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Abstract: Rainfed agriculture in Northern Darfur is influenced by erratic seasonal and decadal rainfall
patterns and frequent droughts. Understanding the spatio-temporal variation in rainfed agriculture is
crucial for promoting food security, socio-economic stability and protecting the vulnerable ecosystem.
This study aimed to investigate the spatio-temporal dynamics of rainfed agriculture in North Darfur
State from 1984–2019 using multitemporal Landsat observation data. Using the random forest
technique, the multitemporal images were classified into common land use/land cover classes and
rainfed agriculture on goz (sandy) and wadi (seasonal river) lands. Overall accuracies were assessed
using a confusion matrix. Overall accuracies were assessed using a confusion matrix has ranging
between 94.7% and 96.9%, while the kappa statistics were greater than 0.90. The results showed that
the high spatial variability in goz land used for rainfed agriculture increased of (889,622.46 ha) over
1994–1999, while it decreased (658,568.61 ha) over 2004–2009 south of the 232.9 mm isohyet. Rainfed
cultivation of wadi lands expanded significantly of (580,515.03 ha) over 2014–2019 and decreased
(182,701.8 ha) over 1994–1999, especially in the 362.8–477.2 mm isohyets (beyond the climate-adapted
500 mm isohyet agronomic dry limit). These spatial trends need further investigation as they may
exacerbate both regional land degradation and disputes among farmers over scarce wadi lands. This
study provides essential spatial data which are lacking owing to ongoing conflicts; this can help
decision-makers formulate sustainable land use monitoring systems.
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1. Introduction

Rainfed agriculture plays an essential role in food security in most regions worldwide [1].
Around 75–82% of the total cropland areas in the world are under rainfed agriculture [1–3].
This crucial sector of agriculture usually depends on the physical environment and, most
importantly, the variability and distribution of rainfall. Therefore, rainfed farming is
vulnerable to climate-related hazards, and the crop yield is unreliable and difficult to
predict [4,5]. Sudan in north-eastern Africa is among the sub-Saharan African countries
that depend on rainfed agriculture. More than 90% of cultivated land comprises rainfed
farming, accounting for one-third of the GDP [6,7]. The rainfed agriculture subsector
essentially encompasses private mechanised farming distributed to the east and west of
the Nile River banks and its tributaries. Unfortunately, these parts are characterised by
environmental and socio-economic hazards, such as frequent droughts; unpredictable, low,
poorly distributed, and highly variable monthly/seasonal rainfall; population pressures;
social change; deforestation; soil erosion; salinisation; and water depletion.

For example, Darfur, a semi-arid region in western Sudan, witnessed three droughts
between 1950 and 1990. The drought was mild in the mid-1960s but relatively severe
between 1972 and 1975. The region then experienced catastrophic drought conditions
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between 1982 and 1984 when average rainfall was reduced by 50% or more in many
areas [8,9]. Hence, Darfur has been described as a hotspot of land and environmental
degradation, experiencing among the most prominent natural threats in the region. Despite
the high rainfall variability and persistent drought, rainfed agriculture and livestock are
the primary sources of livelihood for 80–90% of the population of the Darfur region [6,10].
This crucial agriculture sector usually depends on the physical environment and, most
importantly, the amount and distribution of rainfall. Therefore, rainfed agriculture is
vulnerable to climate-related hazards, including variability, and the crop yield is thus
unreliable and difficult to predict. Persistent drought and associated impacts on rainfed
agricultural practices contribute to regional, social, and/or political instability [11–15].

Rainfed agriculture in North Darfur State lies between the 250 mm and 600 mm
isohyets. The region is characterised by rainfall variability both in time and space, coupled
with high maximum temperatures and significant temperature differences between day
and night, in addition to strong winds and low humidity. This complex climate condition is
reflected in an increased vapour pressure deficit with implications for water use efficiency,
transpiration, and evaporation. Therefore, the rainfed agriculture system is largely a
function of climate and cultural practices, with more emphasis on climatic variables.

There are two farming systems in North Darfur State. The first and most widespread
is rainfed cultivation by smallholder farmers, mostly of bulrush millet and secondary cash
crops, including groundnuts and sesame on goz (sandy) soils. This type of farming system
starts with the removal of the sparse trees and grassland covering the land to be cultivated,
then seeds are planted traditionally by hand, using a hoe, or digging stick, shortly after
the first rains. Farmers weed the fields assiduously until the harvesting season between
September to December to maintain the soil moisture and allow the crops to flourish.
Owing to increases in the population, sandy soils are repeatedly farmed without fallow
periods, and cultivation has expanded into less fertile and ecologically vulnerable areas.
This is ultimately destroying the vulnerable ecological system and vegetation cover in
the region. Furthermore, due to the high spatial and temporal rainfall variability, farmers
prepare their fields and plant in advance in different areas near their homesteads and
hope for rain [9,16]. The vegetation removal from goz soils has intensified soil erosion
and further deteriorated soil fertility, resulting in low land productivity and crop yields.
Therefore, farmers have been forced to cultivate larger areas and extend into the rangeland
and ecologically vulnerable areas. This has resulted in environmental degradation and has
fomented local tensions between pastoralist groups and the farming communities [6,17,18].

