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Abstract: A goal of land change modelers should be to communicate scenarios of future change that
show the variety of possible future landscapes based on the consequences of management decisions.
This study employs the Markov-FLUS model to simulate land-use changes in Hubei Province in
multiple scenarios that consider social, economic, and ecological policies using 18 driving factors,
including point-of-interest data. First, the Markov-FLUS model was developed and validated with
historical data from 2000 to 2020. The model was then used to simulate land-use changes from
2020 to 2035 in four scenarios: natural development, economic priority, ecological protection, and
cultivated land protection. The results show that the Markov-FLUS model effectively simulates the
land-use change pattern in Hubei Province, with an overall accuracy of 0.93 for land use simulation
in 2020. The Kappa coefficient and FOM index also achieved 0.86 and 0.139, respectively. In all four
scenarios, cultivated land remained the primary land use type in Hubei Province from 2020 to 2035,
while construction land showed an increasing trend. However, there were large differences in the
simulated land use patterns in different scenarios. Construction land expanded most rapidly in the
economic priority scenario, while it expanded more slowly in the cultivated land protection scenario.
We designed the protection scenario to restrict the rapid expansion of construction land. In the
natural development and economic priority scenarios, construction land expanded and encroached
on cultivated land and forests. In contrast, in the ecological protection scenario, forests and water
areas were well-preserved, and the decrease in cultivated land and the increase in construction land
were effectively suppressed, resulting in a large improvement in land use sustainability. Finally,
in the cultivated land protection scenario, the cultivated land showed an increasing trend. The
spread and expansion of construction land were effectively curbed. In conclusion, the Markov-FLUS
model applied in this study to simulate land use in multiple scenarios has substantial implications
for the effective utilization of land resources and the protection of the ecological environment in
Hubei Province.

Keywords: land-use change; multiscenario simulation; Markov-FLUS model; regional sustainability;
natural development; ecological protection; economic priority; cultivated land protection

1. Introduction

Urbanization is a natural outcome of social and economic progress, enhancing the
quality of human life but also transforming the land’s surface environment [1]. However,
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some unsustainable land use practices in the rapid urbanization process have resulted
in severe ecological damage, including soil erosion, grassland degradation, and wetland
shrinkage, posing a threat to ecological security. The rapid expansion of urban land use has
encroached upon a substantial amount of ecological space, further exacerbating ecological
issues [2]. Therefore, promoting sustainable land use patterns that balance economic
growth with environmental protection is critical.

Land use is a cornerstone of resource, environmental, and ecological research, as well
as scientific management. It provides crucial data for land resource planning and ecological
environment monitoring [3]. Land-use change is a complex process influenced by various
social, economic, and environmental factors that operate over time and space [4]. Land-use
change models play a vital role in examining the driving forces, evolutionary processes,
impacts, and prospects of land-use change [5]. Therefore, simulating land-use change at
different spatiotemporal scales is essential for understanding the impact of human activities
on regional ecological environments and supporting decision-making processes [6]. By
modeling and simulating land-use change, we can gain a better understanding of the
processes and trends of land-use change and formulate appropriate land policies [7,8].

In recent years, a considerable amount of scholarly effort has been devoted to the
design and implementation of models for land-use change, resulting in the development
of a variety of models [9–12]. The commonly utilized land-use change simulation models
can be classified into two main types. The first type is quantity simulation models, which
primarily focus on quantifying land demand. These models analyze changes in the areas of
different land cover types, as well as their rates of change, but do not consider spatial dis-
tribution. Examples of such models include Markov models [13], gray system models [14],
regression analysis models [15], and system dynamics (SD) models [16]. The second type
is spatial simulation models, which are mainly used to simulate the spatial distribution
and pattern characteristics of land use and to analyze the spatial differences in land-use
change driven by natural and human factors. Examples of such models include cellular
automata (CA) [17], multiagent systems [18], and CLUE/CLUE-S models [19]. Based on
the causal relationship between past land-use change and related driving force factors,
researchers have computed land use demand and distribution probability to simulate
future spatiotemporal land use patterns in targeted scenarios.

The present mathematical models used for simulating changes in land use quantity
can reasonably predict future land use quantity based on past and current land cover
data [10]. However, due to their lack of capability to simulate changes in land use spa-
tial patterns, these models are unable to meet the needs of national land use planning
and management [20]. In contrast, land use spatial change simulation models exhibit
outstanding advantages in simulating the spatiotemporal dynamics of complex land use
systems. Currently, the CA model has been successfully applied to simulate land-use
changes and urban expansion processes [21]. Nevertheless, conventional CAs usually
assume that each cell has only one land use type at each time step, ignoring the mixed
land use structures that are often found in land units [22,23]. On the other hand, the
SLEUTH model can adjust constraint conditions by configuring different parameters to
control the type of urban growth and simulate the process of urbanization through cellular
allocation [24]. Nonetheless, this model is mainly suitable for simulating urban expansion
and does not consider the impact of macro land supply and demand and relevant land
policies on land-use changes [25]. The multiagent model can simulate land-use changes
based on the decision-making interactions of multiple agents and the influence of the
external environment. However, characterizing the rules for different land-use change
decision-making processes is complex, and collecting sufficient data at the individual level
to verify the model is difficult. The CLUE/CLUE-S model is an empirical statistical model
that can simultaneously simulate changes in multiple land use types due to its application
of a system theory approach to address the competitive relationships between different
land use types [26,27]. However, during the land cover allocation process, this model only
assigns the dominant land use type with the maximum joint probability to the grid cell,
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neglecting the possibility of other nondominant land use types transitioning, thus lacking
the ability to simulate sudden and dramatic land-use changes [28–30].

