of leaves [29,74] and strongly colligated surface reflectance vegetation seasonal variation
to meteorological indices (Table 4). Moreover, it prevented the vegetation spectral sig-
nature from being distorted by background soil surface reflectance, a common effect in
arid and semi–arid regions [75] because of the low vegetation cover present in some areas
(e.g., south–facing slopes, such as in the GVB highlands). Interestingly, the strongest associ-
ations between NDWI and MSAVI with RDI and SPI were found after WS, during IS2 due
to the delay of growth in natural vegetation to reach the growing peak development and
greenness after WS. Standardizing MSAVI, NDWI, and VHI with the meteorological indices
(RDI, SPI) during the seasons with higher correlation (IS2, AN) (Figure 4), revealed that
MSAVI and NDWI were more sensitive to meteorological drought monitoring in the study
area. This advantage allowed us to model the spatial drought distribution and classify the
drought severity (Table 1) in the GVB (Figures 5 and 6).

4.3. Surface Reflectance–Derived Spectral Indices and Climatic Variations

The temporal and spatial variation in the surface reflectance–derived spectral indices
suggest that the occurrence of dry years and periods in the GVB were due to reductions
in precipitation during the wet season. In this region, intra–annual and inter–annual
variations in precipitation have been associated with El Niño/Southern Oscillation (ENSO)
and the Pacific Decadal Oscillation [76–79]. For instance, in the NW–Mexico and SW–U.S.,
ENSO (El Niño warm phase) coincided with the hydrological years 1992/93, 1994/95,
1997/98, 2004/05, 2009/10, and 2016/17, and the most severe dry effect of ENSO (La Niña
cold phase) occurred in 2001/02, 2005/07, 2013/14, 2017/18 in the GVB (Figures 5 and 6)
(ENSO data, [80]). According to [12], regional climatic gradual changes have occurred in
the last ca. twenty years due to the reduction of precipitation in the wet season and annual
total precipitation patterns. This is coincident with the mega–drought of the beginning
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of the 21st century in California, a period of time in which recurring dry periods were
common, and the effects were highly apparent at the GVB. For instance, in 2000–2002,
abnormally dry years affected the SW–U.S. and NW–Mexico [15], and 2001/02 stood as
the driest year in recorded history in southern California until 2007 [81]. A severe drought
occurred from 2007 to 2009 in California [82], and an exceptional drought period befell
between 2012 and 2014 [83]. Moreover, 2018 was the third warmest year in the Mexican
historical record since 1953 [84] and the driest in the GVB region during the study period
(Figure 3f). The drought impacts were observed on the GVB surface during those years
(Figures 5 and 6).

Although the results of this study revealed the extent of meteorological droughts in
the GVB highlands, there are still limitations associated with the present study. Climatic
factors are the main controls on the development and variation of the spectral signature of
natural vegetation, which allows us to establish a relationship with meteorological drought.
However, the relationship between meteorological drought and the spectral signature of plant
communities is subject to uncertainty due to aspect (orientation) (e.g., evergreen vegetation,
north–facing slopes; deciduous vegetation, south–facing slopes) and other possible sources of
variation. Future research could provide more detail on surface reflectance–derived spectral
indices applied specifically to vegetation/aspect types and soil moisture variation and describe
the particular effect of meteorological drought modulated by aspect within this region.

5. Conclusions

This paper explored the long–term seasonal relationship between climatic (precipita-
tion, LST) and biophysical (NDVI) parameters, and the long–term seasonal relationship
between surface reflectance–derived spectral indices (NDVI, LST, VHI, NDWI, MSAVI) with
meteorological drought indices (RDI, SPI) to assess and monitor drought in the Guadalupe
Valley Basin highlands. Our main findings were as follows:

(a) Both precipitation and LST factors affect the NDVI (positively/negatively), but
stronger correlations revealed that precipitation is the primary seasonal control on
NDVI across the hydrological seasons in the study area;

(b) The VHI, NDWI, and MSAVI consistently showed stronger associations (R = 0.71–0.90)
with meteorological drought indices (RDI AN, WS; SPI AN, WS) across almost all
hydrological seasons (WS, IS2, DS, AN);

(c) The strong correlations between VHI AN, NDWI IS2, and MSAVI IS2 with RDI AN
and SPI AN suggest that this set of surface reflectance–derived spectral indices are
the best predictors of meteorological drought in the GVB (Table 4);

(d) The maps generated from MSAVI and NDWI in the GVB (Figures 5 and 6) adequately
reproduce the dry/wet periods in the region. For instance, the worst dry years that
affected the GVB area were 2017/18 (99%), 2001/02 (97%), 2006/07 (96%), and 2013/14
(87%), and coincided with extreme drought periods documented in the literature.

Given the limited availability of weather stations in this region, the spatial impact of
drought would have been almost impossible to detect, so the integration of satellite–based
observations and spectral indices derived from surface reflectance provides a valuable tool
for establishing policies to mitigate and adapt to future climate anomalies. In particular,
the spectral indices MSAVI, NDWI, and VHI were suitable indicators of meteorological
drought using long–term data. These indices complement the weather station data in drought
assessment, allowing more accurate modeling of the drought–affected area in the GVB and
other areas subject to similar climatic conditions without adequate weather records.
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