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Abstract: Land desertification profoundly affects economic and social development, thus necessi-
tating a collective response. Regional land control planning needs to assess the land sensitivity to
desertification across different regions. In this study, we selected 12 factors from soil, vegetation,
climate, and terrain aspects to calculate and evaluate Xinjiang’s land sensitivity to desertification,
from 2001 to 2020, and analyzed its trends and drivers. The results indicated that the region is
highly (22.93%) to extremely sensitive (34.63%) to desertification. Of these, deserts, Gobi lands,
oasis–desert transitional zones, and the downstream of rivers are highly and extremely sensitive
areas. Mountainous areas, oases, and along rivers are non- and mildly sensitive areas. Over the
past two decades, most areas have experienced stability (45.07%) and a slight improvement of de-
sertification (26.18%), while the Junggar Basin and Central Taklamakan Desert have seen slight and
severe intensification trends, respectively. Climate-related indicators, such as surface temperature
and potential evapotranspiration (PET), were identified as the most important drivers of changes in
land sensitivity to desertification. Having an integrated water resource allocation and establishing
the long-term monitoring of land sensitivity to desertification would have positive implications for
desertification control.

Keywords: land sensitivity to desertification; spatiotemporal changes; Geodetector; Google Earth
Engine; Xinjiang

1. Instruction

Land degradation leads to adverse consequences, such as the deterioration of habitat
quality and loss of biodiversity, which seriously threaten land security and human life [1,2].
The United Nations included combating desertification as an important topic in the 2030
Agenda for Sustainable Development and the United Nations Convention to Combat
Desertification Strategic Framework 2018–2030, with the ultimate goal of reversing deserti-
fication and achieving zero growth in land degradation [3]. In fact, under the effect of both
natural climate change and intensifying human activities, coupled with unsustainable land
management practices, the desertification process is special and complex, so combatting it
is too [4–7]. It will be difficult to stop the global desertification process [8,9]. Therefore, it is
urgent to understand the current desertification situation, analyze the driving factors, pre-
dict the evolution of trends, and formulate response strategies for effective desertification
control [10].

Desertification monitoring and assessment is an important prerequisite for prevention
and control. Remote sensing satellite data, such as Landsat, Spot, Modis, and QuickBird,
provide great assistance in monitoring desertification [11–13]. Remote sensing applications
for monitoring desertification fall into two main categories. The first type is to directly use
the visual interpretation of remote sensing images or computer classification to understand
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the status, quantity, and spatial pattern of land desertification, but samples are influenced
by human subjective factors, thus limiting the classification accuracy [14,15]. The second
category is to construct models to invert the desertification status by selecting several
indicators, focusing on spatial and temporal change monitoring [16,17], dynamic process
research [18], and driver analysis [19], such as the Integrated Desertification Index, Deserti-
fication Degree Index, Environmental Sensitivity Areas Index (ESAI), etc. The Integrated
Desertification Index has uncertainties in selecting assessment indicators and determining
indicator weights and rank thresholds [20]. Determining weights in the Integrated Deserti-
fication Index mainly refers to local research institutions, technical departments, and the
relevant literature, and no uniform standard has been reached. Based on spectral feature
information, the Desertification Degree Index was subsequently proposed, but the accuracy
of desertification inversion needs to be improved [21]. ESAI originated from Mediterranean
desertification. Additionally, the Land Use (MEDALUS) model quantifies the magnitude of
the land desertification probability in terms of soil, climate, erosion, vegetation, and human
activities and management [22,23]. The MEDALUS model is widely used in Italy [24–26],
India [27], Central Asia [28], Greece [29], Iran [30], Turkey [31], Northern China [32], and
even worldwide [33]. This model scientifically and flexibly integrates many factors driving
desertification processes to provide data support for active and effective desertification
monitoring.

Driven by a combination of natural factors and human activities, the desertification
process is extremely complex; the land sensitivity to desertification has temporal dynam-
ics and spatial heterogeneity. Clarifying the driving role of factors on land sensitivity
to desertification and grasping the main contradictions are important prerequisites for
developing effective control plans. Studies have been conducted using Geographically
Weighted Regression [26], Random Forest [27], Cluster Analysis [32], and Geodetector [34]
on the driving role and driving mechanisms of indicators. Land sensitivity to desertification
in Italy is mainly driven by vegetation quality and is more important than land manage-
ment and climate quality [26], which is consistent with Rajbanshi’s study indicating the
importance, up to 46%, of vegetation drought resistance [27]. Regions located at different
latitudes have different soil and water conditions, resulting in different contributions of
vegetation, climate, and soil to the desertification process. Soil and climate play the most
direct role in land sensitivity to desertification in the arid zone of northwestern China,
while vegetation, which dynamically varies over time, is the most active factor leading to
dynamic changes in land sensitivity to desertification [34].

The free sharing and rapid updating of multi-source data, such as remote sensing
satellite data, reanalysis data, and meteorological data, have facilitated the progress of
large-scale ecological assessments and improved the spatial and temporal resolution of as-
sessment results [35,36]. Before the advent of the Google Earth Engine (GEE), the process of
downloading and pre-processing data was time consuming. In fact, users can process data
online on GEE and directly export the calculated results, which can reduce the workload
of pre-processing data and the storage capacity of intermediate data [37–40]. GEE enables
long time series and higher resolution ecological remote sensing model analysis, which
provides a unique perspective to assess the land sensitivity of desertification. Of course,
GEE has been applied to the land sensitivity to desertification assessment of the Blue Nile
Basin [41], and this study provides a good example to further explore the potential of GEE.