Coupled simulation models that balance land use demand quantification and spatial
allocation simulation have become the mainstream choice [31,32]. The Markov-FLUS model
is a new type of land-use change simulation model that overcomes the aforementioned
limitations [15,33]. It integrates a “top-down” SD model and a “bottom-up” CA model to
simultaneously simulate changes in multiple land use types [34]. Its land cover selection
mechanism, based on roulette wheel selection, allows nondominant land use types to be
allocated to grid cells, reflecting the uncertainty of actual land-use changes and enabling
the model to simulate sudden and dramatic changes in land use. In contrast, most current
models, such as CLUE-S, assign the land use type of a specific grid cell to the primary
cell with the highest conversion probability, controlled by predefined thresholds that
only consider dominant land use types, neglecting competition with other types and
reducing opportunities for nondominant types [35,36]. Although the dominant land use
type with the highest combined probability is prioritized in grid cell allocation, other
types with relatively lower probabilities still have a chance of being allocated [37–39].
The roulette wheel selection mechanism allocates land use types in proportion to their
combined probabilities, increasing the likelihood of being selected for land use occupation
with higher combined probabilities, while lower combined probabilities still offer allocation
opportunities. This stochastic mechanism reflects real-world land-use change uncertainty,
making it suitable for leapfrogging land use simulations.

The Markov-FLUS model is widely used in land use research and is a powerful
analytical tool for land use planning and management. This study employs the Markov-
FLUS model and applies it to Hubei Province, China. The contributions of this paper are
as follows:

• Historical land use data from 2000 to 2015 and 18 driving factors, including 10 points-of-
interest data, were used to simulate future land use patterns in Hubei Province, China.

• The improved model simulated and analyzed four different future land use scenarios,
providing valuable insights for decision making on sustainable land use and planning
management in Hubei Province, China.

2. Materials and Methodology
2.1. Case Overview

Hubei Province, located in Central China, boasts a unique geographic location, diverse
terrain, and a mild and humid climate, which have endowed it with abundant natural
resources and unique natural environments [40]. Geographically, Hubei Province is situated
in the middle reaches of the Yangtze River and features a mountainous landscape, making it
one of the most prominent water and electricity supply and industrial bases in China [41,42].
The Three Gorges Dam, which is one of the world’s largest hydraulic projects, has made
important contributions to the power supply in southern China. The Dabie and Wudang
mountain areas are also noteworthy natural landscapes in Hubei Province, and these
topographical features have had a profound impact on the province’s economic and cultural
development. Furthermore, Hubei Province accords great importance to the preservation
and development of its cultural heritage, such as the Chu culture, Jingchu culture, and Han
culture in the Han River Basin, which has had a profound influence [43]. Figure 1 shows
the geographical location of Hubei Province [44,45].
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Hubei Province is the largest province in Central China and has various unique
characteristics. From the perspective of the natural environment, Hubei Province has a rich
and diverse ecological environment, and the protection and utilization of natural resources
are of paramount importance for the province’s sustainable development. For instance, the
natural beauty of the Dabie Mountains, the Enshi Grand Canyon, and other locations in
Hubei Province has attracted a large number of tourists. It has diverse land use types, a
vast mountainous region in the northwest, and the largest interbasin water transfer project
in China [46]. Moreover, it is known as the “Province of Thousand Lakes” and is home
to Wuhan, one of China’s most developed cities, and the provincial capital. However, its
urban development is notably uneven, which makes it an intriguing area of research. The
Hubei Provincial Government has outlined a future planning goal of achieving “one main
lead, two wing drives, and coordinated development across the region” by 2035. This study
is expected to provide valuable support toward realizing this objective.

In summary, the plentiful natural resources and unique natural environment of Hubei
Province provide strong support for its economic, cultural, and social development, making
it a crucial field for academic research. Therefore, enhancing research on land-use change
simulation under different scenarios in Hubei Province and investigating ways to balance
natural resource protection with economic and social development have great academic
and practical significance.

