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Abstract: Continuing soil degradation remains a serious threat to future food security. Soil aggre-
gation can help protect soil organic matter from biodegradation; it affects soil physical (aeration),
chemical (water infiltration), and biological (microbial) activities. The integrated plant nutrition
system (IPNS) and organic farming (OF) options have been contemplated as a sustainable strategy
to sustain soil aggregate stability under adverse climatic conditions and a possible tool to restore
degraded soil systems. Results suggested that the application of plant nutrients based on IPNS and
soil test crop response (STCR) including mineral fertilizers and organic manure (farmyard manure:
FYM) improved soil aggregate stability and mean weight diameter (MWD) under rice–wheat crop-
ping systems. A long-term (19 year) cropping system (rice–wheat) experiment was examined to
identify best nutrient management practices. Seven nutrient supply options were applied: organic,
mineral fertilizer in combination with IPNS, IPNS + B/IPNS + C to improve soil aggregate stability
and MWD after completing 19 cropping cycles of rice–wheat cropping systems. Results showed
that significantly higher (+31%) macroaggregates were dominant in the surface soil layer than in the
subsurface soil. The significantly highest macroaggregates were observed under OF (60.12 g 100 g−1

dry soil) management practices followed by IPNS options. The MWD was significantly increased
(+17%) between surface and subsurface soil. Maximum MWD was reported with OF (0.93 mm)
management practices followed by the IPNS + C (0.78 mm), IPNS + B (0.77 mm), IPNS (0.70 mm),
STCR (0.69 mm), NPK (0.67 mm), and unfertilized control (0.66 mm) plots. Overall, results suggest
that the adoption of IPNS options, such as organic farming (OF), RDF, STCR, and inclusion of pulses
(berseem and cowpea), significantly improved all soil aggregation fractions in the soil system and
also offered an additional benefit in terms of soil sustainability.

Keywords: nutrient supply options; soil aggregation; aggregation stability; organic manure;
mineral fertilizer

1. Introduction

The global food system will encounter an unprecedented convergence of pressures
over the next few decades. Soil degradation is considered one of the main causes of
stagnating productivity growth. Soil aggregate stability improves soil quality, porosity,
nutrient and water storage capacity, and food production, as well as decreases soil and
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nutrient loss. Soil aggregates, especially water stable aggregates, are of special importance
for high water infiltration and good soil structure. These properties help determine soil
quality and directly influence water-energy and food nexus. Soil aggregate stability can be
used as combined index to maintain nutrients holding capacity and soil sustainability [1,2],
which help to maintain agroecosystem sustainability [3,4]. Soil aggregates are the funda-
mental indicators of soil structure and store plant nutrient, which help the growth and
development of plants [5–7]. Intensive agriculture management practices are exposed to
land degradation. The improvement of soil aggregate stability is vital to strengthen the
management value of degraded land of subtropical and tropical regions [8,9].

Crop yields will continue to be vitally important in the fight to achieve global food
security, and the soil offers a great opportunity to boost crop production by enhancing the
natural interaction between the soil and crops. Judicious application of organic manures
and inorganic fertilizers accelerate soil aggregation and improve the organic matter in
agriculture soils [10,11]. Instabilities of soil structure through mismanagement of tillage,
nutrients, and agrochemicals can result in low soil quality, loss of soil and nutrients, reduce
water availability, and degraded the soil quality [2,12,13]. Mostly, soil aggregate stability
can be promoted by higher concentrations of carbon, mean weight diameter (MWD), and
water-stable aggregates [2,14,15].

Intensive management practices have been considered a key factor in monitoring,
regulating, stabilizing, and restoring the soil ecosystem [16–18]. The mismanagement of
agricultural practices are one of the major causes of land degradation [19]; there are four
types (i) physical (soil structure), (ii) chemical (soil fertility), (iii) biological (soil biodiver-
sity), and (iv) ecological (all three factors lead to this) agroecosystem sustainability [20]. In
the last few decades, there has been unparalleled interest and research attempts in finding
adaptive management practices to efficiently restore degraded ecosystems [21–23].

