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Abstract: The management of regional eco-environmental risks is the key to promoting regional
economic sustainability from the macro level, and accurate evaluation of the evolutionary trends
of regional ecological risk in the future is of high importance. In order to clearly identify the
possible impact of future development scenario selection for the Chengdu-Chongqing Economic
Zone (C-C E Zone) on the evolution of landscape ecological risk (LER), we introduced the Patch-
generating Land Use Simulation (PLUS) model to simulate land use data for the C-C E Zone from
2030 to 2050 for two scenarios: natural development (ND) and ecological protection (EP). Based on
the ecological grid and landscape ecological risk index (LERI) model, the landscape ecological risk
(LER) evolutionary trends seen in the C-C E Zone from 2000 to 2050 were analyzed and identified.
The results showed that: (1) The PLUS model can obtain high-precision simulation results in the
C-C E Zone. In the future, the currently increasing rate of land being used for construction will be
reduced, the declining rates of forest and cultivated land area will also be reduced, and the amount
of land being used for various purposes will remain stable going into the future. (2) This study
found that the optimal size of the ecological grid in the LERI calculation of the mountainous area was
4 × 4 km. Additionally, the mean values of the LERI in 2030, 2040, and 2050 were 0.1612, 0.1628, and
0.1636 for ND and 0.1612, 0.1618, and 0.1620 for EP. (3) The hot spot analysis results showed that
an area of about 49,700 km2 in the C-C E Zone from 2000 to 2050 belongs to high agglomeration of
LER. (4) Since 2010, the proportions of high and extremely high risk levels have continued to increase,
but under the EP scenario, the high and extremely high risk levels in 2040 and 2050 decreased from
14.36% and 6.66% to 14.33% and 6.43%. Regional analysis showed that the high and extremely high
risk levels in most regions increased over 2010–2050. (5) Under the ND scenario, the proportions
of grids with decreased, unchanged, and increased risk levels were 15.13%, 81.48%, and 3.39% for
2000–2010 and 0.54%, 94.75%, and 4.71% for 2040–2050. These trends indicated that the proportion of
grids with changed risk levels gradually decreased going into the future. This study analyzed the
evolutionary trends of LER at the C-C E Zone for the ND and EP scenario. On the whole, the LER for
the C-C E Zone showed an upward trend, and the EP scenario was conducive to reducing the risk.
These research results can serve as a valuable data reference set for regional landscape optimization
and risk prevention and control.

Keywords: PLUS model; scenario simulation; landscape ecological risk; ecological grid; Chengdu-
Chongqing Economic Zone

Land 2022, 11, 964. https://doi.org/10.3390/land11070964 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11070964
https://doi.org/10.3390/land11070964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-3113-8531
https://orcid.org/0000-0003-2330-5651
https://doi.org/10.3390/land11070964
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11070964?type=check_update&version=2


Land 2022, 11, 964 2 of 18

1. Introduction

With increasing concern around ecological problems resulting from developments
across the globe, there is the urgent problem of how to better implement macro-control
policies to curb these issues. The management of regional eco-environmental risks is the key
to promoting regional economic sustainability from the macro level. Therefore, accurate
evaluation of the evolutionary trends of regional ecological risk in the future is of high
importance [1]. The Chengdu-Chongqing Economic Zone (the C-C E Zone) is the economic
core of Southwest China, playing an important role in both economic development and
ecological protection [2]. On the one hand, the C-C E Zone provides a path for increased
accessibility to inland China and improvement of the country’s comprehensive strength.
On the other hand, it is an important ecological barrier for the area in the upper reaches of
the Yangtze River. Therefore, a method for identifying the current and future evolutionary
trends for ecological risk in the large-scale range of the C-C E Zone is a crucial task, and one
which could guide the government towards implementing ecological risk prevention and
control measures and a strategy for sustainable economic development.

Generally, ecological risk assessment adopts the methods of environmental index
factors, construction of evaluation index systems, and landscape ecological indices. For
example, Zhang et al. analyzed the ecological risk of tetracycline antibiotics in farmland soil
in Yinchuan City, China via the environmental index factor method [3]. Wee et al. studied
the ecological risk of organophosphorus pesticides on the ecosystem of the Langat River
using a constructed risk system [4]. Cui et al. assessed the landscape ecological risk (LER)
in the Qinling area using a constructed landscape index [5]. In general, LER assessment is
an effective method for risk identification, prevention, and control on a large scale while a
landscape ecological risk index (LERI), based on ecological grid division, can reflect the
LER status of small ecological grids [6]. The determination of the ecological grid size is a
key parameter to such an assessment. An undersized grid will cut, destroy, or even change
the original shape of landscape patches, but an oversized grid will lose the distribution
details of landscape patches and cannot fully and truly reflect the internal LER situation [7].
Therefore, the determination of the ecological grid size is one of the key considerations
in ecological risk assessment. In addition, research on ecological risk assessment needs
to accurately predict the future LER of the C-C E Zone. Since land use change is the main
basis reflecting regional landscape change, the simulation of future land use data over
such a large range is another key issue. Currently, a few simulation models for land use
data are widely used, including the CA Markov model [8], CLUE-S model [9], and FLUS
model [10], etc. These models can obtain high simulation accuracy for small areas, but they
either cannot be used or have poor results for large scales [11]. Nevertheless, we adopted
the method of ecological grid division and construction of an LERI in this study to carry
out LER scenario simulation and analysis in the C-C E Zone. In order to use this method, an
accurate simulation for land use data at a large scale had to be found and the determination
of the ecological grid size had to be carefully considered.