2.2. Research Design

This study utilizes a Markov-FLUS model to develop four future scenarios and sim-
ulate future spatial patterns in response to a given land use demand determined by the
model. First, we use ANN to estimate the probability of each land use type occurring
in a specific grid cell. Second, we incorporate complex adaptive inertia and competition
mechanisms to account for the competition and interactions between different land use
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types. During the CA iteration, we estimate the dominant land use type by combining the
probabilities of all land use types at each grid image element and assign it using a roulette
selection process. The proposed method captures the complex land use dynamics in the
simulation of future land-use changes. Figure 2 illustrates the research design of this study.
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2.3. Data and Preprocessing

This study employs land use status data (annual China Land Cover Dataset, CLCD)
from 2000, 2005, 2010, 2015, and 2020, obtained from the dataset published by Yang et al.
The CLCD consists of 6 level-1 classes (cropland, forest, grassland, water, built-up area,
and barren) and 25 level-2 classes [47,48]. The producers of the dataset assessed its overall
accuracy through field surveys and achieved an accuracy rate of over 94.3% for the level-
1 classes and 91.2% for the level-2 classes. Although the CLCD is updated every five
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years, its consistent regions can serve as potential training samples for long-term data
analysis [47,49]. A further assessment based on 5131 third-party test samples showed
that the overall accuracy of the CLCD outperformed that of MCD12Q1, ESACCI_LC,
FROM_GLC, and GlobeLand30 [47,50]. The data have a spatial resolution of 30 m. Based
on the land-use classification system and the characteristics of land use in Hubei Province,
we chose to use the 6 level-1 classes of the CLCD produced by Wuhan University and
renamed them as cultivated land, forests, grassland, water, architecture, and others (unused
land). Social and economic data were procured from the Chinese Academy of Sciences Data
Center (https://www.resdc.cn/, accessed on 21 November 2022) and the Hubei Statistical
Yearbook, while the sources for other natural, transportation, and social economic data
are listed in Table 1. The data were processed using ArcGIS software to ensure conformity
with the requirements of the Markov-FLUS model [37,51,52] by converting, projecting, and
resampling the data into the same projection coordinate system with a spatial resolution of
100 m.

2.4. Methodology
2.4.1. Principles of the Markov-FLUS Model

The Markov-FLUS model is constructed based on the system dynamics model and the
cellular automata model. It integrates the artificial neural network (ANN) algorithm and
the roulette wheel selection mechanism to enhance the accuracy of land-use change simula-
tion [53,54]. This mechanism effectively handles the interplay of various driving factors,
including natural, social, and economic factors, as well as the complexity and uncertainty
associated with the interconversion among various land use types [55]. The FLUS model
has been widely applied to solve geographical process simulations and complex spatial
optimization problems, such as large-scale land-use change, urban expansion, zoning of
nature reserves, and facility location selection [56,57].

The Markov-FLUS model employs a multilayer feedforward neural network algorithm
(BP-ANN) to integrate various land use types and select multiple driving factors, such as
natural, social, and economic factors, from the initial land use data [58]. By associating
different land use types with various driving factors, this model generates a probability
distribution map of land suitability for each type [59]. However, traditional CA models
have some limitations in regard to simulating real-world changes in land use [60]. This is
because traditional CA models often assume that the processes that drive land change are
static and do not take into account the dynamic processes that can lead to changes in land
use over time, such as urbanization and development [59].

To address these issues and improve the accuracy of the simulation, the Markov-FLUS
model incorporates an adaptive inertia competition mechanism based on roulette wheel
selection into the traditional CA model [61]. This enables better handling of the complexity
and uncertainty of land use type conversions under the influence of natural and human
activities [62,63].

This study couples the CA module and the Markov model in FLUS to dynamically
simulate and predict the future land use distribution in Hubei Province. The CA module
has the ability to handle the spatial interactions of land use [64,65], while the Markov
model can predict changes in the sizes of land use types over time [66]. The model utilizes
transition probabilities between distinct land use types to predict the likelihood of a parcel
undergoing a change in land use type at a future time [67]. Through the application of these
probabilities to the current distribution of land use types, the model can forecast alterations
in the distribution over time [68].

The advantage of this approach lies in integrating the ability of the CA module to
handle the spatial distribution of land use and the characteristics of the Markov model
to predict the number of land use types [69]. This results in an exploration of dynamic
information on land use types in terms of both space and quantity. In the coupling process,
the simulation results of each stage are used as input for the next stage, along with the

https://www.resdc.cn/
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driving forces and demands of the next stage, thereby ensuring mutual feedback between
the two models during the simulation process.

By modifying the input parameters of the FLUS model, this study estimated the land
type area under four scenarios of Hubei Province in 2035.

Table 1. List of drivers selected for this study.

Types Driving Factors Data Sources

Geographical factors

DEM Geospatial Data Cloud
(https://www.gscloud.cn/)

Slope Geospatial Data Cloud
ArcMap slope

Aspect Geospatial Data Cloud
ArcMap aspect

NDVI Geospatial Data Cloud

Climatic factors
Average temperature The National Tibetan Plateau Data Center

(https://data.tpdc.ac.cn/)

Average precipitation The National Tibetan Plateau Data Center

Socioeconomic factors

Population density
Resource and Environment Science and Data

Center
(https://www.resdc.cn/)

GDP China National Bureau of Statistics
(http://www.stats.gov.cn/)