Minimum soil disturbances, balanced application of organic manure and mineral
fertilizers, preservation soil covers, and adoption of pules and green manuring crops in
cropping systems, had positive impacts on soil aggregate stability by restoring degraded
land, which in turn lead to superior crop growth development [22,24–26].

Despite its encouraging possibility, the IPNS options in rice–wheat cropping systems
are limitedly adopted by farmers due to the insufficient support and impact assessment.
Hence, to implement, design, and adopt the most effective IPNS options towards optimizing
the soil aggregate stability, it is vital to launch efficient regulating, monitoring, and restoring
assessments of soil aggregate stability and food security. The proportion of soil particles
sequestered in aggregates contributes to the movement and storage of water, soil aeration,
and species composition and distribution of soil organisms.

Moreover, there is a lack of studies in the literature about different nutrient supply
options that evaluated the impacts of IPNS options, STCR, and OF practices on soil ag-
gregate stability and soil sustainability. Consequently, developing our knowledge of the
relationships between macroaggregate, microaggregate, and mean weight diameter under
long-term applications of different nutrient supply options at aggregate scales is crucial
for increasing aggregate stability and soil sustainability. Thus, it could be understood that
changing soil quality induced by IPNS options, STCR, and OF practices would provide
more scientific indications in evaluating soil aggregate stability. Hence, it is urgent to
improve aggregation stability by adopting integrated plant nutrition system (IPNS) supply
options (inclusion of pulses), soil test crop response (STCR), and organic farming (OF)
practices, to maintain aggregate stability and soil quality.

Some fundamental questions remain unexplored, such as (i) how do IPNS options
influence macroaggregate and microaggregate?; (ii) does organic manure application influ-
ence different soil aggregation fractions?; (iii) does IPNS and pulses (berseem and cowpea)
options alleviate the adverse effect of climatic factors on soil aggregate stability?; and (iv)
how does the relationship of different soil aggregation fractions influences MWD under
rice–wheat cropping systems? Therefore, the effects of long-term application of IPNS
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options, STCR, and OF practices were tested to appraise their impact on soil aggregate
stability after the completion of 19 cropping system cycles.

Based on the literature discussed above and the questions raised here, we hypothesized
that in IPNS options, STCR and OF practices could increase or decrease the soil aggregate
stability. Consequently, we intend to elucidate long-term IPNS options’ effects (i) to
quantify the IPNS options and soil depths on soil aggregation fractions and (ii) to assess the
best nutrient supply options and quantitative aggregate stability, MWD, and relationship
compared to different nutrient supply options in long-run with a broad view to assess
optimum options to maintain soil sustainability.

2. Materials and Methods
2.1. Site Descriptions

The ongoing long-term experimental site of ICAR-Indian Institute of Farming Systems
Research Meerut is situated at 29◦4′ N, 77◦46′ E, 237 m above sea level located in the
Western part of Uttar Pradesh, represents an irrigated, mechanized, and input-intensive
cropping area of the Upper Gangetic Plain (UGP) transect of the Indo-Gangetic Plain (IGP).
This long-term field experiment was started in 1998 to identify “Sustainable Production
Model for Rice-Wheat Cropping System” on a sandy loam soil representing AEZ 4.1 (Hot
semi-arid eco-region). Initial soil characteristics are presented in Table 1.

Table 1. Initial soil properties of experimental site (1998).