Currently, Xinjiang is the most severely desertification-affected area in China and is
highly prone to more. With the Three Northern Protected Forest Program being imple-
mented, and the Closed Reserve and the National Desert Park [42–44], the trend of land
desertification expansion in Xinjiang has slowed down, but combatting desertification
is still necessary. So far, there are few studies on the spatial and temporal dynamics of
land sensitivity to desertification in Xinjiang, and the results of continuous assessment are
lacking, while the driving force analysis is not deep enough, which is not conducive to a
comprehensive grasp of Xinjiang’s desertification situation.
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Therefore, we quantified Xinjiang’s land sensitivity of desertification and explored
each evaluation indicator’s driving role to fill the gaps in the previous studies. This paper
aims to answer three main questions:

(1) What are the spatial and temporal distribution characteristics of Xinjiang’s land
sensitivity to desertification?

(2) What is the trend of land sensitivity to desertification in the last 20 years?
(3) What is the driving effect of the evaluation indicators on land sensitivity to desertifi-

cation?

2. Study Area and Data Sources
2.1. Study Area

Sand supply is an important condition for desertification [45]. Xinjiang is in Northwest
China’s arid region, and, with sparse vegetation, deserts account for more than 80% of its
total area. In China, it has both the highest concentration and the widest variety of deserts
(Figure 1). Due to the complex mountain–basin landscape pattern, the spatial distribution
of precipitation greatly varies [46]. Influenced by the topographic and geomorphological
pattern of the mountain–basin system, widespread sediments in the basin, and atmospheric
circulation, Xinjiang has windy and sandy environmental characteristics that seriously
threaten its infrastructure’s safe operation and economic effectiveness. Xinjiang now has
more than 1500 km of railways, more than 6000 km of expressways, 164,000 km of highways,
many photovoltaic power stations and ditches, and other important projects. The overall
potential damage of sandstorms is relatively large. The railways in the southwest edge of
the Taklimakan Desert, Alashankou, Dabancheng, and Bailifeng areas have been seriously
affected, and the sand burial hazards of many national roads in the Tarim Basin have
been serious.
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Figure 1. Overview of the study area. (a) The classification of drought in China. The degree of drought
was classified based on the aridity index, which was divided into hyper-arid (<0.03), arid (0.03–0.2),
semi-arid (0.2–0.5), dry sub-humid (0.5–0.65), and humid (>0.65) [47]. (b) The sandy types in
Xinjiang. Data source: The Aridity index is calculated based on precipitation and evapotranspiration
data obtained from TerraClimate [48]. Sand types data were obtained from the National Tibetan
Plateau/Third Pole Environment Data Center [49].

2.2. Data Sources

Multiple data were collected (Table 1). The data on soil conditions were obtained from
OpenLandMap (https://openlandmap.org, accessed on 9 June 2022), which is a dataset of
machine learning predictions based on a global soil profile. The R2 of soil organic carbon
content, sand content, and soil clay content from OpenLandMap, with corresponding
sample data, were 83.4%, 90.8%, and 86.0%, respectively. The soil moisture, precipitation,
potential evapotranspiration (PET), and average wind speed data were obtained from

https://openlandmap.org


Land 2023, 12, 849 4 of 20

TerraClimate, which is a dataset covering the global land surface. The Pearson correlation
coefficients of the precipitation and PET from this dataset with the Global Historical
Climatology Network and FLUXNET data are 90% and 77%, respectively [50]. MOD13A2
provided the Normalized Difference Vegetation Index (NDVI) data, with a global accuracy
of ±0.025 [51]. The vegetation type data were derived from MCD12Q1, which has high
applicability in the Chinese region [52]. The surface temperature data were obtained from
MOD11A2 with a high spatiotemporal resolution. The NASA Digital Elevation Model
provided the Digital Elevation Models (DEM) and slope data. The vertical accuracy RMSE
of the China-wide DEM is 8.53 m [53]. To ensure the correctness of the subsequent raster
calculations and spatial analysis, the coordinate system for all the raster data was specified
to be the WGS84 geographic coordinate system and was resampled to 2.5′. The entire
process of this paper using the data and methods is presented in Figure 2.

Table 1. Data sources.