Restaurant distribution density
Resource and Environment Science and Data

Center
ArcMap Kernel Density

Hotel distribution density
Resource and Environment Science and Data

Center
ArcMap Kernel Density

Supermarket distribution density
Resource and Environment Science and Data

Center
ArcMap Kernel Density

Location factors

Distance to waters
OpenStreetMap

(https://www.openstreetmap.org)
ArcMap European distance tool

Distance to expressway OpenStreetMap
ArcMap European distance tool

Distance to primary roads OpenStreetMap
ArcMap European distance tool

Distance to railroad OpenStreetMap
ArcMap European distance tool

Distance to town center OpenStreetMap
ArcMap European distance tool

Distance to city center OpenStreetMap
ArcMap European distance tool

Distance to bus stops OpenStreetMap
ArcMap European distance tool

Note: The driving factors used for accuracy validation in this study (climate, socioeconomic, and locational
factors) were from 2015, while those used in the scenario simulation processes were from 2020. The access date is
21 November 2022 in this table.

2.4.2. Drivers of Land-Use Change

Land-use change is the result of the interplay between the intrinsic physical and
chemical conditions of various land types and external factors such as natural, social, and

https://www.gscloud.cn/
https://data.tpdc.ac.cn/
https://www.resdc.cn/
http://www.stats.gov.cn/
https://www.openstreetmap.org
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economic factors. Under the influence of natural factors, land-use change is relatively stable,
as the transformation of land use types occurs under strict natural limitations. However,
the rapid development of urbanization has made the situation of land-use change more
complex, with the combined effects of various factors, including social, economic, and
policy factors [28,28,70].

This study conducted a comprehensive review of the previous literature and identified
four distinct categories of driving factors: geographical, climatic, socioeconomic, and
locational factors [71]. These four categories represent the primary factors that influence
land-use change. To enhance the comprehensiveness of our study, we incorporated some
point-of-interest (POI) data into the socioeconomic and location factor categories, which
had previously been overlooked in the literature. We employed various combinations of
the driving factors in the Markov-FLUS model and evaluated their performance based on
neural network model training and probability calculation. The combination consisting
of 18 driving factors exhibited the lowest RMSE and high measurement accuracy. Table 1
presents the types and sources of all driving factors, with a spatial resolution of 100 m and
a completely unified spatial range, mathematical basis, and format.

Figure 3 shows the raster images of all driving factors. Geographic and climatic
conditions, as natural factors, determine the direction, mode, and trend of land-use changes.
Therefore, DEM, slope, and aspect, which constitute the most critical terrain conditions,
were selected as the driving factors to characterize geographic factors. Average precipitation
and temperature, which constitute the most critical climatic conditions, were selected as
the driving factors to characterize climatic factors. Accessibility, as an important location
factor, affects the convenience and cost of land development and has a large impact on
regional land-use change. This study mainly selected the distances of various land use
types to water bodies, highways, primary roads, railways, town centers, city centers, and
bus stops as driving factors to characterize location factors. Additionally, this study also
selected driving factors to characterize economic factors, such as GDP, population density,
restaurant density, hotel density, and supermarket density [72,73].

This study incorporated 10 POI data as part of our driving factor analysis, encom-
passing geographic information from various establishments such as hotels, restaurants,
supermarkets, and bus stations. The utilization of these data points has not been exten-
sively explored in previous studies. By incorporating these data points, we gained a more
comprehensive understanding of land-use changes.

2.4.3. Model Accuracy Verification

Uncertainty in simulations is inevitable and emerges from various sources, such as the
accuracy of the initial land use data used for simulation, the accuracy of driving factors,
and simulation performance. Therefore, to acknowledge the uncertainty of simulations, we
used historical land use data from 2010 and 2015 to predict land use demand for 2020. Data
were imported regarding suitability probabilities and limiting factors for each individual
land use type, and the Markov model was employed to predict land-use change in Hubei
Province from 2015 to 2020. Figure 4 presents a comparison between the predicted outcomes
and actual 2020 land use patterns, while Figure 5 shows a comparison of predicted versus
actual land use type areas. The subtle differences observed between the predicted and
actual datasets are because of a small amount of change during the validation time interval.
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Table 2 displays the overall accuracy, Kappa coefficient, and FOM index. The effective-
ness of the model was validated through the application of overall accuracy (OA), the FOM
index, and the Kappa coefficient. The values of OA and Kappa are typically between 0 and
1, with a higher value indicating a higher level of accuracy in the model simulation. When
the Kappa coefficient is greater than 0.8, it indicates that the model simulation accuracy
has reached a satisfactory level of statistical significance [29,74]. Additionally, this study
employed the FOM coefficient to assess the accuracy of the model, which is a measure of
the efficiency, sensitivity, or precision of a system. A larger FOM value indicates better
simulation results and higher accuracy. The accuracy coefficient is the best test for the ratio-
nality of the driving factors, suitability probability maps, and other parameter settings used
in the model, which jointly affect the simulation results. To further test the adaptability of
the model in Hubei Province, we adopted a 20% random sampling strategy for comparison,
and the calibration results are shown in Table 3. Based on the results of the three accuracy
coefficients and random sampling, the FLUS model demonstrated good applicability in
this study.

Table 2. FLUS model validation results.