Soil Characteristics Type/Values

Texture Clay Sandy loam

Sand (g kg−1) 62.90
Silt (g kg−1) 19.30

Clay (g kg−1) 17.80

Bulk density (Mgm−3)

0–15 cm 1.49
15–30 cm 1.52

pH (1:2, soil/water)

0–15 cm 8.01
15–30 cm 7.89

EC (dSm−1)

0–15 cm 0.11
15–30 cm 0.12

Organic carbon (g kg−1)

0–15 cm 5.10
15–30 cm 3.60

2.2. Climatic Features of the Experimental Site

The climate of the experimental site is semi-arid subtropical, with dry hot summers
and cool winters. The average monthly minimum and maximum temperatures in January
(the coolest month) are 7.2 ◦C and 20.1 ◦C, respectively. The corresponding temperatures in
May (the hottest month) are 24.2 ◦C and 39.8 ◦C, respectively. Average annual rainfall is
823 mm out of which ~75% rainfall is received through the South-west monsoon during
July–September month (Supplementary Table S1).

2.3. Treatments and Experimental Design

The long-term cropping system experiment at an involving different nutrient supply
options under rice-wheat rotation (Figure 1). The experiment was conducted in large plots
(individual plot area 1000 m2). All treatments were Randomized Block Design (RBD) and
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four replications. Treatments for a total of seven nutrient supply options were used in the
long-term cropping system experiment as T1: control i.e., no chemical fertilizer or organic
manure; T2: recommended fertilizer dose to rice and wheat; T3: soil-test based fertilizer
application in both crops; T4: 75% of recommended N, P, and K through fertilizers +25%
substitution of recommended N through FYM in rice and RDF in wheat crop; T5: 75%
of recommended N, P, and K through fertilizers + 25% substitution of recommended N
through FYM + every third wheat substituted with berseem for rice and RDF for wheat
crop; T6: 75% of recommended N, P, and K through fertilizers + 25% substitution of
recommended N through FYM + every third rice substituted with cowpea for rice and RDF
for wheat crop; and T7: 100% of recommended N, P, and K through organic manures (FYM)
in both crops. Experimental photographs during Kharif season (Figure 2).
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2.4. Collection and Processing of Soil Samples

After the completion of 19 cropping cycles at ICAR-IIFSR, Modipuram, Meerut, four
sets of replicated samples of both surface (0–15 cm) and sub-surface (15–30 cm) soil layers
were collected from all treatments during May 2017 using a core sampler (with a core of
3.9 cm diameter and 179.2 cm3 volume). The soil samples were collected after 19 cropping
cycles of the rice–wheat cropping system were completed. The first set was used to measure
soil bulk density. From the second set of undisturbed soil samples, a set of sub-samples
was taken for the determination of soil aggregate fractionations (Figure 3).
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2.5. Soil Aggregate Fractions Separation

Briefly, to obtain four soil fractions, 100 g air dried (4.75-mm sieved) soil sample was
placed on the top of a 2-mm sieve (Figure 4). A series of three sieves (2000, 250, and 53 µm)
was used to obtain four aggregate fractions: (i) >2000 µm; (ii) 250–2000 µm; (iii) 53–250 µm;
(iv) and <53 µm (silt and clay particles) [27]. Small and large macroaggregates together
constitute the macroaggregates. Sieving was done mechanically using a modified Yodar
apparatus that moved the sieve up and down 3 cm, 50 times in 2 min to achieve aggregate
separation [28].
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2.6. Mean Weight Diameter (MWD)

Mean weight diameter (MWD) was calculated using the procedure given by Van
Bavel [29] where four aggregate fractions {>2000 µm, 250–2000 µm, 53–250 µm, and <53 µm
(silt and clay particles)} were considered.

MWD =
∑n

i=1 xi

∑n
i=1 wi

xi—Mean diameter of different sizes of aggregates.
wi—Proportion of different sizes of aggregates to total weight of aggregate

2.7. Data Analyses

The produced data was treated for analysis of variance (ANOVA) and Duncan’s
multiple range test (DMRT) p < 0.05 [30] was performed to test statistical differences
in soil aggregation fractions (i) >2000 µm; (ii) 250–2000 µm; (iii) 53–250 µm; (iv) and
<53 µm, macroaggregate, microaggregate, and mean weight diameter between different
treatment combinations and soil depth. To check the data normality, Shapiro–Wilks test
were performed. The relationship among macroaggregate, microaggregate, and mean
weight diameter of both soil layers were described by linear regression functions.