Quality Indicator Variable Spatial
Resolution

Data Sources
and References Normalization

Soil

X1 Soil organic carbon content 250 m OpenLandMap [54] −
X2 Soil sand content 250 m OpenLandMap [55] +
X3 Soil clay content 250 m OpenLandMap [56] −
X4 Soil moisture 2.5′ TERRACLIMATE [48] −

Vegetation X5 NDVI 1 km MOD13A2 [57] −
X6 Drought resistance 500 m MCD12Q1 [58] +

Climate

X7 Precipitation 2.5′ TERRACLIMATE [48] −
X8 PET 2.5′ TERRACLIMATE [48] +
X9 Surface temperature 1 km MOD11A2 [59] +

X10 Average wind speed 2.5′ TERRACLIMATE [48] +

Terrain
X11 DEM 30 m NASADEM [60] −
X12 Slope 30 m NASADEM [60] −

Notes: the “+” represents the indicator is positively correlated with land sensitivity to desertification, so the
indicator is positively normalized. Conversely, “−” is negatively normalized. They were calculated according to
Equations (1) and (2).
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3. Methods
3.1. Assessment of Sensitivity to Desertification

Euclidean distance is widely used in the field of geology [61–63]. In this study, we
calculated the desertification sensitivity from the soil, vegetation, climate, and terrain
conditions [34]. The raw data were standardized to eliminate the effect of having different
indicator scales on desertification sensitivity. The soil organic carbon content, clay content,
soil moisture, NDVI, precipitation, DEM, and slope were negatively correlated with the
desertification sensitivity and were negatively standardized (Equation (1)). The drought
resistance of vegetation, soil sand content, PET, surface temperature, and average wind
speed were positively correlated with the desertification sensitivity and were positively
standardized (Equation (2)).

X′i =
Xi −min{Xi}

max{Xi} −min{Xi}
(1)

X′i =
max{Xi} − Xi

max{Xi} −min{Xi}
(2)

where Xi is the raster value corresponding to indicator i; max{Xi} is the maximum value of
the raster corresponding to that evaluation indicator; min{Xi} is the minimum value of
the raster corresponding to that evaluation indicator; and X′i is the value of indicator i after
normalization.

The desertification sensitivity is calculated using the Euclidian distance and the fol-
lowing equation:

SI =
√
(SOC− SOClow)

2 + (Sand− Sandlow)
2 + (SC− SClow)

2 + (SW− SWlow)
2 (3)

VI =
√
(NDVI−NDVIlow)

2 + (DR−DRlow)
2 (4)

CI =
√
(Pre− Prelow)

2 + (PET− PETlow)
2 + (Lst− Lstlow)

2 + (VS−VSlow)
2 (5)

TI =
√
(Dem−Demlow)

2 +
(
Slope− Slopelow

)2 (6)

DSI =
√
(SI− SIlow)

2 + (VI−VIlow)
2 + (CI−CIlow)

2 + (TI− TIlow)
2 (7)

where SI is the soil index; SOC is the soil organic carbon content; Sand is the soil sand
content; SW is the soil moisture; SC is the soil clay content; VI is the vegetation index; NDVI
is the normalized vegetation index; DR is the vegetation drought resistance of vegetation;
CI is the climate index; Pre is the precipitation; PET is the potential evapotranspiration;
Lst is the surface temperature; VS is the average wind speed; TI is the terrain index; Dem
is elevation; and Slope is the slope of the site. The Drought Sensitivity Index (DSI) is
the desertification sensitivity, where a higher DSI value indicates a greater likelihood of
desertification and vice versa.

3.2. Sen’s Slope

Sen’s slope is widely used to calculate trends in long-time series data [64,65]. The
corresponding formula is as follows:

βDSI = Median
(

DSIj −DSIi

j− i

)
∀j > i (8)
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Where βDSI is the desertification sensitivity trend; DSIj is the desertification sensitivity
raster image element value at time j; and DSIi is the raster image element value at the
time i, corresponding to the position of DSIj. βDSI > 0 indicates that the sensitivity to
desertification at the corresponding raster image element is increasing during the study
period, and βDSI ≥ 0.0005 indicates that the sensitivity to desertification is increasing.
When βDSI < 0, the sensitivity to desertification at the corresponding raster image element
is weakened, and when βDSI ≤ −0.0005, the sensitivity to desertification is improved.
When −0.0005 < βDSI < 0.0005, the degree of desertification sensitivity remains largely
the same.

3.3. Mann–Kendall Test

The Mann–Kendall test is used to determine whether the trend in the long time series
data is significant [66]. We define the Z-statistic as follows:

Z =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0
(9)

S = ∑n−1
j=1 ∑n

i=j+1 sgn
(
DSIj −DSIi

)
(10)

sgn
(
DSIj −DSIi

)
=


1, DSIj −DSIi > 0
0, DSIj −DSIi = 0
−1, DSIj −DSIi < 0

(11)

var(S) =
n(n− 1)(2n + 5)

20
(12)

where n denotes the study time of 20 years and sgn is the sign function. The significance of
the changing trend of the desertification sensitivity was judged at the level of significance of
α = 0.05. When |Z| > 1.96, the changing trend of the desertification sensitivity is significant,
and the changing trend of the desertification sensitivity is not significant when |Z| ≤ 1.96.

3.4. Geodetector

The Geodetector method [67] can be used to measure the spatial heterogeneity [68]
and has been widely used in desertification [34,69], urbanization [70], landscape [71], and
ecological environment quality studies [72].

The factor detector is used to quantitatively reveal the driving force of each evaluation
indicator on the desertification sensitivity. The degree that the outcome-independent
variable drives the dependent variable has values ranging from 0 to 1.

q = 1− ∑L
h=1 Nhσ

2
h

Nσ2 = 1− SSW
SST

(13)

SSW =
l

∑
h=1

Nhσ
2
h, SST = Nσ2 (14)

where h = 1, . . . ; L is the stratification of variable Y or factor X; N is the layer h; Nh is
the layer h; N is the number of cells in the whole area; σ2

h and σ2 are the variances of
the two, respectively; and SSW and SST are the sum of within-stratum variance and the
total variance of the whole region, respectively. The larger values of q indicate the greater
explanatory power of the independent variable on the dependent variable.