Inspection OA Kappa FOM

Results 0.93 0.85 0.139

Table 3. Validation results of random samples.

Land Use Type Commission Error Omission Error Producer’s Accuracy User’s Accuracy

Cultivated land 0.0750608 0.0785903 0.92141 0.924939
Forest 0.0511676 0.0434008 0.956599 0.948832

Grassland 0.681315 0.756484 0.243516 0.318685
Water 0.17362 0.126522 0.873478 0.82638

Architecture 0.140058 0.248898 0.751102 0.859942
Others 0.683333 0.788889 0.211111 0.316667

2.5. Multiple Scenario Simulations
2.5.1. Design of Multiple Scenario Simulations

The development of the socio-economic and natural environment is characterized by
uncertainty. Scenario analysis provides a valuable tool for exploring and comparing the
outcomes of different scenarios based on various assumptions that represent development
goals. This approach enables the development of strategies that are best suited for future
development. Based on the previous literature and considering the current development
situation and future socioeconomic development plan of Hubei Province [35,37,75,76], this
study used the Markov model to design four scenarios:

• The natural development scenario, also known as the recent trends scenario, is con-
structed based on the trajectory of past and current development in Hubei Province.
The current trends for economic and population development and technological in-
novation are assumed to remain continually consistent. In this scenario, there is no
human interference or restrictions on land use development, and it follows the natural
changes in land use based on historical characteristics of land-use change and natural
socioeconomic development factors, with transition probabilities maintaining the
level between 2000 and 2020. In other words, the recent trends scenario assumes a
continuation of historical patterns of land change.

• The economic priority scenario, which aims to maximize socioeconomic benefits,
assumes that cities become attractive destinations due to rapid regional economic
growth and technological innovation. The continuous rapid growth of the population
and economy comes at the expense of natural resources (with a growth rate of approx-
imately 0.9% to 8%), leading to drastic land-use changes. In this scenario, economic
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development is prioritized and requires the rapid expansion of built-up land such as
cities and roads, which are important signs of economic development. In this model,
we increase the cost of conversion from built-up land to other land and reduce the
probability of transfer from living space to ecological space.

• The ecological protection scenario focuses on protecting ecological land, with a cul-
tivated land area of no less than that of the planned cultivated land retention and
medium- to high-yield cultivated land area in 2020. The forest area is no less than
the planned area in 2020. The area of urban land, rural residential areas, and other
construction land does not exceed the planned area in 2020. The ecological protection
red-line area is the restricted development zone. In other words, the ecological pro-
tection scenario refers to strengthening forests, grassland, water, and other ecological
lands while weakening the expansion capacity of the other land types.

• The cultivated land protection scenario, which aims to simulate the impact and envi-
ronmental effects of cultivated land protection policies and land reclamation activities,
takes the key cultivated land protection areas (basic farmland protection areas) as the
restricted development area, with a cultivated land area of no less than that of the
planned cultivated land retention and medium- to high-yield cultivated land area
in 2020. The area of urban land, rural residential areas, and other construction land
does not exceed the planned area in 2020. The probability of cultivated land being
converted to urban land, rural residential areas, and other construction land is reduced,
while the probability of grassland, urban land, rural residential areas, and unused
land being converted to cultivated land is increased.

2.5.2. Neighborhood Factors

Neighborhood factors can reflect the intensity of expansion of different land types,
particularly the expansion potential of various land uses under external influences [77,78].
Parameters similar to neighborhood factors have been utilized in several large-scale land
use simulation models, such as CLUE-S, FORE-SCE, and CLUMondo [35]. These models
employ a static set of empirically derived parameters to represent the degree of difficulty
associated with land-use conversion in specific regions.

These neighborhood factors range from 0 to 1, with higher values indicating a stronger
expansion ability of the land use type. Neighborhood factors are estimated by analyzing
historical land use data in the study area and incorporating expert opinions. These factors
reflect the inherent properties of land use and are not influenced by changes such as
technological advancements or human activities. In this study, after reviewing the previous
literature and conducting multiple tests and adjustments, the parameters for neighborhood
influence factors for each land type were finally determined and are presented in Table 4.

Table 4. Neighborhood factor parameters.

Scenarios Cultivated Land Forest Grassland Water Architecture Others

Natural development 0.5 0.7 0.3 0.4 1 0.01
Economic priority 0.2 0.3 0.2 0.3 1 0.01

Ecological protection 0.3 1 0.7 0.5 0.8 0.01
Cultivated land protection 0.8 0.5 0.3 0.5 0.8 0.01

2.5.3. Conversion Costs and Restricted Change Area Settings

Conversion cost is used to represent the degree of difficulty in converting from the cur-
rent land use type to the desired type and is another factor shaping land use dynamics [79].
In this study, four different conversion costs were designed based on the four scenarios
established, as shown in Table 5. In the table, a value of one represents that two land use
types can be converted to each other, while zero indicates that they cannot be converted.
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Table 5. Conversion cost coefficients between land use types.