3. Results
3.1. Aggregate-Size (>2000 µm) Distribution

Data indicated that the significant differences in aggregate size fractions were found
across the different nutrient management practices and soil depths of rice–wheat cropping
systems (Tables 2 and 3). Organic farming (OF) treatment contained larger >2000 µm (20.79
and 13.68 g 100 g−1 dry soil) followed by the IPNS + C (16.61 and 12.48 g 100 g−1 dry soil),
it was on par with IPNS + B (16.08 and 12.54 g 100 g−1 dry soil), although the differences
in the IPNS/STCR and NPK/unfertilized control were not statistically significant in the
0–15 and 15–30 cm soil depth, respectively. This increase in the >2000 µm might be due
to higher organic carbon concentration in OF options, in which recommended doses of
nutrients were applied through FYM in both cropping seasons (Tables 2 and 3).
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Table 2. Soil aggregation distribution as affected by long-term nutrient supply options of rice–wheat
system in the 0–15 cm soil layer. Means of different treatments followed by the different lower-case
letter are significantly different at p < 0.05 level of significance according to DMRT.

Treatments

Size Distribution of Aggregates, µm

>2000 250–2000 53–250 <53

g 100 g–1 Dry Soil

Control 13.0 d 31.8 e 48.0 a 7.2 d

NPK 13.3 d 32.9 de 46.1 a 7.8 d

STCR 14.0 cd 33.8 cde 41.8 b 10.4 c

IPNS 14.2 cd 36.5 bcd 38.5 b 10.9 c

IPNS + B 16.1 bc 37.5 abc 33.4 c 13.0 b

IPNS + C 16.6 b 37.9 ab 32.0 c 13.6 ab

OF 20.8 a 39.3 a 25.2 d 14.7 a

Table 3. Soil aggregation distribution as affected by long-term nutrient supply options of rice-wheat
system in the 15–30 cm soil layer. Means of different treatments followed by the different lower-case
letter are significantly different at p < 0.05 level of significance according to DMRT.

Treatments

Size Distribution of Aggregates, µm

>2000 250–2000 53–250 <53

g Aggregate 100 g–1 Dry Soil

Control 8.5 d 41.0 d 44.4 a 6.1 d

NPK 9.9 cd 41.9 cd 41.2 ab 7.0 d

STCR 10.4 bcd 42.7 bcd 38.8 ab 8.2c

IPNS 11.3 abcd 44.3 abcd 35.5 bc 8.8 b

IPNS + B 12.5 abc 46.1 abc 32.2 c 9.2 a

IPNS + C 12.8 ab 46.6 ab 31.8 c 8.8 b

OF 13.7 a 47.7 a 30.6 c 8.1 c

3.2. Aggregate-Size (250–2000 µm) Distribution

Results observed that the 250–2000 µm fraction of aggregation was significantly higher
under OF (39.33 g 100 g−1 dry soil) management followed by the IPNS + C (37.86 g 100 g−1

dry soil), IPNS + B (37.54 g 100 g−1 dry soil), IPNS (36.47 g 100 g−1 dry soil), STCR (33.76 g
100 g−1 dry soil), NPK (32.85 g 100 g−1 dry soil), and the lowest values were found in the
control (31.77 g 100 g−1 dry soil) plot in surface (0–15 cm) soil. A similar trend was also
observed in the subsurface (15–30 cm) soil (Tables 2 and 3).