To solve the issue of accuracy in large-scale land use simulation, the Patch-generating
Land Use Simulation (PLUS) model developed by the HPSCIL@CUG laboratory develop-
ment team in 2020 was introduced for this study [12,13]. The typical areas were selected and
the gradient division method (1 × 1 km, 2 × 2 km . . . . . . 10 × 10 km) adopted to identify
the optimal ecological grid size calculated by LERI in the large-scale downhill area [14,15].
Therefore, based on the land use data in 2000, 2010, and 2020, this study used the PLUS
model to simulate land use data in 2030, 2040, and 2050 under natural development (ND)
and ecological protection (EP) scenarios. Then, based on the identification results of the
optimal size of the ecological grid, an LERI model, including a landscape interference index
and landscape vulnerability index, was constructed to identify the LER evolutionary trends
for the C-C E Zone from 2000 to 2050 to provide data in support of regional landscape
optimization and ecological risk prevention and control.
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2. Materials and Methods
2.1. Study Area

The C-C E Zone is located in the southwest of China, and it includes Chengdu, Deyang,
Mianyang, Meishan, ZiYang, Suining, Leshan, Ya’an, Zigong, Luzhou, Neijiang, Nanchong,
Yibin, Dazhou, and Guang’an in Sichuan Province and Wanzhou, Fuling, the main urban
areas of Chongqing (Yuzhong, Dadukou, Jiangbei, Shapingba, Jiulongpo, Nan’an, Beibei,
Yubei, Banan), Changshou, Jiangjin, Hechuan, Yongchuan, Nanchuan, Qijiang (including
Wansheng), Tongnan, Tongliang, Dazu (including Shuangqiao), Rongchang, Bishan, Liang-
ping, Fengdu, Dianjiang, Zhongxian, Kaizhou, Yunyang, and Shizhu in Chongqing, with
an area of about 20.6 × 104 km2 [2]. The C-C E Zone is an agglomeration of important
areas for the population, towns, and industry in western China. With rapid economic
development has come urban expansion in the region, which has put pressure on ecological
spaces. It is crucial to accurately and effectively lay out production, living, and ecological
spaces, and this can be assisted through projection of the evolutionary trends of LER in
the region. Therefore, LER analysis and the simulation of long-term series in this region is
of great importance as it can promote regional ecological risk prevention and control and
sustainable economic development.

2.2. Data Sources

The data used in the study included: the land use data regarding the C-C E Zone
in 2000, 2010, and 2020 from the Resource and Environmental Science Data Center of
Chinese Academy of Sciences (https://www.resdc.cn/Default.aspx (accessed on 1 Decem-
ber 2021)) [16] and globeland30 (http://www.globallandcover.com (accessed on 15 De-
cember 2021)); NDVI data and soil type data from the Resource and Environmental Sci-
ence Data Center of Chinese Academy of Sciences (https://www.resdc.cn/Default.aspx
(accessed on 1 December 2021)); terrain data from geospatial data cloud website (http:
//www.gscloud.cn/ (accessed on 10 December 2021)); and road data from OpenStreetMap.
The resolution of the above data was resampled to 30 m.

2.3. Methods

Based on the land use data for the C-C E Zone in 2000, 2010, and 2020, we used the
PLUS model to simulate land use data from 2030 to 2050 under different scenarios (i.e.,
ND and EP). The evolutionary trends and characteristics of LER from 2000 to 2050 were
evaluated using ecological grids and the LERI model, and then further analyzed using
ArcGIS software. These results could provide support for regional landscape optimization
and risk prevention and control in the future (Figure 1).

Land use data from the C-C E Zone were collected from 2000 to 2020, including DEM,
slope, NDVI, soil type, distance from water area, distance from a primary road, distance
from a secondary road, distance from a main road, distance from an expressway, distance
from other roads, and distance from a railway line as the driving factors of land use change,
and water area as a limiting factor of land use change. Firstly, the feasibility and accuracy
of the PLUS model were verified for a 30 m resolution land use data simulation within
the C-C E Zone. Land use data for the C-C E Zone were then simulated for 2030, 2040,
and 2050 for both the ND and EP scenarios. Finally, the LERI model was used to analyze
the LER temporal and spatial evolution for the C-C E Zone from 2000 to 2050 under the
two scenarios to provide data support for regional urban development and land layout
and ecological risk prevention and control in the future.

https://www.resdc.cn/Default.aspx
http://www.globallandcover.com
https://www.resdc.cn/Default.aspx
http://www.gscloud.cn/
http://www.gscloud.cn/
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Figure 1. Research framework map.

2.3.1. PLUS Model

The PLUS model is a patch-generated land use change simulation model developed by
the HPSCIL@CUG laboratory development team. Compared with other commonly used
models (i.e., the CLUE-S and CA-Markov models), PLUS has the following advantages:
(1) The land expansion analysis strategy applied by the model can better demonstrate the
incentives behind various land use changes. As an example, the random forest algorithm is
used to mine the factors of various land use expansion and driving forces one by one to
obtain the development probability of various land uses and the contribution of driving
factors to various land use expansion. This strategy combines the advantages of the existing
transformation analysis strategy and pattern analysis strategy, retains the ability of the
model to analyze the mechanism of land use change in a certain period of time, and has
better interpretability. (2) It contains a new multi-class seed growth mechanism, which can
better simulate the patch-level change in multi-class land use. Combined with random seed
generation and a threshold decreasing mechanism, the model can dynamically simulate the
automatic generation of patches under the constraint of development probability [12,13].

The simulation of the C-C E Zone is divided into two steps: (1) Based on the land
use data from 2000 to 2010, the data for 2010 and 2020, respectively, were simulated, and
then the real data of 2010 and 2020 were used for accuracy analysis. A kappa coefficient
is usually used as the basis for accuracy analysis. If the kappa coefficient is higher than
0.75, it means that the model achieves a highly consistent level [11]. (2). On the premise
that the simulation accuracy met the requirements, the land use data for 2030, 2040, and
2050 were simulated for the ND and EP scenarios. The future demand for each land use
type (i.e., the area of each land use type) under the ND scenario was predicted by a Markov
chain module integrated with the PLUS model. The demand under the EP scenario was
calculated by reducing the area increase or decrease in various land use types by 20% under
the ND scenario.

2.3.2. Determination of the Optimal Size of the Ecological Grid

The ecological grid will split the original natural ecosystem of the region and have a
certain impact on the evaluation and analysis of local LER. Different sizes of the ecological



Land 2022, 11, 964 5 of 18

grid will produce different results of LER; when a too large or too small ecological grid is
used, it will be difficult to reflect the real situation of LER.

Based on the ecological grid size delimitation results of existing scholars (Table 1), this
study was based on ArcGIS software and the gradient division method (1× 1 km, 2× 2 km,
3× 3 km, 4× 4 km, 5× 5 km, 6× 6 km, 7× 7 km, 8× 8 km, 9× 9 km, 10× 10 km) to divide
the area into several ecological grids and code each ecological grid. The LERI of each grid
was calculated one by one, then the Kriging method was used for interpolation, and the
interpolation results were graded to obtain the spatial classification map of LER. The LERI
of each grid was calculated using ArcGIS modeling and the FRAGSTATS batch processing
method, and the change in the value range of LERI under each ecological grid size scenario
was analyzed to determine the optimal size of the regional ecological grid [14,15].