The second farming system is practised in the clay soils located along alluvial and
seasonal valleys (known as wadis) originating in the Jebel Marra volcanic massif and
the surrounding Basement Complex hills. This farming system combines rainfed, flood
retreat and small-scale irrigation, using either hand or diesel-powered pumps. The wadi
soils are relatively rich in alluvial loam and are more productive than farming on the goz;
they are therefore used for growing tobacco and vegetables [19,20]. Understanding the
spatio-temporal dynamic of rainfed agriculture and its determining climatic factors in the
study area can play a key role in promoting food security and socio-political stability, as
well as in protecting and restoring ecosystem services [21–23]. The lack of availability
of spatial data for monitoring trends in rainfed agriculture is not only a threat to food
security but also an impediment to understanding the study area’s environment, climatic
hazards, and socio-economic dynamics. Owing to political instability in some parts of
the study area, traditional approaches to agricultural monitoring, such as expert scouting
estimates, crop cut information, field assessment, and surveys, pose extreme danger to field
teams, in addition to significant financial costs [24,25]. Nowadays, most of these events can
be predicted, and data and tools can provide early warning and impact assessment; this
underscores the importance of timely and accurate production forecasts and near-real-time
agricultural monitoring [24,25]. Satellite remote sensing offers useful analysis tools in
several technical–scientific fields and has been used widely worldwide, for monitoring
the changes that occur to the environment and the identification of their magnitude at
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different spatio-temporal resolutions [26–28]. In addition, satellite remote sensing is crucial
in monitoring rainfed agriculture since its data have continuous spatial coverage, are
freely accessible, and can be acquired at high temporal resolutions. This is particularly
relevant in areas where ground data are insufficient, lacking, or unsafe to obtain [29–32].
Therefore, various types of remotely sensed data have been used to map and monitor
rainfed agriculture, such as Moderate-resolution Imaging Spectroradiometer (MODIS),
used to map rainfed wheat [33], SPOT-VEGETATION, with high spatial resolution, Sentinel
1 and 2, and Landsat [25,32,34]. Since 1972, Landsat has been freely available [29]. The
launch of medium-resolution Landsat sensors has offered unprecedented opportunities to
study the change in agricultural lands at higher spatial resolutions.

This study aimed to map and monitor the spatio-temporal patterns of rainfed agri-
culture and other common land use and land cover types (LULC) in North Darfur State
from 1984 to 2019 using RF supervised classifier and multi-temporal Landsat data. The
specific objectives were: (a) to quantify the transformation of rainfed agricultural land
for significant land cover classes using change detection, and (b) to identify and detect
spatio-temporal trends in changes in LULC, particularly for rainfed agriculture lands in
North Darfur State. The outcomes of this study are essential for decision-makers to adopt
suitable strategies for sustainable agricultural land use management and planning.

2. Materials and Methods
2.1. Study Area

The North Darfur State is located in north-western Sudan, covering an area of about
30 million hectares, occupies more than half of the Darfur region. The state consists of
twelve districts, that is, El Malha, Mellit, and Kutum in the north, Kuma and Umm Kaddada
in the east, Dar El Salam, El Tawiesha, and Al Liat in the south. Kabkabiya, Saraf Omra,
and EL Siseaf are in the west, while Al Fashir, the state’s capital city, is placed centrally
(Figure 1) [18].

North Darfur extends between 12◦ N and 16◦ N, and 22◦ E and 27◦ E and supports
typical Sahelian vegetation. The highest point is Marrah mountain (3042 m above sea
level) [9]. The area is characterised by hot, arid and semi-arid climatic conditions. The
rainfall pattern is mono-modal, falling in the summer (i.e., from May to October) with an
average annual rainfall ranging from 152 mm per annum in the north to 530 mm per annum
in the south. About 85% of the rainfall occurs in July and August. The average maximum
and minimum temperatures are 42 ◦C and 11 ◦C, respectively [18]. Rainfed agriculture is
the main economic activity for 85% of the population in the area. Millet and groundnuts
are grown mainly in goz lands, while tomato, onion, and okra are grown in wadi lands.
These crops are significant sources of food security, and their productivity depends on land
fertility and rainfall occurrence [35].

According to the recent National Census of Sudan conducted in 2008, the population
of North Darfur is approximately 1.7 million compared with 1.1 million in the 1984 census.
The population density was estimated to be 9.1 persons per km2 [36].

2.2. Remote Sensing Data Acquisition and Pre-Processing

The image acquisition date was selected based on the availability of satellite imagery
and the rainfed agriculture growing season. In all, 176 scenes were used corresponding
to four main sensors, that is, Landsat Multispectral Scanner (MSS) at 60 m resolution
acquired in 1984; Landsat Thematic Mapper (TM) at 30 m resolution acquired in 1989,
1994, and 1999; Landsat Enhanced Thematic Mapper Plus (ETM+) at 30 m resolution
acquired in 2004 and 2009; and Landsat Operational Landsat Imageries (OLI) at 30 m
resolution acquired in 2014 and 2019. All images for October and November, under cloud-
free conditions, were obtained from the United States Geology Survey Earth Explorer
Website (https://earthexporer.usgs.gov/) accessed on 9 February 2020 (Scenes ID data see
in Appendices A–D).

https://earthexporer.usgs.gov/
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Figure 1. Location of the study area with spatial distribution of the samples in Landsat-8 image 2019. 
The northern boundary for rainfed agriculture was identified in 1984 using field observation. 