3.3. Aggregate-Size (53–250 µm) Distribution

Tables 2 and 3 showed that significantly higher soil aggregation distributions
(53–250 µm) were observed under NPK and unfertilized plot, followed by STCR/IPNS and
IPNS + C/IPNS + B; on the other hand, the lowest value of 53–250 µm fraction of soil aggre-
gation was observed with OF management in both soil depth in both soil layer. At 0–15 cm
soil depth, the highest 53–250 µm fractions were observed in control (47.99 g 100 g−1 dry
soil) and NPK (46.05 g 100 g−1 dry soil), which was on par with control and STCR and
IPNS (41.77 and 38.47 g 100 g−1 dry soil), respectively. In contrast, the significantly lowest
values were recorded for the OF option (25.20 g 100 g−1 dry soil). However, in the case
of 15–30 cm soil layer, 53–250 µm fractions sizes were reported in the following order:
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control > NPK ≥ STCR > IPNS > IPNS ≥ IPNS + B ≥ IPNS + C ≥ OF under different
nutrient supply options.

3.4. Aggregate-Size (<53 µm) Distribution

A significantly higher <53 µm size fraction was found in OF (14.67 g 100 g−1 dry
soil); it was on par with IPNS + C (13.56 g 100 g−1 dry soil), followed by IPNS + B
(12.96 g 100 g−1 dry soil), IPNS (10.88 g 100 g−1 dry soil), STCR (10.43 g 100 g−1 dry soil),
NPK (7.79 g 100 g−1 dry soil), and control (7.72 g 100 g−1 dry soil) treatment in 0–15 cm
soil depth. In the case of subsurface soil, results were observed in the following order:
IPNS + B > IPNS > IPNS + C > STCR > OF > NPK, and control treatment (Tables 2 and 3).
In contrast to the other sizes of soil aggregation, the significantly highest <53 µm were
found for OF options followed by the IPNS options, and the lowest were found for the
control and NPK options.

3.5. Macroaggregates Distribution

Data revealed that both (macro and micro) aggregates significantly varied among the
different nutrient management practices in both soil depths over the periods
(Figures 5 and 6). Macroaggregates significantly varied from 44.79 to 60.12 and 49.50
to 61.34 g 100 g−1 dry soil in the surface and subsurface soil layers, respectively. Macroag-
gregates accounted for ~31% of the total aggregates and were more dominant in the surface
soil layer than the subsurface soil layer. Maximum macroaggregates were observed under
OF (60.12 g 100 g−1 dry soil) management practices followed by IPNS + C (54.47 g 100 g−1

dry soil), IPNS + B (53.62 g 100 g−1 dry soil), IPNS (50.66 g 100 g−1 dry soil), STCR (49.49 g
100 g−1 dry soil), and NPK (46.16 g 100 g−1 dry soil), and lower values (44.79 g 100 g−1

dry soil) were reported for the unfertilized control plot. Having said that, the results of
macroaggregates fractions under 15–30 cm soil depth were reported in the following order:
OF > IPNS + C > IPNS + B > IPNS > STCR > NPK, and the lowest values were found for
the unfertilized control plot (Figure 5).
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Figure 5. Effect of long-term nutrient supply options on macroaggregate and microaggregate frac-
tions in the 0–15 cm soil layer of a rice–wheat cropping system. Means of different treatments
followed by the different lower-case letters are significantly different at p < 0.05 level of significance
according to DMRT.
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Figure 6. Effect of long-term nutrient supply options on macroaggregate and microaggregate frac-
tions in the 15–30 cm soil layer of a rice–wheat cropping system. Means of different treatments
followed by the different lower-case letters are significantly different at p < 0.05 level of significance
according to DMRT.

In macroaggregates, OF (60.12 and 61.34 g 100 g−1 dry soil) and IPNS + C (54.47 and
59.47 g−1 dry soil) had significantly larger aggregate fractions than NPK (46.16 and 51.82 g
100 g−1 dry soil) and unfertilized control (44.79 and 49.50 g 100 g−1 dry soil) treatment in
0–15 and 15–30 cm soil depths, respectively.