Table 1. The size of ecological grid used in previous studies.

Research’s Regional Area of Research’s
Regional (Unit: km2)

Resolution of
Land Use Data

(Unit: m)

Size of Ecological
Grid (Unit: km)

Nanchang, China [17] 7402.36 30 3 × 3
Western of Jilin, China [18] 4.69 × 104 30 3 × 3

Western of Henan, China [19] 2.71 × 104 30 5 × 5
District of Xiajiang, Wuhan,

China [20] 2018 30 2 × 2

Lower reaches of Tarim
River [21] 1.28 × 104 30 3 × 3

District of Wanzhou,
Chongqing, China [22] 3456.55 50 2 × 2

District of Jiangjin, Chongqing,
China [23] 3217.77 30 3 × 3

Three Gorges
Reservoir area [14] 5.85 × 104 30 4 × 4

2.3.3. Building the Landscape Ecological Risk Index (LERI) Model

Landscape ecological risk (LER) refers to the possible adverse consequences from the
interaction between landscape patterns and ecological processes under the influence of
natural or human factors, which can be defined as the combination of risk probability and
the degree of landscape lost [24]. Based on existing research results and the factors from the
area being studied, the LERI calculation model was constructed. The calculation formulas
are as follows:

LERIk =
n

∑
i=1

Aki
Ak

√
Ui × Fi (1)

Ui = aCi × bSi × cDoi (2)

Ci =
ni
Ai

, Si =
A

2Ai

√
ni
A

, Doi =
2 ln Pi

4
ln Ai

(3)

In these formulas, n is the number of landscape types, A is the total area, Aki is the
area of landscape type i in the k-th sample area, Ai is the area of landscape type i, Ak is
the total area of the k-th sample area, ni is the number of patches of landscape type i, and
pi is the perimeter of the landscape type i. Ui is the landscape interference index, which
reflects the degree to which landscape is lost in a certain area after external interference. Ci,
Si, and Doi are the landscape fragmentation index (indicating the degree of spatial division
of the landscape type in a certain time), the landscape separation index (indicating the
degree of separation of different patches in the landscape type), and the landscape sub
dimension index (indicating the complexity of the shape of the landscape patch). The
value range is 1–2, with larger values indicating greater complexity in the shape of the
landscape patch. a, b, and c represent the weight of each index, and the values are 0.5, 0.3,
and 0.2, respectively [25]. Fi is the landscape vulnerability index, which reflects the ability
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of a landscape type to resist external interference and its sensitivity to external changes.
Referring to relevant studies [26], the six landscape types of construction land, forest
land, grassland, cultivated land, water, and other land are assigned as 1–6, respectively.
Normalized to Fi, the greater the value, the weaker the ability to cope with interference.

2.3.4. Calculation and Classification of Landscape Ecological Risk

Using ArcGIS software and the Model Builder tool, this study calculated the LERI of
12,834 ecological grids in the C-C E Zone from 2000 to 2050 one by one and obtained the
long-term series LERI distribution data. In order to ensure the spatial continuity of the
data, the Kriging tool in ArcGIS software was used to spatially interpolate the LERI value
for each ecological grid [15]. At the same time, in order to ensure comparability between
multi-period data, based on the interpolation results of the LERI value in 2020, LER in 2020
was divided into five levels: no risk, low risk, medium risk, high risk, and extremely high
risk, using the natural breakpoint method. The value range of each grade was determined
according to this standard, as was the LERI value in other periods.

2.3.5. Getis-Ord Gi* Analysis

The Getis-Ord Gi* analysis is widely used in crime analysis, epidemiology, and eco-
nomic geography to identify spatial gathering of high values (hot spots) and low values
(cold spots) with statistical significance [27]. In a Getis-Ord Gi* analysis, the z score,
p values, and confidence intervals (Gi_Bin) are employed to create a new output class for
each element in the input element class. Here, the z score and p values can help to judge
whether the null hypothesis can be rejected while the Gi_Bin field is used to identify statis-
tically significant hot and cold spots. The elements in the confidence interval of [+3, −3]
have a statistical significance with a confidence level of 99% while those in the confidence
interval of [+2, −2] have a statistical significance with a confidence level of 95%, and those
in the confidence interval of [+1,−1] have a statistical significance with a confidence level of
90%. When the element gathering of the Gi_Bin field is 0, there is no statistical significance.

3. Results
3.1. Simulation Accuracy Analysis of Land Use Data

The PLUS model was used to simulate the land use data. The accuracy analysis results
showed that the kappa coefficient of the simulated 2010 data based on the 2000 data was
0.81, and the kappa coefficient of the simulated 2020 data based on the 2010 data was
0.82. The kappa coefficients were higher than 0.75, indicating that the PLUS model had
good simulation effects for the C-C E Zone, and the simulation accuracy had a high level of
consistency. This meant that the model could be used to simulate future land use data for
the C-C E Zone.