  

Figure 1. Location of the study area with spatial distribution of the samples in Landsat-8 image 2019.
The northern boundary for rainfed agriculture was identified in 1984 using field observation.
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In this study, all images were radiometrically and geometrically corrected using the
FLAASH module in ENVI® software, Version 5.1. FLAASH tool 5.1 was developed by
ENVI 5.1 Tool. FLAASH atmospheric correction is used to solve atmospheric disturbance
problems. To standardise the spatial resolution of the Landsat data, Landsat Multispectral
Scanner (MSS) images for 1984 were resampled to 30 m spatial resolution using the nearest
neighbour method [37]. In addition, the 22 scenes of each year were mosaicked into a new
raster image, and then the area of interest was a subset based on rainfed agriculture that
took place in the study area. Finally, all Landsat imageries used in this study were projected
into the Universal Transverse Projection system zone 35N and datum of World Geodetic
System 84 (WGS84) using ArcMap10.5 software and ERDAS Imagine 2020 software.

2.3. Reference Data

The reference data were derived from satellite images and Google Earth; the latter is
very helpful in providing ground truth data when fieldwork cannot be performed, and the
features on satellite images are unclear [38]. The six most common land use and land cover
classes (LULC) were identified in the study area. These are bare soil, pastureland, and
rainfed agriculture on goz land, sand dunes, woody vegetation and rainfed agriculture on
wadi land, the typical image of each land use classes as shown in (Table 1). The reference
data were digitised for each LULC class on the multi-temporal images. The number of
training points varies based on class size and visibility. We used Google Earth to verify the
classes visually. The reference data were then divided into 30% for the testing data set and
70% for the training data set.

Table 1. Description of the land use and land cover (LULC) classes in the study area.

No. Class Name Typical Image of Land Use Class Description

1 Bare soil
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Goz areas comprise undulating sandy
accumulations of old and stabilised dune belts used
for farming millet, sorghum and groundnut.
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Table 1. Cont.

No. Class Name Typical Image of Land Use Class Description

4 Sand dunes
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parts of the study area.

5 Woody vegetation
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Wadi areas are generally wetter areas for growing
vegetables (on clay soils) and tobacco (on alluvial
soils).

Typical images were taken during the field survey to the study area in August 2020.

2.4. Classification of Images

This study used a random forest (RF) machine learning algorithm developed on
ERDAS Imagine 2020 software to classify the six LULC classes on the multitemporal
Landsat images. RF employs a bagging (bootstrap aggregation) operation where several
trees (ntree) are constructed based on a random subset of samples derived from the training
data. Each tree is independently grown to maximum size based on a bootstrap sample
from the training dataset without pruning. Each node is split using the best among a subset
of input variables (mtry) [39]. The multiple classification trees then vote by plurality on the
correct classification. In addition, at each node, variables are randomly selected from all
predictor variables, and one of them are chosen as the splitting criteria. When the bootstrap
sample set is drawn by sampling with a replacement for each tree in the forest building
process, about one third of the original instances are left out [40]. This set of instances is
called OOB (out-of-bag) data [39]. Each tree has its own OOB data set, which is used for
error estimation of individual trees in the forest, and by averaging the OOB error rates from
all trees, the random forest algorithm gives an error rate called the OOB classification error
for each input variable. RF was selected for this study owing to its reliability. It requires
limited parameters to be optimised and obtains classification results rapidly [41]. A critical
feature of the RF approach is the ability to rank predictors according to an internal measure
of variable importance [42].

The two parameters (Ntree and Mtry) were optimised to improve the accuracy of the
LULC classification using a grid search and a 10-fold cross-validation method. The default
number of trees (ntree) is 500, while the default number of variables (mtry) is the square
root of the total number of spectral bands used in the study

√
P [34]. The grid search values

for the ntree were set to vary between 500 to 10,000, with an interval of 1000, while the
grid search value for the mtry parameter was two. For more information on random forest
classifier, see the Ref. [39].
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2.5. Change Detection

In remote sensing, change detection is the process of identifying changes/differences
in geographical surface phenomena by comparing scenes of the same location acquired at
different times [43]. A variety of change detection algorithms have been developed in the
last few years, such as matrix comparison, principal component analysis, post-classification
comparison, and image differencing [44].

In this study, the image differencing change detection method was used to map LULC
change in hectares in North Darfur State for the years 1984–1989, 1994–1999, 2004–2009
and 2014–2019. Transition statistics were generated by the image differencing method. For
more information on transition statistics, see the Refs. [44,45].

2.6. Accuracy Assessment

An error matrix is the most common technique used to represent the classification
accuracy of data. In this study, 70% of the dataset was used to train the classification
model, and 30% of the dataset was used to develop the confusion matrix for the accuracy
assessment. The confusion matrix was then used to calculate the overall user’s and pro-
ducer’s accuracies and the kappa coefficient. The kappa coefficient was computed with
Equation (1), given as:

N ∑r
i=1 Xii−∑r

i=1(×i + ∗X + i)
N2−∑r

i=1(Xi + ∗X + i)
(1)

where N is the total number of observed pixels, r is the number of rows; Xi is the number
of observations in row I and column i, Xi+ and X + i, are the marginal totals of row and
column [37,46].

3. Results
3.1. Spatial Distribution of Rainfed Agriculture and Other Land Cover Classes

The rainfed agriculture and common land cover classification maps were obtained
using multi-temporal analysis of Landsat imageries using RF classification.