3.6. Microaggregates Distribution

The results of microaggregates varied from 25.20 to 47.99 and 30.57 to 44.39 g
100 g−1 dry soil in 0–15 and 15–30 cm soil depth, respectively. Significantly highest (47.99 g
100 g−1 dry soil) values were reported for the unfertilized control plot; this was on par with
the NPK-treated (46.05 g 100 g−1 dry soil) plot, followed by the STCR (41.77 g 100 g−1 dry
soil), IPNS (38.47 g 100 g−1 dry soil), IPNS + B (33.42 g 100 g−1 dry soil), and IPNS + C
(31.97 g 100 g−1 dry soil), and the lowest (25.20 g 100 g−1 dry soil) values were reported
for OF management practices in 0–15 cm soil depth. Similar trends were also reported in
subsurface soil of the rice–wheat cropping system over the periods (Figure 6).

In contrast to what was observed for large and small macroaggregates, NPK (46.05
and 41.19 g 100 g−1 dry soil) and unfertilized control (47.99 and 44.39 g 100 g−1 dry soil)
had a significantly higher quantity of microaggregates than OF (25.20 and 30.57 g 100 g−1

dry soil) and IPNS + C (31.97 and 31.78 g 100 g−1 dry soil) in 0–15 and 15–30 cm soil depth,
respectively.

3.7. Mean Weight Diameter (MWD)

Mean weight diameter (MWD) was estimated as measures of soil aggregate stability,
and it was significantly affected by various nutrient management treatments over the
periods (Figure 7). The MWD was significantly increased (+17%) between surface and
subsurface soil. The proportion of MWD of the surface soil was significantly increased
compared with the subsurface soil. MWD significantly varied from 0.66 to 0.93 and 0.53
to 0.78 mm in the 0–15 and 15–30 cm soil depth, respectively. Maximum MWD was
reported for OF (0.93 mm) management practices, followed by the IPNS + C (0.78 mm),
IPNS + B (0.77 mm), IPNS (0.70 mm), STCR (0.69 mm), NPK (0.67 mm), and unfertilized
control (0.66 mm) plots. Consequently, in 15–30 cm soil depth, the maximum values were
observed for OF (0.78 mm), followed by IPNS + C (0.68 mm), IPNS + B (0.67 mm), IPNS
(0.63 mm), STCR (0.59 mm), and NPK (0.58 mm), and the significantly lowest (0.53 mm)
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values were reported for the unfertilized control plot. The plots with OF management
showed significant superiority over the rest of the treatment areas; its superiority was ~29%
and 32% higher than the control treatment in the 0–15 and 15–30 cm soil depth, respectively
(Figure 7).
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Figure 7. Effect of long-term nutrient supply options on mean weight diameter in the 0–15 and
15–30 cm soil layer of rice–wheat system. Means of different treatments followed by the different
lower-case letters are significantly different at p < 0.05 level of significance according to DMRT.

3.8. Relationship between Macroaggregate, Microaggregate, and Mean Weight Diameter

The macroaggregate, microaggregate fractions, and mean weight diameter have often
been used as indices of soil sustainability. Results showed that macroaggregates were
significantly negatively correlated with microaggregates (R2 = 0.99, p < 0.01; Figure 8a) in
0–15 cm soil depth and in 15–30 cm soil depth (R2 = 0.98, p < 0.01; Figure 8b). The regression
lines for macroaggregates versus microaggregates showed a negative linear relationship
(macroaggregate = −1.5067x + 114.81 and −1.1895x + 102.53) in the 0–15 and 15–30 cm soil
depth.

In the case of macroaggregates with mean weight diameter, the results showed a
strong positive relationship (R2 = 0.93, p < 0.01; Figure 9a) in 0–15 cm soil depth and in
15–30 cm soil depth (R2 = 0.92, p < 0.01; Figure 9b).