The q-value can measure discretization method’s quality and be used as an evaluation
criterion for the Geodetector method’s results. Different discretization methods yield dif-
ferent q-values [68]. To better reveal the internal driving mechanism of the desertification
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sensitivity, we performed an optimal spatial discretization of the independent variables us-
ing the multiscale discretization method by comparing the natural breakpoint, the k-mean,
and the equidistant interval methods [73]. Obtaining the global optimal discretization
using the traditional discretization methods is difficult, while the multi-scale discretization
methods can achieve the maximum value of q.

Interaction detectors can be used to identify the interactions between independent
variables by comparing the q values of the independent variables X1 and X2 and their
interaction (q(X1), q(X2), and q(X1∩X2)). The relationship between two independent
variables can be classified as nonlinearly attenuated, one-way nonlinearly attenuated,
two-way enhanced, independent, and nonlinearly enhanced.

The risk detector uses the t-statistic to determine whether the difference in the mean
values of attributes between two sub-regions are significant.

tyh=1−yh=2
=

Yh=1 − Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

] 1
2

(15)

where Yh is the mean value of attributes in subregion h; nh is the number of samples in
subregion h; and Var is the variance.

Using ecological detection measures whether the effects of the two independent
variables on the dependent variable are significantly different using the F-statistic:

F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2
(16)

where NX1 and NX1 are the sample sizes of the two factors X1 and X2, respectively; SSWX1
and SSWX1 are the sum of the within-layer variances of the strata formed by X1 and X2;
and L1 and L2 denote the number of strata of the variables X1 and X2, respectively.

4. Results
4.1. Spatiotemporal Distribution Patterns of Desertification Sensitivity

The multi-year sensitivity to desertification values in Xinjiang ranges from 0.20–1.52
(Figure 3e). The region is predominantly highly and extremely sensitive to desertification.
The desertification sensitivity was classified into five classes using the natural breakpoint
method: non-sensitive (0.2 ≤ value < 0.64), mildly sensitive (0.64 ≤ value < 0.83), moder-
ately sensitive (0.83 ≤ value < 0.99), highly sensitive (0.99 ≤ value < 1.18), and extremely
sensitive (1.18 ≤ value ≤ 1.52). The corresponding areas were 104,822, 206,175, 360,743,
362,881, and 548,083 km2, respectively. Different parts of Xinjiang have different levels of
desertification sensitivity (Figure 3f). The Taklamakan Desert, Tuha Basin, Kuruqtag, and
Santang-Zhuomao low hills are extremely sensitive areas, where the land cover types are
mainly Gobi land and desert. These areas are characterized by abundant sand material,
high wind speed, strong evapotranspiration, and scarce precipitation. The Junggar Basin
and the northern slope of the east–central part of the Kunlun Mountains are highly sensitive
areas. The non-sensitive and mildly sensitive areas are mainly distributed in high-altitude
areas with good moisture conditions, far from sand sources, with much precipitation and
high vegetation cover.
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4.2. Spatial Divergence of First-Level Indicators

The vicinities of the Altai, Talhabatai, Tianshan, and Kunlun Mountains and oases are
low-value soil condition areas with good soil conditions and low desertification sensitivity.
The high-value soil areas with poor soil conditions and high desertification sensitivity are
distributed in deserts (Taklamakan Desert, Gurbantunggut Desert, Old Delta Desert of the
Peacock River, Kumutag Desert, etc.), Gobi lands (Hashun Gobi, etc.), and saline lands with
high soil sand content and low water content, which have soil bases and climatic conditions
that are desertification prone.

The high vegetation cover can increase the lower bedding surface’s roughness and
the starting wind speed value [74]. The vegetation types are horizontally and vertically
heterogeneous, and vegetation drought resistance is also spatially heterogeneous. The
low-value areas of vegetation conditions (Figure 3b) are distributed near mountains, rivers,
and oases with good moisture conditions. The vegetation types are meadows, grasslands,
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coniferous forests, alpine vegetation, broadleaf forests, and scrubs, which are the land cover
types that have high drought resistance and a low degree of desertification sensitivity.

The climatic conditions (Figure 3c) have obvious spatial heterogeneity due to the
influence of the complex topography [75]. The high-value areas are mainly located in the
Tuha Basin, Kumtag Desert, Taklamakan Desert, and Gurbantunggut Desert. The highest
values of the climatic conditions are distributed in the typical wind areas, such as the
western wind area of Turpan, the North Gobi wind area of Hami, the South Gobi wind
area of Hami, the Baili wind area, and the Lop Nor wind area. In these areas, the annual
number of gale days reaches 50–95 days, and there is strong and frequent potential sand
transport with medium–high energy. The resultant drift potential reached 200 VU.