3.2. Trend Analysis of Land Use Evolution from 2000 to 2050

The evolution of land use in the C-C E Zone from 2000 to 2050 indicated obvious trends
in the region, as shown in Figure 2. The overall growth rate of construction land decreased
slowly, showing a multipolar and multipoint growth trend. From 2000 to 2010 and from
2010 to 2020, the area increased by 496.96 and 4427.55 km2, respectively. Under the ND
scenario, it was projected to increase by 1990.66, 3782.9, and 1172.54 km2 in 2020–2030,
2030–2040, and 2040–2050, respectively. Under the EP scenario, the increases would be
1592.53, 1433.79, and 1292.44 km2 in 2020–2030, 2030–2040, and 2040–2050, respectively. In
general, the increase in construction land under the EP scenario was reduced compared to
the ND scenario by 4.39%, 21.38%, and 18.74% in 2030, 2040, and 2050, respectively. In terms
of spatial characteristics, the main urban areas of Chongqing and Chengdu were the main
growth poles, and Mianyang, Deyang, Suining, Wanzhou, Nanchong, Luzhou, Yongchuan,
Changshou, and Fuling were the secondary growth poles. In addition, forest land showed
an increasing trend in the beginning and then decreased. The forest land area increased
by 3.19% from 2000 to 2010 and decreased by 2.11% from 2010 to 2020. After that, the
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forest land area showed a slow downward trend, but the area increased from 2040 to 2050
under the EP scenario. Compared with the EP scenario in 2030, 2040, and 2050, the total
area of forest land in the ND scenario increased by 0.04%, 0.28%, and 1.48%, respectively.
The cultivated land showed a slightly increasing trend (0.26%) during 2000–2010 and then
gradually decreased by 4.11% from 2010 to 2020. Under the ND scenario, cultivated land
decreased by 1.86%, 3.18%, and 1.01%, respectively, during 2020–2030, 2030–2040, and
2040–2050. The decreases in the cultivated land area under the EP scenario saw this land
type reduced to 429.84, 2567.43, and 2333.3 km2 in 2030, 2040, and 2050, respectively, but
these values were still higher than those under the ND scenario. The water area showed a
trend of “decrease-increase-stability”, with a decrease of 4.96% during 2000–2010 followed
by an increase of 30.13% during 2010–2020. During 2020–2030, the water area under the ND
and EP scenarios increased by 3.92% and 3.32%, respectively, while the change between
2030–2040 and 2040–2050 was limited. Grassland and other land types were randomly
distributed in mountainous areas, and the changes in the total area were relatively stable.
Therefore, the growth rate of construction land will be reduced, the decline in forest land
and cultivated land area will be reduced, and all types of land areas will gradually stabilize
in the future. Meanwhile, the ecological land area under the EP scenario was significantly
higher than that under the ND scenario.
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3.3. Analysis of the Optimal Size of the Ecological Grid

We selected the Three Gorges Reservoir area in C-C E Zone as a typical area to deter-
mine the optimal scale of the ecological grid, and the total area, topography, and land use
types of this area were representative. We divided the study area into 60,216, 15,459, 7031,
4049, 2638, 1869, 1405, 1091, 886, and 719 ecological grids according to the grid size of 1 × 1,
2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, 7 × 7, 8 × 8, 9 × 9, and 10 × 10 km. We calculated the
LERI under different sizes of the ecological grid in 2020, and obtained the curve of LERI
under each ecological grid (Figure 3). The results show that the average value of LERI was
between 0.1649 and 0.1688, and the change in the ecological grid size had little impact on
the average value, indicating that the size of the ecological grid has little impact on the LER
of the whole region. We extracted the maximum and minimum values of LERI, and found
that the maximum and minimum values of LERI began to stabilize at 4 × 4 km. When the
ecological grid was less than 4 × 4 km, the difference between them showed an obvious
decreasing trend, and when the ecological grid was greater than 4 × 4 km, the difference
between them tended to stabilize. In regional LERI research, the size of the ecological
grid will have a great impact on the results. Too small an ecological grid will make the
spatial expression too delicate, thus covering up the overall spatial law and causing a lot
of redundant computing work, and too large an ecological grid will lead to the loss and
misjudgment of the spatial law. Therefore, in order to truly reflect the temporal and spatial
differentiation characteristics of regional LERI, and comprehensively consider the variation
law of the LERI value with the size of the ecological grid, it was determined that based on
the resolution of 30 m land use data in the C-C E Zone, the optimal scale of the ecological
grid in the LERI calculation was 4 × 4 km.
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3.4. Analysis of the Calculation Results of LERI

The average values of the LERI in 2000, 2010, and 2020 were 0.1617, 0.1588, and 0.1592,
respectively. The average values of the LERI under the ND scenario were 0.1612, 0.1628,
and 0.1636, respectively, while under the EP scenario, the average values were 0.1612,
0.1618, and 0.1620, respectively, in 2030, 2040, and 2050. The mean value of the LERI in the
EP scenario was significantly lower than that in the ND scenario, indicating that the EP
development scenario was valuable for reducing regional LER.

In terms of the LERI changes in each period, the number of ecological grids with in-
creased, unchanged, and decreased LER was 5058, 272, and 7504, respectively, during 2000–
2020. The sum of the LERI for increased and decreased ecological grids was 20.7360 and
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53.0439, respectively, while the average of the LERI increased and decreased ecological
grids was 0.0410 and 0.0071, respectively. Generally, LER is decreasing in the studied area
overall, but increases were observed in some ecological grids. During 2020–2050, under
both the ND and EP scenarios, the number of ecological grids with increased, unchanged,
and decreased LER was 9046, 622, and 3166 for the former and 7403, 595, and 4836 for the
latter. The sum of the LERI of increased and decreased ecological grids was 59.5840 and
3.1447 for the former and 40.8484 and 4.3616 for the latter. The results showed that LER for
2020–2050 showed an increasing trend as a whole, and the EP scenario could significantly
reduce the regional LER.

3.5. Hot Spot Analysis of LER

The hot spot analysis results of LER in the C-C E Zone from 2000 to 2050 suggested
no significant change in the space of high-risk and low-risk agglomeration areas for
each period, indicating that the overall layout of various land uses was relatively sta-
ble (Figure 4). From 2000 to 2050, the area with the highest concentration of LER accounted
for 21.13–22.06%, indicating that the area with the highest concentration of LER was about
49,700 km2. Using 2020 as an example, the high-value agglomeration areas of LER were
mainly distributed in the southeast of Mianyang, the southeast of Deyang, the east of
Leshan, the junction of Neijiang-Zigong, Yibin, Luzhou, the south of Jiangjin, Qijiang, the
south of Banan, the south of Fuling, Fengdu, the north of Shizhu, the north of Zhongxian,
the south of Wanzhou, the south of Yunyang, etc. The low-value agglomeration areas
of LER were mainly distributed in the west and middle of the C-C E Zone, including the
northwest of Mianyang, the northwest of Deyang, Chengdu, Meishan, Ya’an, Ziyang,
Suining, the south of Guang’an, the east of Neijiang, the northeast of Dazhou, Rongchang,
Dazu, Tongnan, the north of Zigong, Hechuan, Bishan, etc. From the degree of change in
agglomeration, there was an upward trend in the degrees of agglomeration for high-value
areas of LER in the north and southeast of Chengdu, the west and southeast of Nanchong,
etc. In contrast, there was a downward trend in the degree of agglomeration for high-value
areas of LER in Yunyang, Wanzhou, Shizhu, Liangping, Zhongxian, etc. In addition, down-
ward trends in the degrees of agglomeration for low-value areas of LER were observed in
the Mianyang, Deyang, Chengdu, Meishan, etc., while upward trends in the degrees of
agglomeration for low-value areas of LER were observed in the southeast of Nanchong and
west of Dazhou, etc.