The regression lines for macroaggregate versus MWD showed a positive linear rela-
tionship (macroaggregate = 54.839x + 10.35 and 51.477x + 22.849) in the 0–15 and 15–30 cm
soil depth. However, microaggregates and MWD had a significantly strong negative rela-
tionship (R2 = 0.89, p < 0.01; Figure 10a) in 0–15 cm soil depth and in 15–30 cm soil depth
(R2 = 0.86, p < 0.01; Figure 10b).

The regression lines for microaggregate versus MWD showed a negative linear re-
lationship (microaggregate = −81.148x + 98.12 and −59.61x + 74.318) in the 0–15 and
15–30 cm soil depth (Figure 10a,b).
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Figure 8. Relationship between microaggregate and macroaggregate fractions of soil aggregation;
(a) 0–15 cm and (b) 15–30 cm soil depths.
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Figure 9. Relationship between macroaggregate and mean weight diameter fractions of soil aggrega-
tion; (a) 0–15 cm and (b) 15–30 cm soil depths.
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Figure 10. Relationship between microaggregate and mean weight diameter fractions of soil aggrega-
tion; (a) 0–15 cm and (b) 15–30 cm soil depths.

4. Discussion
4.1. Aggregate-Size Distribution

Soil aggregate fraction and stability of aggregates can be used as a combined index to
maintain nutrients holding capacity and agroecosystem sustainability [1,4]. The judicious
application of organic manures and inorganic fertilizers accelerates soil aggregation [1] and
improves organic matter in agriculture soils [10,11]. The increase in the size of aggregates
might be due to higher organic carbon concentration in OF options, in which recommended
doses of nutrients were applied through FYM in both cropping seasons (Tables 2 and 3).
The addition of higher organic matter might have a cementing effect, aggregating and
nutrient cycling, which helps to promote crop growth and development [31–33].

OF and all the IPNS options, IPNS + B, IPNS + C, and IPNS showed significant superi-
ority over the STCR, NPK, and control plot. This might be due to the higher concentration
of carbon and inclusion of legumes (berseem and cowpea), which help to improve soil
sustainability. The soil depth’s influence on these processes increased with judicious use of
organic manure and mineral fertilizers [34–36].

Our study results support the notion that the judicious application of organic manure
and mineral fertilizers significantly improves soil aggregations, as it promotes a higher
concentration of organic matter [33,34]. Nevertheless, the impact of this same technology
may differ with different soil types. Similarly, significantly higher soil aggregation fractions
(53–250 µm) and aggregate stability were associated with the judicious application of
animal and chicken manure [36–38]. Jiang et al. [39] and Ghosh et al. [34] also suggested
that silt + clay had higher carbon concentrations. We also found that silt + clay fractions
were highest in OF options. This might be due to the application of organic manure that
works as a cementing agent and helps to promote the formation of aggregations [5,36,40].
Soil organic matter and soil water content significantly influenced the aggregate stability of
soils with contrasting cropping histories [41–45]. A significant relation between aggregate
breakdown, crusting, and water erosion were observed [46]. The use of organic matter has
positive influences on both soil aggregation and aggregate stability [41,42,47].

4.2. Micro- and Macroaggregates Distribution

Results showed that both aggregate fractions significantly varied among the different
nutrient management practices in both soil depth over the periods (Figures 5 and 6).
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Significantly higher quantities of macroaggregates were observed in OF, followed by
IPN + C/IPNS + B, which had positive impacts on aggregation [3,31]; this might be due
to higher carbon concentrations that help as a cementing agent during the formation of
macroaggregates [48,49]. Results showed that the IPNS and OF options had a higher
quantity of macroaggregates than microaggregates after completing 19 cropping system
cycles (Figures 5 and 6). The significantly higher quantities of macroaggregates than
microaggregates could be due to the lesser amount of soil organic carbon, and the non-
addition of organic manure [35,36].