The high-value terrain condition areas (Figure 3d) are mainly located in the desert
and Gobi lands at lower elevations and have similarities with the soil, vegetation, and
climate conditions. Generally, the areas with high altitudes and steep slopes have relatively
better substrate conditions and climatic conditions, which are mainly reflected in the high
soil moisture, high vegetation cover, rough substrates, higher precipitation, and, therefore,
lower desertification sensitivity.

As can be seen from Table 2, overall, the desertification sensitivity class increases with
the increasing soil sand content and PET, and with the decreasing precipitation and soil
moisture. As the desertification sensitivity degree increases, the X4 and X7 values show
an increasing and then decreasing trend, rather than continuously decreasing. The main
reason is that the insensitive areas are in mountainous areas where high elevation and high
vegetation cover are dominant factors. The slightly to extremely sensitive areas, on the
other hand, respond to soil water and precipitation to a greater extent, and elevation is not
the dominant factor.

Table 2. Statistics of evaluation indexes corresponding to each level of desertification sensitivity.

Level Area (km2) X2 X4 X7 X8 X10

Non-sensitive 104,822.3 23–65 0.1–73.85 1.74–55.82 8.13–84.88 1.36–4.72
Mildly sensitive 206,175.1 20–73 0–132.5 1.25–56.34 0.04–96.36 1.15–5.11

Moderately sensitive 360,743 23–85 0–68.3 1.17–54.13 0–118.11 1.09–5.51
Highly sensitive 3,628,81.5 28–93 0–62.8 1.11–52.76 0–132.49 1.08–5.15

Extremely sensitive 548,083.3 30–100 0–22.9 0.93–23.73 1.45–140.55 1.06–5.03

Notes: the X2 independent variable is soil sand content. The X4 independent variable is soil moisture. The X7
independent variable is precipitation. The X8 independent variable is PET. The X10 independent variable is
average wind speed.

4.3. Temporal Trends in Desertification Sensitivity

From 2001 to 2020, the percentages of extremely, highly, and non-sensitive areas
showed a decreasing trend, while the proportions of mildly and moderately sensitive areas
increased. The overall trend of the multi-year desertification sensitivity was mainly stable
(45.07%) and slightly improved (26.18%).

The percentages for each desertification sensitivity level from 2001 to 2020 are shown
in Figure 4a. The highest percentage is extremely sensitive, while the lowest percentage is
insensitive and mildly sensitive. The evolution of the percentages of each desertification
sensitivity level (Figure 4b) shows that extreme, high, and insensitivity decreased at the rate
of 0.00689/a, 0.055/a, and 0.029/a, respectively. Mild and moderate sensitivity decreased
at the rate of 0.056/a and 0.035/a, respectively.

The multi-year trend of the desertification sensitivity in Xinjiang (Figure 5) is mainly
characterized by stability and slight improvement. The percentages of the pixels with
stability, slight improvement, slight aggravation, and severe aggravation are 45.07%, 26.18%,
16.97%, and 11.78%, respectively. The slight improvements are mainly found in the Kunlun
Mountain-Algin Mountain, Tarim River Basin, and Northern Tianshan. Stability is mainly
found in the Santang-Zhuomao low hills, Tuha Basin, and Tarim Basin. Slight aggravations
are mainly distributed in the Altay Mountain and Tianshan Mountain. Severe aggravations
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are found in the Gurbantunggut Desert and South–Central Taklamakan Desert. Overall,
the desertification sensitivity in northern Xinjiang tends to increase, while, in southern
Xinjiang, it is mainly stable and slightly improved, and the desertification sensitivity tends
to decrease.
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Areas such as Gobi land, the downstream of rivers, and desert–oasis transition zones
are sensitive. Desert vegetation acts as wind and sand control, promoting soil and water
conservation and water retention [76]. Additionally, vegetation serves as a buffer in
the dynamic transition of different levels of sand sensitivity, while precipitation is the
most important driver of desert vegetation growth [77,78]. Significant desert vegetation
degradation is closely related to long-term drought, and annual precipitation is vital in
desert vegetation growth [79]. The multi-year precipitation minimums in Xinjiang (Figure 6)
show that the Junggar Basin received the least precipitation from 2014 to the present; the
western Tarim Basin received the least precipitation in 2001, 2009, and 2020; the Tuha Basin
received the least precipitation in 2006 and 2009; and the Kunlun Mountains-Arjinshan
received the least precipitation in 2001 and 2009. Given the spatiotemporal dynamics of
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regional precipitation, desert vegetation is in a vulnerable state. Short-lived vegetation in
Xinjiang is only distributed in the Junggar Basin and accounts for 37.1% of the total regional
desert vegetation. This vegetation relies on snowmelt and precipitation to rapidly complete
its growth process within two months [80]. Growing season precipitation is a critical
water supply for the desert vegetation [79]. The desertification sensitivity in the Gobi land,
desert–oasis transition zones, and downstream of rivers is mildly, moderately, and highly
desertification sensitive, and the regional desertification process is easily aggravated by
external disturbance. The above areas are key control areas of land desertification. The
ecological risk of areas with high sand source abundance is relatively stable, and the human
disturbance should be minimized to protect the natural environment.
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4.4. Attribution Analysis of Desertification Sensitivity

To reduce the data storage capacity and significantly improve the code’s running
speed, the continuous-type independent and dependent variables were multiplied by 1000
and rounded to integer raster data before applying the multiscale discretization method.
Using the multiscale discretization method, the nodes of the independent variable X were
obtained and reclassified (Table 3).