Figure 2 and Table 2 show the spatial distribution of rainfed agriculture and other
LULC classes for 1984, 1989, 1994 and 1999. The 1984 classified map shows that the most
dominant class, sand dunes, covered 48.8% (15,491,287.71 ha) of the study area, followed
by pastureland at 19.19% (6,087,037.68 ha), and rainfed agriculture on goz land 12.6%
(3,997,107.09 ha), whereas woody vegetation took up 10.2% (3,255,871.68 ha). Rainfed
agriculture on wadi land covered only 6.5% (2,063,802.42 ha), while 2.6% (829,963.35 ha)
of the area was covered by bare soil. The 1989 LULC map shows that about 47.2%
(15,001,726.86 ha) of the area for that year was covered by sand dunes, followed by
pastureland at 16.75% (5,316,714.45 ha), with rainfed agriculture on goz land at 12.99%
(4,120,391.79 ha) and mostly in the vicinity of villages. The analysis also indicated that
9.95% (3,155,611.14 ha) of the study area was covered by woody vegetation. An area of
3,038,405.4 ha (9.58%) of North Darfur State was occupied by rainfed agriculture on wadi
land, and bare soil covered 3.44% (1,092,219.57 ha) of the area.

The 1994 LULC map of North Darfur State shows that 55.43% (17,586,085.59 ha) of the
area was under sand dunes, 13.33% (4,230,389.88 ha) was under pastureland and 12.35%
(3,919,095.54 ha) of the area was covered by rainfed agriculture on goz land. However, the
area of woody vegetation accounted for 8.86% (2,809,914.39 ha). Rainfed agriculture on
wadi land occupied 8.14% (2,582,809.29 ha), and the proportion with bare soil was 1.88%
(596,770.74 ha). The results for the 1999 classified map indicate that the dominant class
of land cover was sand dunes covering 58.49% (18,438,988.41 ha), followed by rainfed
agriculture in goz land estimated at 15.25% (4,808,718.01 ha), and pastureland estimated at
10.04% (3,165,771.51 ha). Rainfed agriculture on wadi land covered 7.61% (2,400,107.49 ha),
and woody vegetation covered 6.83% (2,155,598.64), while the bare soil accounted for 1.76%
(554,768.19 ha).

Figure 3 and Table 2 show the spatial distribution of rainfed agriculture and other
LULC classes between 2004, 2009, 2014 and 2019.
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Table 2. Area coverage in hectares of rainfed agriculture and other LULC classes for the period
between 1984 and 2019.

Class 1984
Area (ha)

1989
Area (ha)

1994
Area (ha)

1999
Area (ha)

2004
Area (ha)

2009
Area (ha)

2014
Area (ha)

2019
Area (ha)

BS 829,963.35 1,092,219.57 596,770.74 554,768.19 1,048,919.04 1,268,379.0 978,837.93 1,096,148.25

PL 6,087,037.68 5,316,714.45 4,230,389.88 3,165,771.51 5,572,342.98 6,075,850.59 4,135,044.24 4,164,688.62

RG 3,997,107.09 4,120,391.79 3,919,095.54 4,808,718.01 4,085,995.14 3,427,426.53 3,952,211.58 3,917,382.48

SD 15,491,287.71 15,001,726.86 17,586,085.59 18,438,988.41 15,579,090.63 15,128,433.0 17,098,441.11 17,161,364.97

WV 3,255,871.68 3,155,611.14 2,809,914.39 2,155,598.64 2,586,354.75 2,497,371.93 3,478,485.15 2,722,680.9

RW 2,063,802.42 3,038,405.4 2,582,809.29 2,400,107.49 2,852,367.39 3,327,608.88 2,082,289.68 2,662,804.71

NOTE: BS = bare soil, PL = pastureland, RG = rainfed agriculture on goz land, SD = sand dunes, WV = woody
vegetation, RW = rainfed wadi land.

The 2004 classified map shows that the sand dunes covered 49.10% (15,579,090.63 ha) of
the study area, followed by pastureland at 17.56% (5,572,342.98 ha). Rainfed agriculture on
goz land covered 12.88% (4,085,995.14 ha), woody vegetation was 8.15% (2,586,354.75 ha),
and coverage by rainfed agriculture on wadi land was 8.99% (2,852,367.39 ha), with bare
soil taking up 3.3% (1,048,919.04 ha) of the area.

The 2009 classified map shows that 47.69% (15,128,433.0 ha) of the area was under
sand dunes, 19.15% (6,075,850.59 ha) under pastureland, and 10.8% (3,427,426.53 ha) of
the area was under rainfed agriculture in goz land, and woody vegetation occupied 7.87%
(2,497,371.93 ha). Further, 10.49% (3,327,608.88 ha) of North Darfur State was under rainfed
agriculture on wadi land, and bare soil covered 4% (1,268,379 ha). In 2014, the classified map
of North Darfur State shows that sand dunes covered 53.90% (17,098,441.11 ha), followed
by pastureland at 13.03% (4,135,044.24 ha), while rainfed agriculture on goz land accounted
for 12.46% (3,952,211.58 ha) of the area. Woody vegetation covered 10.96% (3,478,485.15 ha),
and rainfed agriculture on wadi land occupied 6.56% (2,082,289.68 ha). The bare soil took
up at least 3.09% (978,837.93 ha) of the study area.

The 2019 classified map shows that around 54.09% (17,161,364.97 ha) of North Dar-
fur State was covered by sand dunes, followed by pastureland, which was estimated
at 13.13% (4,164,688.62 ha). In contrast, rainfed agriculture on goz land covered 12.34%
(3,917,382.48 ha), and woody vegetation took up 8.58% (2,722,680.9 ha) of the area. Map
shows the rainfed agriculture on wadi land covered 8.39% (2,662,804.71 ha), and bare soil
comprised 3.46% (1,096,148.25 ha) of the area.