3.6. Analysis of the Grade Evolutionary Trends for LER from 2000 to 2050
3.6.1. Overall Analysis of the Grade Evolutionary Trends for LER in the C-C E Zone

In order to enhance the comparability between multi-period data, the natural break-
point method was used to grade LER in 2020 in ArcGIS, and the interpolation results of the
LERI were divided into five levels: no risk (LERI value, 0–0.1456), low risk (0.1456–0.1631),
medium risk (0.1631–0.1824), high risk (0.1824–0.2034), and extremely high risk (0.2034–1).

The proportions of high and extremely high risk levels for the C-C E Zone in 2000,
2010, and 2020 were 14.21%, 13.47%, and 13.75% for the former and 8.14%, 5.63%, and
5.89% for the latter, indicating that the LER level decreased from 2000 to 2010, and then
increased from 2010 to 2020 (Table 2). Under the ND scenario, the high and extremely
high risk levels for the C-C E Zone have continued to increase since 2010. Under the EP
scenario, the high and extremely high risk levels for the C-C E Zone have continued to
increase during 2010–2040, but there was a downward trend during 2040–2050. The high
and extremely high risks decreased from 14.36% to 14.33% in 2040, and from 6.66% to
6.43% in 2050. Therefore, the results suggested that the EP scenario was beneficial for
environmental protection in the long term and could reduce the proportion of high and
extremely high risk levels of LER in the region.
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Table 2. Statistical table of LER’s proportion of each grade from 2000 to 2050.

Level\Period 2000 2010 2020
ND Scenario EP Scenario

2030 2040 2050 2030 2040 2050

No risk 36.18 40.97 40.33 33.57 29.31 27.47 33.68 31.71 30.37
Low risk 24.13 22.67 23.16 27.6 29.12 30.06 27.34 28.59 29.43

Medium risk 17.34 17.26 16.87 18.12 20.02 20.13 18.36 18.68 19.44
High risk 14.21 13.47 13.75 14.26 14.52 14.67 14.26 14.36 14.33

Extremely high risk 8.14 5.63 5.89 6.45 7.03 7.67 6.36 6.66 6.43

3.6.2. Evolutionary Trend Analysis of the LER Levels in Various Regions

For LER, we usually focus on high- and extremely-high-risk areas (Table 3). The
statistical analysis shows that the proportions of high and extremely high risk in most
areas decreased from 2000 to 2010, except in Chengdu, Deyang, Meishan, Neijiang, and
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Fuling. During 2010–2050, most regions under the ND scenario showed a trend of increasing
proportions of high and extremely high risk, among which Fengdu, Fuling, Changshou, and
Nanchuan had the greatest increases, by 17.76%, 15.35%, 11.76%, and 10.09%, respectively.
During the period of 2010–2050, although the overall high and extremely high levels of risk
in the EP scenario showed an increasing trend, these levels decreased in 22 regions during
the period of 2040–2050, including in Dazhou, Deyang, Guang’an, Lashan, Luzhou, etc. In
addition, there was no high- or extremely-high-level risk distribution throughout Ya’an,
Bishan, Dazu, Hechuan, Rongchang, Tongliang, Tongnan, and Yongchuan, indicating that
LER in these regions is generally low. Except for the fact that Ya’an is located in the west of
the C-C E Zone, the other regions are located in the Chengdu-Chongqing transition zone.
Furthermore, these regions are the main contributors to low LER due to having a medium
level of economic development and flat terrain and a dense proportion of agriculture. In
general, the proportion of high and extremely high risk in each region is significantly lower
in the EP scenario than the ND scenario.

Table 3. Statistical table of high and extremely high risk proportions of LER in each region.

Region\Period 2000 2010 2020
ND Scenario EP Scenario

2030 2040 2050 2030 2040 2050

Chengdu 1.93 1.93 2.02 2.89 4.34 5 2.76 3.37 3.53
Dazhou 1.77 1.32 1.55 1.75 2.15 2.52 1.74 1.86 1.81
Deyang 11.26 11.65 11.46 12 12.45 12.98 11.89 12.19 12.01

Guangan 7.12 5.23 4.63 5.42 5.92 6.39 5.33 5.61 5.25
Leshan 47.4 47.09 47.1 48.31 49.68 52.64 48.17 49.01 47.96
Luzhou 62.4 52.33 55.32 56.65 57.64 59.32 56.37 56.98 56.5
Meishan 3.51 4.12 4.09 4.32 5.09 5.51 4.29 4.5 4.8

Mianyang 12.57 10.92 11.2 12.59 13.45 13.95 12.8 12.89 12.59
Nanchong 4.71 2.45 2.49 2.77 2.84 2.98 2.72 2.81 2.62
Neijiang 5.84 6.1 6.11 6.33 6.84 7.22 6.31 6.49 6.39
Suining 0.88 0.69 0.8 0.79 0.81 0.9 0.78 0.8 0.81

Yaan 0.36 0 0 0 0 0 0 0 0
Yibin 79.16 77.68 78.4 80.74 82.41 83.37 80.64 81.41 81.25

Ziyang 0.56 0.53 0.58 1.11 1.44 1.88 1 1.13 1.18
Zigong 10.65 10.83 11.04 11.51 11.81 12.37 11.42 11.59 11.52

Main urban area of Chongqing 21.7 18.83 19.99 22.97 23.69 24.43 22.91 23.12 23.1
Bishan 0 0 0 0 0 0 0 0 0
Dazu 0 0 0 0 0 0 0 0 0

Dianjiang 9.57 3.72 3.39 6.75 7.87 9.16 6.1 7.15 5.66
Fengdu 42.81 35.02 43.38 46.72 49.48 52.78 46.04 47.83 46.37
Fuling 58.68 59.31 61.65 68.1 72.11 74.66 67.74 69.3 68.15