Table 3. Nodes, q-values, and significance of the independent variable X.

Variable Nodes q Value Sig

X1 1000 2000 3000 5000 0.6044 0.000 *
X2 20,000 60,000 71,000 87,000 0.6570 0.000 *
X3 1000 6000 12,000 22,000 0.6025 0.000 *
X4 213 513 3706 6080 0.6477 0.000 *
X5 302,267 625,165 833,485 1,431,314 0.5457 0.000 *
X7 3537 7112 15,150 22,995 0.6153 0.000 *
X8 74,234 89,028 93,355 101,084 0.6668 0.000 *
X9 286,382 292,918 297,981 301,940 0.7946 0.000 *

X10 1640 2002 3078 3428 0.1676 0.000 *
X11 7870 14,030 19,090 38,590 0.4706 0.000 *
X12 136 1166 2050 3728 0.4948 0.000 *
X6 — — — — 0.3776 0.000 *

Notes: The “*” represents the sig values were all less than 0.01 and passed the significance test. “X6” is a discrete
variable, so there is no node and it is marked with “—”.
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In descending order, the q-values were as follows: surface temperature > PET >
soil sand content > soil moisture > precipitation > soil organic carbon content > soil clay
content > NDVI > slope > elevation > drought resistance of vegetation > wind speed
(Table 3). The desertification sensitivity in Xinjiang is mainly determined by its climate
and soil. Climate conditions are the most important conditions affecting desertification
sensitivity, followed by soil conditions, while vegetation and terrain conditions have weaker
explanatory power for the desertification sensitivity. Among the climatic conditions, the
two most significant elements influencing the desertification sensitivity are the surface
temperature and PET, with explanatory powers of 79.46% and 66.68%, respectively. Among
the soil conditions, the explanatory powers of the soil sand content, soil moisture, soil
organic carbon content, and soil clay content on desertification sensitivity are 65.7%, 64.77%,
60.44%, and 60.25%, respectively.

The interannual desertification sensitivity trends (Figure 5) show that the desertifica-
tion of the Junggar Basin and the Central Taklamakan Desert are being slightly and severely
intensified, respectively. There is a strong correlation between the surface temperature and
PET in determining the desertification sensitivity. The Sen’s slope analysis of both areas
(Figure 7) shows that there are large intensification trends in both the Junggar Basin and
Taklamakan Desert, which is consistent with the spatial distribution of the desertification
sensitivity trends. To quantify the relationship between the changing desertification sensi-
tivity trend and the surface temperature and PET, 1000 points were randomly selected, and
a correlation analysis was performed. The change trend values of the surface temperature
and PET were positively correlated with the desertification sensitivity change trend values,
with correlation coefficients of 0.3194 and 0.3498, respectively. This indicates that changes in
the surface temperature and PET are important factors leading to changes in desertification,
which confirms the conclusions from using Geodetector analysis [81–83].
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Figure 7. (a) The Sen’s slope of surface temperature. (b) The Sen’s slope of PET. A Sen’s slope value
less than 0 indicates an increasing trend. On the contrary, there is a decreasing trend [64,65].

Figure 8 showed that the different independent variable levels correspond to the mean
desertification sensitivity values. The slope is one of the factors that reflects the terrain’s
complexity and indirectly affects the desertification sensitivity by influencing the slope’s
soil erosion degree [84]. The regional topographic relief gradually increases with the slope,
which increases the soil stability and has an inhibitory effect on the desertification process.
Wind speed is the dynamic condition that generates wind and sand displacement and
determines the resultant drift potential. Overall, the mean value of the desertification
sensitivity increases with the mean wind speed class. The surface temperature was found
to positively relate to the PET and negatively relate to the precipitation. The mean deser-
tification sensitivity values of the surface temperature, PET, and precipitation increased
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at rates of 0.1356 (R2 = 0.9976), 0.1188 (R2 = 0.9915), and 0.1455 (R2 = 0.9913), respectively.
The desertification sensitivity values did not increase with the drought resistance of vegeta-
tion, and the mean values of the desertification sensitivity corresponding to the drought
resistance of levels 1, 3, and 4 were 1.18, 0.80, and 1.12, respectively. Some areas with
level 1 vegetation drought resistance have low desertification sensitivity. The areas with
level 3 and 4 drought resistance have high ecological sensitivity and the land is prone to
sand encroachment. However, through implementing key sand control projects, such as
closure and protection, non-irrigated afforestation, and the return of cultivated land to
forests, sandy land area expansion has been slowed down; thus, human intervention has
reduced the region’s desertification sensitivity. The soil clay content, soil sand content, and
soil organic carbon content directly reflect the sand material richness of the sub-bedding
surface, and the desertification sensitivity value increases with the sand material richness.
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The interaction detector results in Figure 9 show that the interaction of any two indepen-
dent variables contributes more to the desertification sensitivity than a single independent
variable, and that the desertification sensitivity is the result of complex interactions among
the factors. Figure 10 shows that the effects of the soil clay and soil organic carbon contents
on the desertification sensitivity spatial distribution were not significant, and that the spatial
distributions of both were similar. However, the effects of any two remaining factors on the
spatial distribution of the desertification sensitivity were significant.
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5. Discussion
5.1. Evaluation Indicators Selection