3.2. Accuracy Assessment

The classification accuracies were calculated using a confusion matrix and the test
dataset (30%). The results are shown in Figure 4. The overall classification accuracies ranged
from 94% to 97%, and the kappa statistics ranged from 0.96 to 0.93. Notably, the 1994 image
classification had the highest overall accuracy of 96.9 and a Kappa statistics value of 0.96%.
The classification accuracy for the 2009 image was relatively lower, with an overall accuracy
of 94.7 and a Kappa statistics value of 0.94% compared to other classified images.

Table 3 Shows the producer’s accuracies (PA) and user’s accuracies (UA) for rainfed
agriculture on goz land, rainfed agriculture on wadi land and other LULC in the study area.
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Figure 4. The overall accuracy and kappa coefficient achieved by random forest classifier for map-
ping rainfed agriculture and other LULC classes for the period between 1984 and 2019 with a
five-year interval.

Table 3. User and producer accuracies for mapping rainfed agriculture and other LULC classes for
the period between 1984 and 2019 in five-year intervals. The accuracies were calculated using the test
dataset (30%) and the confusion matrix.

Years\Accuracy Types BS PL RG SD WV RW

1984 Producer 95.7 87.9 96.2 96.6 95.7 96.0

1984 User 93.1 90.1 95.8 95.9 95.3 97.2

1989 Producer 92.7 94.5 96.9 95.8 95.4 95.9

1989 User 91.6 96.5 96.5 95.8 96.3 94.4

1994 Producer 96.4 97.6 95.8 96.1 97.4 98.3

1994 User 97.4 96.7 96.7 96.5 93.8 98.2

1999 Producer 93.8 90.5 95.1 98.1 92.4 95.8

1999 User 92.4 93.7 95.5 96.8 95.5 94.9

2004 Producer 94.7 96.1 97.2 98.1 92.1 96.2

2004 User 97.4 95 96.3 97.8 92.3 97.4

2009 Producer 89.5 92.8 94.7 98.2 96.3 93.2

2009 User 92.3 94.8 95.4 95.6 94.1 95.8

2014 Producer 93.7 96.3 95.1 97.7 94.4 95.6

2014 User 97.2 95.9 95.8 94.9 91.7 96.9

2019 Producer 94.6 96.8 95.1 98.5 93.6 92.7

2019 User 89.7 95.2 95.9 94.9 96.4 96.2
NOTE: BS = bare soil, PL = pasture land, RG = rainfed agriculture on goz land, SD = sand dunes, WV = woody
vegetation, RW = rainfed agriculture on wadi land.

The confusion matrix developed from the test dataset (30%) was also used to calculate
the user accuracies (UA) and producer accuracies (PA) to provide insight into the possi-
bility of mapping rainfed agriculture and other LULC classes in the study area. Rainfed
agriculture’s user range from 89.7% to 98.2%, and producer accuracies range from 87.9% to
98.3%. All land cover classes produced over 89% user’s accuracies (UA). It is worth noting
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that the highest UA achieved was for rainfed agriculture on wadi land (RW) at 98.2% in
1994 and sand dunes (SD) at 97.8% in 2004 as compared to the other land cover classes.
This is compared to the lowest UA achieved for bare soil (BS) at 89.7% in 2019. Similarly,
all land use-land cover classes achieved over 85% producer’s accuracies (PA). The highest
PA was recorded for sand dunes (SD) at 98.1% in 2004 and for rainfed agriculture on wadi
land (RW) at 98.3% in 1994. The lowest PA achieved for pasture land (PL) at 87.9% in 1984
(Table 3).

3.3. Spatio-Temporal Trends of the Rainfed Agriculture and Other Land Cover Classes

The classification results were compared to determine the magnitude of changes in
rainfed agricultural land use and other LULC classes (Figure 5). The Figure indicates that
there have been significant changes and transitions among various land use/cover classes
over the last four decades (1984 to 2019). The main changes and transitions can be seen
among agricultural land types and vegetation cover.
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Figure 5. The magnitude of change for rainfed agriculture lands and other LULC types (BS = bare soil,
PL = pastureland, RG = rainfed agriculture on goz land, SD = sand dunes, WV = woody vegetation,
RW = rainfed agriculture on wadi land) of North Darfur from 2019–1984.

3.3.1. Trends in Rainfed Agriculture and Other Land Cover Classes from 1984 to 1989

In this period, rainfed agriculture on goz land maintained 159,112.00 ha of its initial
area, and expanded by 123,284.7 ha into new areas between 1984 and 1989, by gained
418.7 ha from sand dunes, 279.9 ha from woody vegetation, and 61,651.4 ha from rainfed
agriculture on wadi land. Rainfed agriculture on wadi land maintained 117,497.7 ha of
the initial area and increased by an area of 974,602.98 ha because it gained 283.03 ha from
woody vegetation, 2872.98 ha from pastureland, and 1445.50 ha from sand dunes (Figure 5
and Table 4.)

It is also interesting to note that the bare soil maintained 15,046.8 ha of its initial area
and expanded to 262,256.22 ha, while gaining 29.81 ha from pastureland. It further gained
122.23 ha from rainfed agriculture on goz land and 486.23 ha from woody vegetation. Mean-
while, pastureland maintained 208,773.2 ha of its initial area but decreased by 770,323.23 ha
during these five years, whereas 29.8 ha changed into bare soil, and 2872.9 ha was converted
into rainfed agriculture on wadi land. A further 5.13 ha changed from pastureland into
woody vegetation (Figure 5 and Table 4.)
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Table 4. Change matrix of the rainfed agriculture and other LULC types in hectares of North Darfur
State from 1984 to 1989. The bold values in the change matrix indicate unchanged land types between
the initial and final years.