Hechuan 0 0 0 0 0 0 0 0 0
Jiangjin 46.82 41.83 42.5 43.26 44.72 45.53 43.33 43.87 43.91
Kaizhou 3.87 0.03 0.06 0.1 0.13 0.2 0.09 0.11 0.1

Liangping 19.54 10.93 12.23 13.84 12.83 13.24 13.46 14.21 12.3
Nanchuan 91.18 81.23 85.23 87.82 89.49 91.32 87.21 88.61 88.44

Qijiang 80.32 77.21 78.66 82.97 84.77 86.92 82.63 83.89 82.7
Rongchang 0 0 0 0 0 0 0 0 0

Shizhu 23.11 0.26 0.19 0.22 0.35 0.63 0.22 0.29 0.32
Tongliang 0 0 0 0 0 0 0 0 0
Tongnan 0 0 0 0 0 0 0 0 0
Wanzhou 50.64 12.91 14.48 15.64 17.07 18.23 15.5 16.17 15.54

Yongchuan 0 0 0 0 0 0 0 0 0
Yunyang 59.84 33.21 31.91 33.07 35.82 36.39 32.71 33.91 33.5

Changshou 14.14 12.3 9.32 17.46 21.65 24.06 16.41 19.03 17.65
Zhongxian 33.98 22.68 25.46 26.7 28.51 30.1 26.26 27.06 26.75
C-C E Zone 22.35 19.1 19.65 20.71 21.55 22.34 20.62 21.02 20.76
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3.6.3. Analysis of the LER Rates of Change in Various Regions

To evaluate the level of change in LER for the C-C E Zone, the rate of change was
examined in relation to the change in high and extremely high risk levels (Table 4). During
2000–2010, the proportions of high and extremely high risk decreased in 24 regions while
the proportions were stable in 8 regions, and increased in 4 regions. Wanzhou, Yunyang,
and Shizhu had the greatest rate of decline, reaching −3.773, −2.663, and −2.285 per
year, respectively. During 2010–2020, the proportions of high and extremely high risk
decreased in 7 regions but were stable and increased in 8 and 21 regions, respectively.
Fengdu, Nanchuan, and Luzhou had the highest rates of increase, reaching 0.836, 0.4, and
0.299 per year, respectively. Under the ND scenario, Suining was the only region that
showed a decrease in the high and extremely high risk proportions during 2020–2030.
These proportions were stable across eight regions, with the top increases observed in
Changshou (0.814 per year), Fuling (0.645 per year), and Qijiang (0.431 per year). There
were increasing trends in 27 regions for the proportions of both high and extremely high
risk levels. Similarly, the majority of the regions (27 out of 36) showed a decreasing
proportion of high and extremely high risk during 2030–2040 while Liangping was the
only region with a decreasing trend (−0.101 per year), and another eight regions, including
Changshou (0.419 per year), Fuling (0.401 per year), Fengdu (0.276 per year), etc., showed
increasing trends in the proportion of high and extremely high risk. During 2040–2050,
these proportions were stable in 8 regions while they increased in another 28 regions,
with the highest increases found in Fengdu (0.330 per year), Leshan (0.296 per year), and
Fuling (0.255 per year). In conclusion, the risk levels in Fuling, Fengdu, and Changshou
continued to increase from 2000 to 2050, with risk increase rates of 0.3196, 0.1994, and
0.1984 per year, respectively. Fuling is one of the strongest economies in Chongqing, with
its GDP being among the top five in the area. Fuling has a complex terrain, developed
agriculture, and frequent interference due to human activities, which is the main reason for
its high LER. Fengdu is a typical area of this region composed of parallel folded mountains.
The mountains and hills in Fengdu are widely distributed, and narrow flat dams exist
only in valleys, which is the main reason for its high LER. As a national economic and
technological development zone, Changshou has seen rapid economic development and
is close to the main city of Chongqing. Changshou’s economic development and intense
human interference have remained at a high level for a long time, which is the main reason
for its high LER.

3.6.4. Analysis of the Evolutionary Trends for LER Levels at the Grid Scale

The risk-level changes in each grid for different periods were analyzed by a transfer
matrix method. Based on the changes in risk level, the grids were divided into several
groups: severe decline (−3), moderate decline (−2), slight decline (−1), no change (0), slight
rise (1), moderate rise (2), and severe rise (3) (Figure 5). From 2000 to 2010, the number of
grids with decreased, unchanged, and increased risk levels accounted for 15.13%, 81.48%,
and 3.39% of the area, among which the grids with increased risk levels were mainly located
at the junction of Fengdu-Shizhu, the southeast of Shizhu, the east of Changshou, the east
of Mianyang, the junction of Chengdu-Ya’an, the middle of Meishan, the east of Chengdu,
Deyang, Dazhou, Luzhou, the main urban area of Chongqing, etc. The grids with reduced
risk levels were mainly located in the area of Shizhu-Wanzhou-Yunyang-Kaizhou, the area
of Guang’an-Nanchong-Suining-Mianyang-Deyang, Chengdu, Ya’an, Meishan, Ziyang,
Yibin, Luzhou, Jiangjin, Bishan, the main urban area of Chongqing, Nanchuan, etc. From
2010 to 2020, the number of grids with decreased, unchanged, and increased risk levels
accounted for 1.74%, 94.95%, and 3.31%, among which the grids with increased risk levels
were mainly located at the junction of Fengdu-Shizhu, southwest of Nanchong, west of
Ziyang, south of Luzhou, etc. The grids with reduced risk levels were mainly located
at the junction of Leshan-Meishan, etc. Under the ND scenario, during 2020–2030, the
number of grids with decreased, unchanged, and increased risk levels accounted for 1.74%,
94.95%, and 3.31% of the area, among which the grids with increased risk levels were
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mainly located in Meishan, Chengdu, Deyang, Suining, the main urban area of Chongqing,
Yongchuan, etc. During 2030–2040, the proportion of grids with changes in the risk level
decreased. The number of grids with decreased, unchanged, and increased of risk levels
accounted for 0.30%, 91.00%, and 8.70% of the area, and small rises in the degrees were
only concentrated in Deyang, Chengdu, Mianyang, the area of Tongliang-Hechuan-Bishan-
Dazu-Yongchuan, etc. During 2040–2050, the proportion of grids with risk-level changes
continued to decrease. The number of grids with decreased, unchanged, and increased risk
levels accounted for 0.54%, 94.75%, and 4.71% of the area, and small rises in the degrees
were only concentrated in Dazhou, Nanchong, Ziyang, Mianyang, etc. The evolutionary
trends for the risk levels in each period under the EP scenario were consistent with those in
the ND scenario, but the decline in the proportions of risk levels is higher than those in the
ND scenario.