4.3. Mean Weight Diameter (MWD)

Aggregate stability was significantly affected by various nutrient management treat-
ments over the periods (Figures 5 and 6). Plots with OF management showed its significant
superiority over the rest of the treatments in both soil layers (Figure 7). In subsurface soil,
the decreased MWD was driven by the change in aggregate distribution, especially for the
disintegration of large macroaggregates into microaggregates, which indicated the presence
of aggregates with higher stability in OF management practices in comparison with the rest
of the treatment combinations under long-term fertilization; macroaggregates also directly
correlated with MWD [36,40,50]. Results suggest that higher soil organic matter content
may be responsible for relatively higher percentage aggregation, larger median aggregate
size, and more kinetic energy required to disrupt aggregates as compared to plow-tillage
treatments. Similarly, our results corroborate that aggregate stability as measured by MWD
was significantly macroaggregate [51,52].

4.4. Relationship between Macroaggregate, Microaggregate and MWD

Macroaggregates significantly negatively correlated with microaggregates in both
soil layers (Figure 8a,b). In contrast, macroaggregates with mean weight diameter results
showed a strong positive relationship in the 0–15 cm soil depth and in 15–30 cm soil depth
(Figure 9a,b). However, in the case of microaggregates and MWD, there was a significantly
strong negative relationship for both soil depths (Figure 10a,b). A significant increase in
aggregate stability was found when adopting IPNS and OF options and adding organic
manure; organic input directly contributed to SOC and works as a cementing agent between
the soil particles [36,53,54]. Soil management practices also significantly influenced soil
properties under rainfed lowland rice-based cropping systems [55].

Our results suggest that the adoption of IPNS options (berseem and cowpea) and
organic farming had a significant role in improving the aggregate stability. This can alter
how IPNS and OF options affect aggregate stability. Consequently, it is crucial to study
the effects of best management practices (NPK, STCR, IPNS, IPNS + B, IPNS + C, and OF)
on aggregate size distribution (micro- and macro-aggregate) and mean weight diameter
in rice–wheat cropping systems after the completion of 19 cropping cycles. Soil fungi and
organic matter significantly influenced plant nutrition and soil aggregate formation [56],
and similarly increased mycorrhizal associations, soil aggregation, and the weathering of
minerals [57]. However, a decline in soil organic matter levels lead to a decrease in soil
aggregate stability and infiltration rates, and an increase in susceptibility to compaction, run-
off, and erosion [58]. The results suggested that the soil structure characteristics (macro and
micro aggregates) along the climatic transect are non-linear [59]. Soil structure influences
soil water movement and retention, erosion, crusting, nutrient recycling, root penetration,
and crop yield [60–62], soil aggregates are one component of soil structure [63–66].

5. Conclusions and Recommendations

The long-term (19-year) combined application of organic manure, mineral fertil-
izer, and adoption of integrated plant nutrition system (IPNS) options, significantly im-
proved soil aggregate stability with higher mean weight diameter (MWD) and macroag-
gregates. MWD was significantly positively correlated with macroaggregate in the long
run. In addition, MWD was increased (+17%) with organic farming (OF) options and with
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IPNS + C, IPNS + B, and STCR. Therefore, the adoption of IPNS and OF options could
provide better nutrient management practices in improving soil aggregate stability after
the completion of 19 cropping system cycles. We concluded that the adoption of organic
farming options improves soil aggregate stability and MWD, followed by IPNS options for
long-term rice–wheat cropping systems.

We also found that certain nutrient management strategies (STCR, OF, IPNS + berseem
and cowpea) have the potential for maintaining soil aggregate stability. When legumes
(cowpea and berseem) were grown every three years, the nutrient availabilities to plants
were positive in both IPNS options. At the level of legume inclusion, berseem (+12%)
and cowpea (+14%) were reported compared to the control plot after the completion of 19
cropping system cycles. Overall, the results suggest that innovative IPNS and OF strategies
need to be adopted and applied to achieve soil sustainability. In the soil–plant system,
higher soil organic matter resulted in a higher percentage of macroaggregates that improve
pores for aeration and water flow to sustain these soils.
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