The MEDALUS model shows great flexibility, reliability and comprehensiveness in
indicator selection and framework construction, a variety of data sources, adaptability to a
wide range of spatial scales, and the ability to select indicators and flexibly choose weights
according to the study area’s conditions. It selects indicators in terms of soil, climate,
vegetation, management, and human activities [27,28,31,41,85]. Regarding the soil quality,
common indicators include parent material, rock fragments, soil depth, soil gradient, soil
structural decline, salinization, electrical conductivity, topsoil clay composition, drainage,
soil erosion, etc. Regarding the climate quality, common indicators include precipitation,
aridity, aspect, wind erosion index, wind speed, etc. Regarding the vegetation quality,
common indicators include fire risk, soil erosion protection, plant drought resistance, plant
cover, etc. Regarding the management and human activity quality, common indicators
include population density, annual growth, grazing pressure, land use, policy implementa-
tion, agricultural intensity, etc. Even Karavitis et al. [86] selected 98 indicators to construct
a desertification risk index in terms of the soil erosion, cropland erosion, soil salinization,
water stress, overgrazing, and wildfires. This confirms the MEDALUS model’s flexibility in
indicator selection, but it raises two questions: is it necessary to select so many indicators?
How do you determine the indicator system? In fact, multicollinearity among indicators is
inevitable [87], and the accuracy and value of land sensitivity to desertification obtained
by referring to traditional indicator systems, without trade-offs, is indeed questionable.
Of course, the Geodetector method used in this study accounts for the multicollinearity
problem [68].

Therefore, in the existing land sensitivity to desertification evaluation in China, the
indicator system’s construction fully accounts for the actual local conditions, which pro-
vides a sufficient reference for determining the study’s indicators. Assessing the land
sensitivity to desertification in China began with assessing ecological sensitivity [88]. The
index system of the land sensitivity to desertification evaluation in the Qinghai Lake Basin
includes the wetness index, windy days, soil texture, and vegetation cover [89]. The in-
dex system of desertification sensitivity evaluation in Inner Mongolia includes dryness,
number of windy days in winter and spring, proportion of sandy land, soil texture, rate of
change in forest and grassland, and NDVI [90]. Xu et al. [85] studied the land sensitivity to
desertification in northern China from 1981 to 2010 and projected future scenario changes
from 2011 to 2030. We note that the land management quality index contains grazing
pressure and population pressure data, which are derived from the statistical yearbook
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of the northern provinces, but the statistical yearbook data can only provide results for
administrative units, not continuous data, and cannot fully reflect land management’s
spatial heterogeneity. In summary, the simple construction of the indicator system of the
land sensitivity to desertification study in the Chinese region, which is less complicated
than the traditional MEDALUS model, has also achieved good results, which indicates
that the evaluation indicator system’s construction is of key significance for desertification
sensitivity assessment.

In this study, Xinjiang’s natural climate and topography were fully considered when
developing the index system; thus, the soil quality, vegetation quality, climate quality, and
terrain quality were selected, and land management was not. The two indicators of the
grazing pressure and population pressure, which are commonly used in land management
quality, are not applicable in Xinjiang. On the one hand, the pastoral areas in Xinjiang,
concentrated in the Tianshan Mountains, with high altitudes and numerous nature re-
serves, have been established, meaning the desertification risk in the pastoral areas is
minimal [91,92]. On the other hand, only using the population density to quantify the
population pressure is not convincing for corroborating that urbanization has a catalytic
effect on the desertification process. In addition, the data source of these two indicators
is also a problem, and we believe that the statistical yearbook provides the results of the
administrative divisions without spatial continuity, which weakens the accuracy of the land
sensitivity to desertification. The land management quality index only shows high values
in the western Tarim Basin, while the land management quality index is low in the Tarim
River Basin, the Tuha Basin, and the Junggar Basin. However, according to the authors’
fieldwork in Xinjiang, human activities threatening the oasis have intensified the desertifi-
cation process that should be regarded as high, but, unfortunately, the land management
quality index results have a large gap with reality, so the land management quality may
increase the error of land sensitivity to the desertification assessment results [85]. Therefore,
considering the water and soil conditions in Xinjiang, we selected 12 indicators related to
land sensitivity to desertification, without considering the land management quality.

5.2. Comparison with Previous Studies

Our study suggests that Xinjiang’s spatial distribution of land sensitivity to deser-
tification is characterized by low values in its mountainous areas and high values in its
basins. This is consistent with many studies, although there are some differences in the
fine details, subject to different data sources and assessment models. Xu et al. highlights
that the Tarim Basin is an area of high desertification sensitivity, and the increase in rainfall
and decrease in aridity are important reasons for the decreasing desertification sensitivity
trend in the eastern Tarim Basin, while the increasing population pressure leads to the
increasing desertification sensitivity trend in the Hami-Turpan Basin [85]. Since 2001, the
Tarim River Basin Authority has constructed major projects, such as irrigation district water
conservation, plain reservoir renovation, groundwater development and utilization, river
training, the Bosten Lake water transfer project, ecological construction, the mountain
reservoir control project, basin water resources scheduling and management, etc. A total
of 485 individual projects have been completed and put into operation. The ecological
management of the Tarim River Basin has achieved significant results [42,93]. Therefore, it
is debatable that the land sensitivity to desertification in the western part of the Tarim Basin
is increasing. It further confirms that it is reasonable not to choose land management quality
in this study. The conversion characteristics of the desertification sensitivity in the arid
zone of Northwest China were obtained based on the spatial overlay of the desertification
sensitivity levels in 2000, 2005, 2010, and 2017, and, thus, a lot of the information was
inevitably lost [34]. Additionally, this paper analyzes the desertification sensitivity values
from 2001 to 2020, using an MK test and Sen’s slope, to more carefully reveal the change
trend of land sensitivity to desertification.