Table 4. Rate of change in the high and extremely high risks of LER in each region.

Region\Period 2000–2010 2010–2020
ND Scenario EP Scenario

2020–2030 2030–2040 2040–2050 2020–2030 2030–2040 2040–2050

Chengdu 0 0.009 0.087 0.145 0.066 0.074 0.061 0.016
Dazhou −0.045 0.023 0.02 0.04 0.037 0.019 0.012 −0.005
Deyang 0.039 −0.019 0.054 0.045 0.053 0.043 0.03 −0.018

Guangan −0.189 −0.06 0.079 0.05 0.047 0.07 0.028 −0.036
Leshan −0.031 0.001 0.121 0.137 0.296 0.107 0.084 −0.105
Luzhou −1.007 0.299 0.133 0.099 0.168 0.105 0.061 −0.048
Meishan 0.061 −0.003 0.023 0.077 0.042 0.02 0.021 0.03

Mianyang −0.165 0.028 0.139 0.086 0.05 0.16 0.009 −0.03
Nanchong −0.226 0.004 0.028 0.007 0.014 0.023 0.009 −0.019
Neijiang 0.026 0.001 0.022 0.051 0.038 0.02 0.018 −0.01
Suining −0.019 0.011 −0.001 0.002 0.009 −0.002 0.002 0.001

Yaan −0.036 0 0 0 0 0 0 0
Yibin −0.148 0.072 0.234 0.167 0.096 0.224 0.077 −0.016

Ziyang −0.003 0.005 0.053 0.033 0.044 0.042 0.013 0.005
Zigong 0.018 0.021 0.047 0.03 0.056 0.038 0.017 −0.007

Main urban area of Chongqing −0.287 0.116 0.298 0.072 0.074 0.292 0.021 −0.002
Bishan 0 0 0 0 0 0 0 0
Dazu 0 0 0 0 0 0 0 0

Dianjiang −0.585 −0.033 0.336 0.112 0.129 0.271 0.105 −0.149
Fengdu −0.779 0.836 0.334 0.276 0.33 0.266 0.179 −0.146
Fuling 0.063 0.234 0.645 0.401 0.255 0.609 0.156 −0.115

Hechuan 0 0 0 0 0 0 0 0
Jiangjin −0.499 0.067 0.076 0.146 0.081 0.083 0.054 0.004
Kaizhou −0.384 0.003 0.004 0.003 0.007 0.003 0.002 −0.001

Liangping −0.861 0.13 0.161 −0.101 0.041 0.123 0.075 −0.191
Nanchuan −0.995 0.4 0.259 0.167 0.183 0.198 0.14 −0.017

Qijiang −0.311 0.145 0.431 0.18 0.215 0.397 0.126 −0.119
Rongchang 0 0 0 0 0 0 0 0

Shizhu −2.285 −0.007 0.003 0.013 0.028 0.003 0.007 0.003
Tongliang 0 0 0 0 0 0 0 0
Tongnan 0 0 0 0 0 0 0 0
Wanzhou −3.773 0.157 0.116 0.143 0.116 0.102 0.067 −0.063

Yongchuan 0 0 0 0 0 0 0 0
Yunyang −2.663 −0.13 0.116 0.275 0.057 0.08 0.12 −0.041

Changshou −0.184 −0.298 0.814 0.419 0.241 0.709 0.262 −0.138
Zhongxian −1.13 0.278 0.124 0.181 0.159 0.08 0.08 −0.031
C-C E Zone −0.325 0.055 0.106 0.084 0.079 0.097 0.04 −0.026
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4. Discussion
4.1. The High-Precision Simulation Effect of the PLUS Model over a Wide Area Was Conducive to
Analyzing Evolutionary Trends in LER

In this study, the PLUS model was introduced to simulate land use data for the C-C
E Zone, and high-precision simulation results were obtained at a resolution of 30 m. The
results were compared with the results of other land use simulation models, such as the
CLUE-S model and CA-Markov model, which are widely used at present. For example,
Islam et al. used the CLUE-S model to simulate land use data with a resolution of 30 m
in Southeast Bangladesh, and the kappa coefficients were 0.61–0.71 [28]. Hu et al. used
the CLUE-S and Markov models to simulate land use data with a resolution of 30 m in
Beijing, and the kappa coefficient was greater than 0.75 [29]. Zhao et al. conducted a 30 m
resolution land use simulation in Shunyi District of Beijing using a CA-Markov model, and
the kappa coefficient was 0.77 [30]. These existing studies showed that the PLUS model
has obvious advantages in its simulation range and accuracy, which was conducive to
improving the accuracy of LER evolutionary trend analysis.
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4.2. Determination of the Ecological Grid Size Should Not Directly Refer to the Previous Research

In this study, the gradient division method (1 × 1 km, 2 × 2 km, . . . , 10 × 10 km) was
used to determine the optimal size of the ecological grid in the LER calculation, but this was
rarely done in previous studies. The main reason was that in most studies, the size of the
ecological grid was mostly determined by two to five times of the average plaque area in
the study area or citing the research results of other scholars. For example, Yu et al. used the
results of other scholars when calculating LER in Amu Darya Delta and selected 5 × 5 km
as the size of the ecological grid [31]. Based on the ecological risk research carried out by
Tian et al. in Yongjiang River Basin of Zhejiang Province, 2 × 2 km was determined as the
ecological grid size based on 2–5 times the average plaque area in the study area [32]. The
advantage of using this method to determine the optimal ecological grid size is that it was
simple to operate and can reduce the amount of calculation. However, in the research of
geography and ecology, it is obviously unscientific to use the same measurement standard
in different regions, such as the obvious differences in terrain, elevation, and landscape
fragmentation between plain and mountainous regions. At the same time, in our research, if
the size of the ecological grid was determined as 3 × 3 or 5 × 5 km, the spatial distribution
law of LER will not reflect the actual situation. Therefore, the gradient measurement
method proposed in this study was scientific and reasonable for identifying the size of the
best ecological grid.