Scenarios Land Use Type Cultivated Land Forest Grassland Water Architecture Others

Natural development

Cultivated
land 1 1 1 1 1 1

Forest 1 1 1 1 1 1
Grassland 1 1 1 1 1 1

Water 1 1 1 1 1 1
Architecture 1 1 1 1 1 1

Others 1 1 1 1 1 1

Economic priority

Cultivated
land 1 1 1 1 0 1

Forest 1 1 1 1 0 1
Grassland 1 1 1 1 0 1

Water 1 1 1 1 0 1
Architecture 1 1 1 1 1 1

Others 1 1 1 1 1 1

Ecological protection

Cultivated
land 1 0 0 0 1 1

Forest 1 1 1 1 1 1
Grassland 1 1 1 1 1 1

Water 1 1 1 1 1 1
Architecture 0 0 0 0 1 0

Others 0 0 0 0 1 1

Cultivated land
protection

Cultivated
land 1 1 1 1 1 1

Forest 0 1 1 1 1 1
Grassland 0 1 1 1 1 1

Water 0 1 1 1 1 1
Architecture 0 1 1 1 1 1

Others 1 1 1 1 1 1

The setting of restricted areas means that according to the actual situation of the study
area, some areas are selected as exclusion zones and land-use conversion is prohibited [33].
This study presents four different constrained conversion areas designed based on four
specific scenarios. In the natural development scenario, all land-use changes are permitted.
In the economic priority scenario, the conversion of architectural land into other types is
prohibited. In the ecological protection scenario, the conversion of cultivated land, forest,
grasslands, and water areas into architectural land is forbidden. Moreover, conversion is
also prohibited within ecological nature reserves and ecological protection red-line areas.
In the cultivated land protection scenario, the conversion of cultivated land into other
types is prohibited. Additionally, conversion is also prohibited within basic farmland
protection areas.

3. Results and Discussion
3.1. Land-Use Changes from 2000 to 2020

Figure 6 illustrates the land use dynamics in Hubei Province from 2000 to 2020. The
most substantial changes in land use occurred between 2000 and 2005, with an average
change rate of 17.04% for the 6 land use categories. The observed trend was a general decline
in cultivated land, grassland, and other land types, accompanied by an increase in forests,
water areas, and construction land areas. Other land and grassland experienced the most
dramatic reduction, declining by 43.23% and 39.42%, respectively, while the construction
area exhibited the most notable increase, by 12.62%. The period from 2000 to 2005 marked
a window of urbanization in Hubei Province, with a rapid increase in urban development
and population density and a gradual expansion of construction land. As a result, farmland
at the edges of urban areas decreased. To mitigate large-scale human activities, such as
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deforestation and lake reclamation, Hubei Province implemented ecological restoration
projects, such as the “Grain for Green” and “Lake for Land” programs, to recover some
ecological land areas, such as forests and water bodies. However, these actions also led to a
rapid decrease in the cultivated land area.
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Figure 7 shows the area changes of different land use types in Hubei Province over
various time periods. Among the land use categories, forestland has the largest area
in Hubei Province. It is primarily situated in the elevated regions of western Hubei
Province, with the proportion of forestland accounting for 47.32% in 2000 and 48.52%
in 2020, exhibiting a slightly increasing trend. Farmland, the second-largest land use
category, is mainly distributed in the level terrains of the Jianghan Plain. The proportion
of farmland area in Hubei Province decreased from 46.31% in 2000 to 43.90% in 2020,
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indicating a declining trend. Grassland and other land use types occupy smaller areas, yet
their changes are more substantial. Specifically, the grassland area in 2020 decreased by
80.83% in comparison with that in 2000, and other land use types decreased by 76.63%.
Meanwhile, the construction land use type displayed the most considerable growth rate,
with a 91.60% increase.

The reason for this trend is the presence of the Yangtze and Hanjiang Rivers that flow
through Hubei Province, endowing the region with unique advantages for water, land, and
air transportation that have facilitated its economic development. The urbanization process
that has taken place along the river in Hubei Province has rapidly developed, leading to
an increased population density and an expanded urban area, resulting in a substantial
increase in the area of construction land. However, the expansion of construction land
has encroached upon some farmland, which has been partially compensated for by using
grassland and other land use types. Consequently, the reduction in the area of cultivated
land has been relatively small, while the decrease in grassland and other land use types has
been more substantial. While compensating for the loss of cultivated land with grassland
may offset the total area loss of arable land, it fails to consider the quality of farmland and
the unit yield, which are crucial for ensuring food security.

Overall, from 2000 to 2020, the area of construction land in Hubei Province continu-
ously increased, investment in public infrastructure construction consistently grew, and
urban construction was successful. Nonetheless, the area of ecological land, such as culti-
vated land, grassland, and water, has continuously decreased, and ecological environmental
protection is critical.