INITIAL STATE 1984
BS PL RG SD WV RW Total

FINAL
STATE 1989

BS 15,046.80 29.81 122.23 804.90 486.23 1507.02 17,996.98
PL 72.1 208,773.20 85,505.09 11,589.50 13.00 15,124.68 321,077.57
RG 95.43 41,758.94 159,112.00 418.70 279.97 61,651.45 263,316.5
SD 1297.30 43,977.31 32,404.27 48,065.40 31.28 3772.72 129,520.1
WV 1111.82 5.13 53.80 351.31 171.40 497.412 2190.873
RW 979.22 2872.98 41,783.83 1445.50 283.03 117,497.70 164,862.3

Total 18,537.77 297,417.40 318,981.20 62,675.31 1236.761 200,051.00 898,899.4
Image

difference −48.88 23,595.31 −55,664.73 68,134.91 603.15 −36,619.76

NOTE: BS = bare soil, PL = pastureland, RG = rainfed agriculture on goz land, SD = sand dunes, WV = woody
vegetation, RW = rainfed agriculture on wadi land.

3.3.2. Trends in Rainfed Agriculture and Other Land Cover Classes from 1994 to 1999

The rainfed agriculture on goz land retained 88,305.13 ha of its initial area and in-
creased 889,622.46 ha via 158.7 from transformation of bare soil, 3098.0 ha from pastureland,
663.6 ha from sand dunes, and 37,301.7 ha from rainfed agriculture on wadi land. However,
the rainfed agriculture on wadi land maintained 72,346.17 ha of the initial cover area but
decreased around by 182,701.8 ha (with 1060.0 ha lost to bare soil, 37,301.0 ha into rainfed
agriculture on goz land and 694.1 ha to sand dunes (Figure 5 and Table 5).

Table 5. Change matrix of the rainfed agriculture and other LULC types of North Darfur State in
hectares from 1994 to 1999. The bold values in the change matrix indicate unchanged land types
between the initial and final years.

INITIAL STATE 1994
BS PL RG SD WV RW Total

FINAL
STATE 1999

BS 18,385.5 118.48 570.41 9165.10 3986.31 1060.09 33,285.89
PL 21.22 52,827.90 16,730.92 9785.05 352.81 3090.45 82,808.35
RG 158.71 3098.00 88,305.13 663.55 4034.80 37,301.67 161,443.90
SD 5591.4 2133.99 393.12 5517.13 231.90 694.10 14,561.64
WV 6854.67 910.37 2147.27 632.94 30,085.10 17,869.56 58,499.91
RW 1845.35 5410.52 41,580.27 1069.50 19,959.00 72,346.17 142,210.80

Total 32,856.85 92,381.26 149,727.10 26,833.27 58,649.92 132,362.00 475,637.67
Image

difference 429.04 −9572.91 11,716.74 −12,271.60 −150.01 9848.77

NOTE: BS = bare soil, PL = pastureland, RG = rainfed agriculture on goz land, SD = sand dunes, WV = woody
vegetation, RW = rainfed wadi land.

During this period, bare soil maintained 18,385.5 ha and decreased by 42,002.55 ha,
with 21.2 ha changed to pastureland and 158.7 ha transformed into rainfed agriculture on
goz land. There was further a loss of 5591.4 ha to sand dunes. Pastureland maintained
52,827.9 ha of the initial classification and decreased by an area of 1,064,618.37 ha (with
2133.99 ha changed into sand dunes, 118.48 ha transformed into bare soil, and 3098 ha
on goz land becoming rainfed agricultural land, and a further 910.37 ha transformed into
woody vegetation (Figure 5 and Table 5).

3.3.3. Trends in Rainfed Agriculture and Other Land Cover Classes from 2004 to 2009

This period shows a significant decline of the rainfed agriculture on goz land (658,568.61 ha)
and maintaining just 131,389.00 ha of its initial state. This decline was the result of 868.71 ha
lost to woody vegetation, 21,091.70 ha transformed into rainfed agriculture on wadi land,
and 63,336.03 ha becoming pastureland, while rainfed agriculture on wadi land maintained
72,582.91 ha while also showing an increment of 475,241.49 ha. This increment was by
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1489.39 ha gained from pastureland, 21,091.70 ha gained from rainfed agriculture on goz
land and 14,348.10 ha gained from woody vegetation (Figure 5 and Table 6).

Table 6. Change matrix of the rainfed agriculture and other LULC types of North Darfur State in
hectares from 2004 to 2009. The bold values in the change matrix indicate unchanged land types
between the initial and final years.

INITIAL STATE 2004
BS PL RG SD WV RW Total

FINAL
STATE 2009

BS 17,032.80 10.40 24.312 91,873.10 6807.70 320.57 116,068.9
PL 13.05 141,499.50 63,336.03 5872.80 140.052 5328.17 216,189.6
RG 431.25 25,311.30 131,389.00 2011.46 1449.68 44,494.65 204,699.2
SD 192.10 42,262.14 3720.20 41,957.00 907.90 210.88 89,250.2
WV 4004.68 715.02 868.71 7561.90 31,568.50 9117.55 53,192.8
RW 1489.39 1469.56 21,091.70 1754.07 14,348.10 72,582.91 112,735.7

Total 22,775.15 210,624.4 220,430.0 151,030.3 55,221.93 132,054.7 792,136.5
Image difference 93,293.73 5565.20 −15,730.7 −61,780.1 −2029.08 −19,319.0

NOTE: BS = bare soil, PL = pasture land, RG = rainfed agriculture on goz land, SD = sand dunes, WV = woody
vegetation, RW = rainfed agriculture on wadi land.