4.3. Development Scenario Research Will Help Reduce LER in the Future

In this study, we discussed the changes in LER under the ND and EP scenarios, and
concluded that the EP scenario was conducive to reducing regional LER, which was related
to the increase in the ecological land area and the control of construction land expansion
under the EP scenario. Many studies have shown that social factors were important factors
affecting LER. Yu et al. analyzed the influencing factors of LER in Amu Darya Delta and
found that LER was higher in areas with a high population density [31]. Mondal et al.
conducted an LER assessment study in Delhi and believed that incentives or services for
urban development would put pressure on LER [6]. Chen et al. carried out LER assessment
and driving force analysis in Peibei and found that the increase in the urbanization rate
significantly improved LER [33]. Li et al. also concluded that human activities were the
main reason affecting LER in Qinling area, and it was necessary to balance the relationship
between economic development and environmental protection [1]. Under the EP scenario,
due to the protection of ecological land and the reduced urban expansion rate, the LER will
be effectively reduced compared with the ND scenario. This is consistent with the research
conclusion of Xu et al., who used the Markov-FLUS model in Xinjiang, and the research
shows that the EP scenario can significantly reduce the ecological risk compared with the
ND scenario [34]. The multi scenario simulation carried out by Tian et al. in Yancheng
coastal wetland also showed that the LER of the region can be significantly reduced under
the EP scenario [35]. For this study, the regions with a high concentration of LERI (southeast
of Mianyang, southeast of Deyang, east of Leshan, junction of Neijiang and Zigong, Yibin,
Luzhou, south of Jiangjin, Qijiang, south of Banan, south of Fuling, Fengdu, north of Shizhu,
north of Zhongxian, south of Wanzhou, south of Yunyang, etc.), the regions with a high
level of LERI (Luzhou, Fuling, Yibin, Qijiang, Nanchuan, etc.), or regions with a rapid risk
rise (Fuling, Fengdu, Changshou, etc.) should strengthen ecological protection and build a
more reasonable combination of ecological space, living space, and production space.

4.4. LER Can Explain Regional Ecological Risk at the Landscape Level

Ecological risk refers to the risk borne by the ecosystem and its components under the
interference of natural or human activities. It is the possible adverse impacts of uncertain
accidents or disasters on the structure and function of the ecosystem in a certain area.
As an important branch of ecological risk assessment at the regional scale, LER refers
to the possible adverse consequences of the interaction between landscape patterns and
ecological processes under the influence of natural or human factors [36]. Therefore, LER
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focuses on explaining regional ecological risk at the landscape level, which is similar to the
approach in this study. It is generally believed that regions with a high level of economic
development are regions with a high LER, and regions with a low economic development
level are regions with a low LER. By measuring the LER of the C-C E Zone, this study found
that the high level of economic development shows that the LER was low, especially in
urban centers, such as Chengdu and the main urban areas of Chongqing. At the same time,
the phenomenon of a higher LER was found in areas with low economic development
levels, such as Yunyang, Qijiang, etc. We believe that this was because LER only considers
the combination of landscape and the integrity of landscape patches. In the urban center,
the landscape was mainly construction land. The landscape patches here were relatively
complete, so they did not show a high LER. In areas with a low economic development
level, the regional landscape was seriously various due to the cutting of cultivated plots
and the loose distribution of rural settlements, so it shows a high LER. This was consistent
with the LER analysis conducted by Chen et al. in Shiyan City [37] and Kang et al. in Manas
River Basin [38]. This shows that an LERI can only represent the landscape level to judge
the regional ecological risk and can be used to guide regional ecological risk prevention
and control at the landscape level.

Therefore, this study constructed an LERI model composed of a landscape disturbance
index and landscape vulnerability index. Although it provides a convenient and efficient
evaluation method, and the use of this model was applicable to the LER evaluation based on
land use change, it has less consideration of ecological processes, so it should be improved
in the future for ecological risk assessment research

5. Conclusions

This research introduced the PLUS model, ecological grids, and the LERI model to
analyze LER evolutionary trends in the C-C E Zone from 2000 to 2050 according to the ND
and EP scenarios. The results showed that: (1) the PLUS model could obtain high-precision
simulation results in the C-C E Zone. In the future, the increase rate in construction land
area would be reduced, the declining rate of forest land and cultivated land area would also
be reduced, and the area of various types of land would tend to be stable. (2) This study
found that the optimal size of the ecological grid in the LERI calculation of the mountainous
area was 4 × 4 km. Moreover, the mean values of LERI in 2030, 2040, and 2050 were 0.1612,
0.1628, and 0.1636 for the ND scenario and 0.1612, 0.1618, and 0.1620 for the EP scenario.
(3) The hot spot analysis results showed that an area of about 49,700 km2 in the C-C E Zone
from 2000 to 2050 belongs to high agglomeration of LER. (4) Since 2010, the proportions of
high and extremely high risk levels have continued to increase, but under the EP scenario,
the high and extremely high risk levels in 2040 and 2050 decreased from 14.36% and 6.66%
to 14.33% and 6.43%. Regional analysis showed that the high and extremely high risk in
most regions increased during 2010–2050. Moreover, the risk levels of Fuling, Fengdu, and
Changshou increased for a long period of time, and the risk level increase rates of the three
regions during 2000–2050 were 0.3196, 0.1994, and 0.1984, respectively. (5) Under the ND
scenario, the proportions of grids with decreased, unchanged, and increased risk levels
were 15.13%, 81.48%, and 3.39% for 2000–2010 and 0.54%, 94.75%, and 4.71% for 2040–2050.
The proportion of grids with changed risk levels gradually decreased.

This study analyzed the evolutionary trends of LER in the C-C E Zone from 2000–2050
under the ND and EP scenarios. On the whole, the LER risk for the C-C E Zone showed
an upward trend, and the ecological protection scenario was conducive to reducing the
risk. The research results can serve as a valuable data reference set for regional landscape
optimization and risk prevention and control. In the future, in order to manage LER
prevention and control well, we should focus on ecological grids with a high LERI or rapid
index rise, agglomeration areas with a high landscape risk, and areas with a high risk level
or rapid rise in their level. Increasing the landscape layout at the macro level and landscape
optimization at the micro level based on a landscape index is an effective way to reduce
regional LER.
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