3.2. Scenario 1: Natural Development

The natural development scenario refers to unconstrained land-use changes, wherein
land-use changes are primarily influenced by the natural environment and social and
economic development of the study area, without any constraints from land development
policies. Figure 8 shows the simulation results of land use in 2035 in the natural develop-
ment scenario. Figure 9 illustrates the changes in land use type areas from 2020 to 2035
in this scenario. Compared with 2020, the areas of cultivated land, forestland, grassland,
and other land use types decrease to varying degrees in 2035, with declines of −1.54%,
−0.96%, −31.05%, and −21.16%, respectively. The scale of water and construction land
expands, with the latter showing a relatively large increase, reaching 8529.64 km2, which
represents an increase of 33.51%. In other words, in the natural development scenario,
construction land grows rapidly due to human activities to meet the needs of social and
economic development, while cultivated land, forestland, grassland, and other land use
types become the primary sources of land-use conversion.

In terms of spatial distribution, the expansion of construction land is based on the
original distribution status and continues to extend along the riverbanks, mainly occurring
in the northern (Shiyan), southern (Xiangyang), and central (Wuhan) regions, with a
relatively concentrated distribution. The main reason for the expansion of urban areas is
the continuous and rapid pace of overall urbanization. The results of this scenario indicate
that the rapid development of social and economic conditions in Hubei Province in the
future is expected to lead to the further expansion of construction land due to urbanization.
However, in sharp contrast with this trend, there will be a substantial reduction in the
areas of cultivated land and forestland. The phenomenon of urban development occupying
arable land resources is severe, and the reduction in forestland and other ecological spaces
due to urban expansion has exerted substantial pressure on regional ecological health.
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In summary, in the scenario of inertia development, unconstrained development will
cause a rapid expansion of regional construction land and a marked reduction in production
and ecological lands such as cultivated land, forestland, and grassland. This will result in
an inability to maintain the coordinated development of the regional ecology, society, and
economy. If this trend is not restricted, food and ecological security will be at risk.

3.3. Scenario 2: Economic Priority

The economic priority scenario is primarily based on the natural development scenario
and incorporates the actual situation in Hubei Province, which is undergoing a phase of
rapid economic development, as well as regional land use development plans. In this
scenario, the urban construction area is designated as a restricted conversion area, and the
transfer probability of construction land to cultivated land, forestland, grassland, water
bodies, and other land use types is reduced based on the land use transfer probability from
2000 to 2020. Figure 10 shows the simulation results of land use in 2035 in the economic
priority scenario, while Figure 11 illustrates the changes in land use type areas from 2020 to
2035 in this scenario.
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The trends and spatial differences in the changes in different land use types are
generally similar to those in the natural development scenario. Cultivated land, forestland,
grassland, water bodies, and other land use types decrease in area, while the area of
construction land increases dramatically. However, the growth rate of construction land
in the economic priority scenario is clearly higher than that in the natural development
scenario, increasing from 6388.62 km2 in 2020 to 9164.25 km2 in 2035, with the growth rate
increasing from 33.51% (in the natural development scenario) to 43.45%. Correspondingly,
the trend of decreasing cultivated land is even more severe, decreasing from 81,610.09 km2
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in 2020 to 79,825.25 km2 in 2035. In addition, all ecological land use types, including water
bodies, show a decreasing trend, indicating that under the economic priority scenario,
the expansion of urban areas leads to a reduction in the size of ecological land use types,
resulting in a decline in regional ecological sustainability.
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3.4. Scenario 3: Ecological Protection

In response to the Chinese government’s “no large-scale development, joint protec-
tion” strategy [80], this study establishes an ecological conservation scenario. To maintain
regional ecological security, areas that have an important impact on the ecological environ-
ment, such as forests, grasslands, and water bodies, must be strictly protected, and large-
scale development and utilization should be prohibited, as outlined in Hubei Province’s
land development policy. Accordingly, the ecological conservation area is designated as a
restricted conversion zone in this scenario. Figure 12 shows the simulated results for land
use in 2035 in the ecological conservation scenario, and Figure 13 illustrates the changes in
land use types from 2020 to 2035 in this scenario.

Compared with 2020, the forest and water areas in 2035 show a slight increase, with
growth rates of 0.05% and 1.22%, respectively. However, the changes in land use types in
this scenario still primarily focus on cultivated land and construction land. Cultivated land
continues to decrease, with its area further compressed by −1.52% to only 80,367.79 km2.
The expansion of construction land is evident, but its expansion rate is effectively controlled,
decreasing from 33.51% in the natural development scenario and 43.45% in the economic
priority scenario to 18.19%. This development satisfies the needs for urban economic
and social growth to some extent. Nonetheless, given Hubei Province’s current land use
efficiency, the total amount of construction land is insufficient, which is not conducive to
economic development. Consequently, in the future, there will be higher requirements for
intensive and efficient land use in Hubei Province.