Bare soil maintained 17,032.80 ha but also increased by 219,459.96 ha gained by 10.40 h
from pastureland, 320.57 ha from rainfed agriculture on wadi land and 6807.70 ha from
woody vegetation. In contrast, pastureland maintained 31,568.5 ha of its initial state while
increasing by 503,507.61 ha (resulting from gains of 63,336.03 ha from rainfed agriculture
on goz land and 140.052 ha from woody vegetation (Figure 5 and Table 6).

3.3.4. Trends of Rainfed Agriculture and Other Land Cover Classes from 2014 to 2019

The rainfed agriculture on goz land maintained 91,644.91 ha of the initial area, and
decreased by 34,829.1 ha. This reduction resulted from a loss of 485.17 ha to bare soil,
1625.43 ha to woody vegetation, 1222.68 ha to sand dunes and 16,800.80 ha transformed
into rainfed agriculture on wadi land. The rainfed agriculture on wadi land maintained
79,704.27 ha and showed an increment of 580,515.03 ha (resulting from 2247.70 ha gained
from bare soil, 1779.92 ha from pastureland and 716.4 ha from sand dunes) (Figure 5 and
Table 7).

Table 7. Change matrix of the rainfed agriculture and other LULC types of North Darfur State in
hectares from 2014 to 2019. The bold values in the change matrix indicate unchanged land types
between the initial and final years.

INITIAL STATE 2014
BS PL RG SD WV RW Total

FINAL
STATE 2019

BS 22,383.1 84.61 485.17 9172.8 3810.49 685.50 36,621.67
PL 88.8 25,370.4 17,985.62 7579.45 160.18 110.1 51,294.55
RG 99.28 17,951.2 91,644.91 686.31 3627.22 39,411.50 15,3420.4
SD 187.14 4890.45 1222.68 14,668.8 42.2 101.50 21,112.77
WV 1027.6 295.69 1625.43 2071.4 47,767.8 11,759.44 64,547.36
RW 2247.70 1779.92 16,800.80 716.4 34,313.0 79,704.27 135,562.1

Total 26,033.62 50,372.27 129,764.6 34,895.16 89,720.89 131,772.3 462,558.9
Image

difference 10,588.05 922.28 23,655.81 −13,782.4 −25,173.5 3789.78

NOTE: BS = bare soil, PL = pastureland, RG = rainfed agriculture on goz land, SD = sand dunes, WV = woody
vegetation, RW = rainfed agriculture on wadi land.

The bare soil maintained 22,383.1 ha of its initial area and expanded by 117,310.32 ha
(84.61 ha from pastureland, 485.17 ha from rainfed agriculture on goz land, and 9172.8 ha
from sand dunes). Similarly, the pastureland maintained 25,370.4 ha of its initial area and
extended by 29,644.38 ha (17,985.62 ha from rainfed agriculture on goz land, 160.18 ha from
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woody vegetation, 7579.45 ha from sand dunes, and 160.18 ha from woody vegetation)
(Figure 5 and Table 7).

The general trends of rainfed agriculture from 1984 to 2019 are summarised in Figure 6.
Variability in the rainfall results in variability in total areas of rainfed agriculture in both
wadi and goz land, although this is especially high in wadi lands.
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4. Discussion

This research was attempted to map and monitor the patterns of rainfed agriculture in
North Darfur State over the last 35 years using a RF supervised classifier algorithm and
multitemporal Landsat images. This is critically important in providing up-to-date spatial
data about the agricultural lands and crops estimated for food security management as
shown in Figures 2 and 3, clearly show land cover classes, which include both rainfed
agriculture lands and common land cover classes. The lack of spatial data infrastructure at
all levels of government in the Darfur States has been reported as a major barrier to quick
access to data availability and sharing for effective management [25]. The States usually
conduct two traditional field-based surveys to estimate the croplands (commonly millet).
These two surveys run through informal interviews with the farmers after planting and post-
harvesting. Owing to poor accessibility, civil war, and time-consuming interview methods,
the field survey approach is ordinarily incomplete and unreliable. Despite, this study
shows the potential of earth observation techniques in mapping and monitoring rainfed
agriculture in a hot civil war area. Despite the challenge of the rainfed agriculture spectral
signature due to the small scale of the farms, low crop density, and open canopies, the study
obtained high overall accuracies ranging between 94.7% and 96.9%. The accuracies achieved
are comparable to previous studies conducted in the similar landscape, such as those by
Ibrahim et al., [47] investigating the LULC changes over four decades in Ghubaysh area,
Sudan. Their study achieved overall accuracies ranging from 89.6 to 98.2%. Furthermore,
high overall accuracies from 86% to 96% were reported by Biro, et al. [48] in mapping LULC
changes in the Northern part of the Gadarif region, Sudan. More specifically, the user’s and
the producer’s accuracies obtained in this study for rainfed agriculture compare favourably
with another study in a semi-arid environment in the Niger Delta Region [49].