When analyzing the drivers of desertification sensitivity, many studies in the Chinese
region have pointed out that climate is the driving condition for the desertification process
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and soil is the material basis for desert formation. The increase in regional rainfall, decrease
in windy days, and establishment of ecological projects, such as the project of returning
farmland to forest, the project of returning pasture to grass, and the project of sanding con-
trol, have effectively reduced the land sensitivity to desertification [34,88,94]. In conclusion,
we integrated the existing studies and fully integrated the study area’s situation, selected
the evaluation index system, obtained the scientific desertification sensitivity assessment
results and change trends, and quantitatively revealed the driving effect of the indicators
on land sensitivity to desertification.

5.3. Policy Implication

With a soaring population, water resource overexploitation, and the overuse of land
natural resources, the desertification sensitivity of desert–oasis transition zones and the
downstream of rivers is unstable. Direct human intervention in land use has led to an
uneven distribution of water resources, which has resulted in the simultaneous expansion
of oases and deserts. The desert oasis transition zones have an extremely important role in
suppressing desertification’s forward movement and are showing a trend of narrowing.
Therefore, in the future, for the integrated ecological management of basins, water resources
must be uniformly allocated from the perspective of the whole basin [42].

Constructing a reasonable index system, comprehensively determining the weights
of evaluation indexes, and establishing a scientific monitoring platform for desertification
sensitivity can provide an early warning mechanism for desertification control. Incorpo-
rating data from future climate change scenarios into assessment models, such as those
provided by the Coupled Model Intercomparison Project, can aid in building more scientific
desertification sensitivity assessment models and projection results. Using the desertifi-
cation sensitivity assessment results as a reference, we should focus on improving the
dominant drivers, pay attention to the areas where desertification is expected to increase in
the future, and, accordingly, carry out sand prevention and control measures. In northern
Xinjiang, protecting natural vegetation and installing engineering measures for protection
are the main focus. In southern Xinjiang, the vast area of mobile deserts, sparse vegetation,
and severe scarcity of water resources cause it to be extremely important to carry out tar-
geted protective forest management, river tailrace restoration, and infrastructure protection
against wind and sand hazards.

6. Conclusions

We evaluated Xinjiang’s desertification sensitivity from 2001 to 2020 based on GEE
and analyzed its spatiotemporal change patterns and driving forces, with the following
main conclusions:

Areas in Xinjiang are mainly highly (36.29 × 104 km2) and extremely sensitive to
desertification (54.81 × 104 km2). The desert areas are mainly highly and extremely sensi-
tive. Human disturbance should be minimized to protect these ecosystems. The mildly,
moderately, and highly sensitive areas are distributed in the sensitive and fragile areas,
such as mountains, Gobi land, desert–oasis transition zones, and the downstream of rivers;
these are areas that are easily disturbed by human activities and climate change and are
key prevention and control areas.

The change rate of each desertification sensitivity grade is slow. The percentages of
extremely (0.00689/a), highly (0.055/a), and non-sensitive land (0.029/a) are decreasing,
and the percentages of mildly (0.056/a) and moderately sensitive land (0.035/a) are increas-
ing. The multi-year trend of desertification sensitivity in Xinjiang is dominated by slight
improvement and stability, among which the percentages of slight improvement, stability,
slight aggravation, and severe aggravation are 26.18%, 45.07%, 16.97%, and 11.78%, respec-
tively. Long-term climate change caused a slight improvement and severe intensification of
the desertification sensitivity in the Junggar Basin and central Taklamakan Desert.

The Geodetector study’s results showed that the desertification sensitivity in Xinjiang
is mainly driven by climate and soil conditions, followed by vegetation and terrain condi-
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tions, and that the explanatory powers of the surface temperature and PET are 79.46% and
66.68%, respectively.

Sand control and management in Xinjiang must be based on scientific knowledge of
sandy land, understanding the formation and evolution of the windy and sandy environ-
ment, the spatial distribution pattern, and careful consideration of sandy land characteris-
tics. Based on scientific facts, sensitive areas of sandy land in Xinjiang are mainly located on
the edges of the oasis, downstream of rivers, and tailing lakes, which are the critical areas
for sand control in Xinjiang. Alternatively, we need to scientifically quantify the regional
wind and sandy hazard laws to improve the monitoring model and early warning system
for sandy land. On the other hand, according to the scientifically coordinated allocation of
water resources, we should improve the efficiency of water use and promote the research,
development, and application of new technologies, materials, and methods to achieve
sustainable operations and management.
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