Overall, to ensure ecological land use and meet the needs of socioeconomic activities,
the primary direction of cultivated land conversion remains toward construction land. In
other words, in the ecological conservation scenario, ecological land such as forests and
water bodies exhibit a growth trend, prompting cultivated land to become the primary
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type of land conversion. The reduction in construction land encroachment on ecological
land contributes to maintaining regional ecological security.
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3.5. Scenario 4: Cultivated Land Protection

Cultivated land protection is essential for the effective conservation of farmland
resources. To achieve this, a basic cultivated land protection zone has been established, and
the cost of cultivated land conversion has been increased to restrict the transfer and change
of cultivated land to other land types. Additionally, the occupation of cultivated land
resources by economic and social development has been strictly controlled. The simulation
results for land use in 2035 in the cultivated land protection scenario are shown in Figure 14,
while Figure 15 shows the changes in land use types from 2020 to 2035 in this scenario.
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According to this scenario, the cultivated land area is 82,876.46 km2, which makes it
the largest and only scenario with a growth trend among the 4 scenarios, with an increase of
1.55% compared with 2020. The increased area of cultivated land is mainly concentrated in
the central Jianghan Plain area, where the terrain is flat and the water system is developed.
This trend is in line with the planning projects for high-standard farmland construction
in central Hubei cities such as Xiangyang, Xiantao, and Ezhou. The results indicate that
the strict implementation of basic cultivated land protection policies and the prohibition
of construction land occupying basic cultivated land can effectively protect farmland and
ensure food security.

The areas of forestland, grassland, and water have shown varying degrees of reduction,
with forestland experiencing the most dramatic downward trend among the four scenarios,
decreasing by 1974.86 km2 (2.19%). It is worth noting that the expansion rate of construction
land clearly slows compared with the other scenarios. Its expansion direction is similar
to the natural development scenario, mainly concentrated in the central region, but it still
increased by 15.87% compared with 2020. This indicates that the speed of urban expansion
will be somewhat controlled when implementing cultivated land protection.
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In summary, this scenario has effectively slowed the rate of cultivated land conversion
by implementing limiting factors in the basic cultivated land protection zone and increasing
the conversion cost. This has ensured the quantity of cultivated land and implemented
protection policies. However, despite these measures, the rapid economic development of
various cities will inevitably lead to the expansion of construction land, which, coupled
with the compression of forestland, grassland, and water, poses a threat to cultivated land
protection and food security.

4. Limitations and Future Work

Despite the progress made in this study, it is essential to acknowledge its limitations.
One of the main limitations of this study is the exclusive use of the classic FLUS model,
as opposed to more advanced landscape-driven patch-based cellular automaton (LP-CA)
and land use scenario dynamics (LUSD) models in recent years. These updated models
incorporate more complex spatial and temporal dynamics and are known to produce more
accurate and precise results in capturing the complexities of land-use changes in a given
area [81–84]. Therefore, our study may have missed some crucial dynamics of the study
area, resulting in less accurate results.

To address this limitation, we suggest that future research could incorporate the LP-CA
and LUSD models to improve the accuracy of the findings. These models can capture
the heterogeneity of the landscape and the interactions between land-use changes and
driving factors, such as urban expansion and population growth [85–87]. Furthermore,
these models allow for the integration of multiple factors, such as land use policies and
economic development, into the simulation process [66,88]. By incorporating these mod-
els, future studies can provide more comprehensive and accurate insights into land-use
change dynamics.

Another limitation of this study is the subjective nature of the scenario-setting methods.
While different scenarios can indicate the likelihood of associated land-use changes, they
do not necessarily reflect the actual future land-use patterns. To overcome this limitation,
we plan to select additional driving factors and employ multiple scenario-setting methods
to conduct multifactorial and multiscenario land-use change simulations. This approach
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will provide a more comprehensive understanding of the potential land-use changes in
different scenarios and help decision-makers to formulate more effective land-use policies.

Overall, this study has significant contributions to the field of land-use change mod-
eling. However, acknowledging and addressing its limitations is crucial to ensure the
accuracy and reliability of the findings. By incorporating advanced models and employing
multiple scenario-setting methods, future studies can provide more comprehensive and
accurate insights into land-use change dynamics and help to facilitate sustainable land-use
planning and management.

5. Conclusions

The Markov-FLUS model predicts future land-use quantity changes using system
dynamics, relying on past land-use quantity changes [61,68]. This study employed the
Markov-FLUS model to simulate potential land-use changes in Hubei Province in various
scenarios for 2035. This study aimed to explore the potential outcomes in different scenarios
rather than evaluating the effectiveness of existing policies. The simulation results indicate
large variations in land-use patterns across the different scenarios tested.

The findings suggest that cultivated land is the predominant land use type in Hubei
Province, occupying 43.90% of the total area. Nevertheless, cultivated land decreased by
1260.50 km2 (−1.54%), 1784.83 km2 (−2.19%), and 1242.30 km2 (−1.52%) in the natural
development, economic priority, and ecological protection scenarios, respectively, while it
increased by 1266.37 km2 (1.55%) in the cultivated land protection scenario. In the ecological
protection scenario, forestland was effectively safeguarded, increasing by 44.17 km2 (0.05%),
while it decreased in the other 3 scenarios. Grassland and other land uses showed a
decreasing trend across all four scenarios. The expansion of construction land was the most
dramatic, exhibiting outward and infill expansion. The area of construction land increased
in all scenarios, but the cultivated land protection (15.87%) and ecological protection
(18.19%) scenarios had much smaller increases than the natural development (33.51%) and
economic priority (43.45%) scenarios.
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