Results of this study revealed that, the rainfed agriculture on goz and wadi lands in
North Darfur State underwent significant changes as shown in Figures 2 and 3, and Table 2.
These changes have varied over time, space, magnitude, and other land use land cover
classes. The changes in agricultural land use can be attributed to population growth and
climate change, specifically rainfall spatial and temporal variability. Studies have shown
that the Sahel zone, in general, is overpopulated, even though the average population
density in the Sahel zone is less than 10 inhabitants per square kilometre [16]. This is owing
to two reasons; first, the population is concentrated in regions where the drinking water
supply is secured. Second, soil productivity is comparatively low. To compensate for lower
yields resulting from high spatial and temporal variability in the rainfall and the loss of
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soil productivity, the farmers tend to cultivate a larger area falling in different locations
to better meet their respective families’ food security needs. This practice helps ensure
that some fields get sufficient rainfall, even if others do not receive any rain owing to the
variability. Similarly, in polygamous households, different wives would be responsible
for cultivating different plots located far from each other as a risk-spreading strategy [50].
This was confirmed by Osman [19], who in their 2014 paper observed there had been an
expansion in rainfed agricultural land use in North Darfur State since the 1960s.

The findings of this study reveal that rainfed agriculture on wadi land (RW) has shown
ongoing expansion since 1994. In particular, from 2004 to 2009, the extent and location of
rainfed agriculture on wadi and goz lands changed significantly. There was increased a
475,241.49 ha in wadi land and declined 658,568.61 ha in goz land, as shown in Figure 5.
This is confirms with Osman [14], and who stated that the land tenure system and rainfall
variability have greatly affected rainfed agriculture in North Darfur State. This could be
attributed to a decline in soil fertility in goz land from over-cultivation, desertification and
the expansion of sand dunes [13]. The over-cultivation can also be seen throughout the
multitemporal images in the surroundings of settlements, where the soil is also exhausted,
and there is a concentration of desertification phenomena. The farmers have long realised
the importance of the fertile alluvial soil in the wadi lands for cultivating vegetables and
snuff tobacco to compensate for the yield reduction in the goz lands. Thus the noticeable
expansion from 1994 in rainfed agriculture on wadi land (as observed in this study) is
hardly surprising. Of concern, however, is that only a few farmers have access to the fertile
wadi lands; many studies have indicated that the limited access to fertile soil, such as the
wadi bed land, contributes significantly to the current conflict in North Darfur [19,51].

Local communities have adopted different strategies to cope with the current deterio-
ration in the productivity and the profitability of rainfed agriculture in the goz lands. For
example, farmers have intensified cultivation to compensate for lower yields. This can be
seen in the study area in the extremely widespread cultivation that extends beyond the
climatically adapted agronomic dry limit where the average rainfall is less than 500 mm [9].
Rainfed cultivation in inappropriate areas has led to cumulatively impoverishing the envi-
ronment. Prior to cultivation, the farmers aggressively clear the land of vegetation; they
furthermore reduce the fallow period. Losing vegetation over ever-larger ecologically vul-
nerable areas makes the sandy soil more susceptible to wind erosion and dune movement
toward the northern part of the region [8]. The spread of the dune fields can be seen in the
classified images for the study years, particularly 2014 and 2019 (Figure 3). Many studies
have therefore concluded that rainfed cultivation is potentially the main factor contributing
to desertification in Darfur [13,50]. With the intensive current rainfed cultivation and the
scarcity of unused arable land, it remains unclear how the region will be able to increase its
agricultural production and thus keep pace with population growth.

We have seen expansion of rainfed cultivation in the southern part owing to the
relatively high rainfall. Therefore, since the early 1970s, there has been some population
movement from North Darfur to South Darfur. However, the acute drought periods
experienced most intensely in the area, during years including 1983, 1985 and 1994 have
greatly accelerated the population movement into Northern Darfur from South Darfur. The
massive “agro-migrant” and occupation of lands in Northern Darfur have escalated the
overall conflict and the emergence of extreme dilemmas in the socio-political landscape,
which are proving difficult to engage in a sustainable peace process.

Although the study provides a basis for constructing reliable spatial information on
rainfed agriculture and other land cover patterns, it also has some limitations. Some con-
cerns should be addressed when the proposed method is used in real-world applications.
The reference data used to classify and validate the histological images need to be strength-
ened by some more ground data. The ground and higher spatial resolution data, such as
Sentinel-2, would better enhance the rainfed agriculture mapping to the crop type level in
the sand dune and goz lands.
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5. Conclusions

Understanding the spatio-temporal dynamics of rainfed agriculture in the North
Darfur region is particularly crucial, but it is also challenging. This study aims to test the
ability of the earth observation data to assess the trends of rainfed agriculture lands and
other common LULC types in the North Darfur region. The results show that Landsat
images are promising in monitoring the spatio-temporal patterns of rainfed agriculture in
both the goz and wadi areas and other land cover classes, with overall accuracies ranging
from 94% to 97% and the kappa statistics ranging from 0.93 to 0.96.

The rainfed agriculture patterns are characterised by high spatial and temporal vari-
ability. The cultivation areas have been extended beyond the climate-adapted agronomic
dry limit of less than 500 mm of average rainfall to compensate for lower yields. Such
widespread cultivation in ecologically vulnerable areas may contribute to land degra-
dation. This study also showed that since 1994, the rainfed agriculture on wadi land
has significantly extended. Unfortunately, the wadi lands are very limited, which may
foment disputes between local communities. Our work sheds some light on the spatio-
temporal pattern of rainfed agriculture in the Northern Darfur State, where spatial data on
environmental and socio-economic activities are lacking owing to ongoing conflicts.

Further studies may need to be conducted to better understand the factors that drive
the spatial distribution of rainfed agriculture and their environmental impacts. This could
contribute to the development of effective strategies for sustainable agricultural land use.
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