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Abstract: With global climate change and rapid urbanization, it is critical to assess urban flood
resilience (UFR) within the social-economic-natural complex ecosystem in dealing with urban flood
disasters. This research proposes a conceptual framework based on the PSR-SENCE model for
evaluating and exploring trends in urban flood resilience over time, using 27 cities in the Yangtze
River Delta (YRD) of China as case studies. For the overall evaluation, a hybrid weighting method,
VIKOR, and sensitivity analysis were used. During that time, UFR in the YRD region averaged a
moderate level with an upward trend. This distinguishes between the resilience levels and fluctuation
trends of provinces and cities. Jiangsu, Zhejiang, and Anhui provinces all displayed a trend of pro-
gressive development; however, Shanghai displayed a completely opposite pattern, mainly because
of resilience in the state dimension. During that time, 81.41% of cities exhibited varying, upward
trends in urban flood resistance, with few demonstrating inverse changes. Regional, provincial, and
city-level implications are proposed for future UFR enhancement. The research contributes to a better
understanding of the urban complex ecosystem under flood conditions and provides significant
insights for policymakers, urban planners, and practitioners in the YRD region and other similar
flood-prone urban areas.

Keywords: social-economic-natural complex ecosystem; urban flood resilience; pressure-state-response
model; urban flood management

1. Introduction

Since the beginning of the 21st century, climate change has become a global concern,
especially extreme climate events, which have caused various severe impacts on urban
areas [1–3]. In China, climate extremes have increased, resulting in significant regional
differences in precipitation changes and increased rainfall days [4,5]. The statistics show
that, since 1951, the average precipitation in China has been increasing, especially from
2012 to 2021, which was the wettest decade in the past 70 years [6]. This kind of heavy
rainfall process, especially extreme precipitation, lasts for a long time, accumulates a large
amount of rainfall, and overlaps in the fall area, resulting in more frequent urban flood
disasters [7,8]. In addition to climate change, human activities have also increased the prob-
ability of extremely heavy precipitation events, leading to urban floods and waterlogging
disasters [9–11]. With the acceleration of urbanization, the speed of urban infrastruc-
ture construction cannot keep up with the pace of urban development [12]. Because of
inadequate drainage regulations and flawed drainage systems [13,14], this kind of fast
urbanization has encroached upon rivers and lakes, disrupted water systems, gradually
eroded urban water retention areas, and caused recurrent urban flooding. Urban flood
problems have become another major urban disease, following population crowding, traffic
congestion, and environmental pollution.
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In an effort to address these issues, the idea of resilience was developed, which
offers fresh perspectives and creative solutions for managing and mitigating urban flood-
ing [15,16]. Urban flood resilience (UFR) refers to the ability of urban systems to resist,
recover, and sustain their normal functions when disrupted by flood disasters [17,18]. This
concept has attracted research from governments and scholars in sociology, urban planning,
disaster management, management, and other fields. Since 2015, the United Nations has de-
veloped a series of global policy processes and commitments to strengthen urban resilience,
including flood resilience, such as the 2030 Agenda for Sustainable Development [19], the Sendai
Framework for Disaster Risk Reduction 2015–2030 [20], and Making Cities Resilient 2030 [21].
Developing countries such as China have also realized the importance of improving urban
resilience against major disasters, and China mentioned it for the first time in the Proposal
of Formulating the Fourteenth Five-Year Plan for National Economic and Social Development and
the 2030 Long-Term Goals [17].

Previously, UFR-related studies, including flood risk management, flood risk assess-
ment, and flood mitigation strategies, were built on a solid foundation for the analysis
of UFR [22–24]. Various frameworks to quantify UFR have been developed, either based
on indicator systems [25,26], flood scenario simulations [27,28], or qualitative investiga-
tions [29,30]. Many studies consider UFR under the concept of urban resilience or take
flooding as a disaster example to assess urban resilience [31–33]. Such comprehensive
assessment index metrics for urban resilience usually include social, economic, infrastruc-
ture, community, and environmental dimensions [34,35], which can be used to assess UFR
but are not always specific or relevant. Others consider UFR from the disaster process
perspective, with an emphasis on particular flood events or stages, such as the resistance
ability before the flood, the coping capacity during the flood, or the recovery capacity after
the flood [36,37]. These studies are more simulation-based and time-sensitive and demand
great data accuracy. However, flood disasters are a dynamic process; evaluating UFR
from a single or multiple flood events is difficult and complex, and some of the indexes
are difficult to quantify [7]. Following the assessment, the implications for policymaking,
acting, and resilience improvement are not always clear. This requires holistic thinking
about abilities to reflect the dynamic course of urban ecosystems against flooding.

In order to avoid one-sidedness in the assessment of UFR, it is necessary to establish a
framework with considerations of the preparation, resistance, and recovery ability of the
whole urban ecosystem under the flood cycle. Furthermore, a relative assessment of the
urban ecosystem of a large area sharing similar basin characteristics and specific regional
features can also help enrich the commentary points of resilient cities, put forward targeted
policies, and promote regional sustainable development. Thus, this paper aims to establish
a UFR evaluation framework considering the social–economic–natural complex. ecosystem
as well as the flood cycle for a large region in China during a certain period. The results can
provide guidance and suggestions to policymakers so they can formulate more targeted
and practical plans for regional, provincial, and city-level urban flood management and
resilience improvement.

2. Materials and Methods
2.1. Study Area

The Yangtze River, China’s mother river, has been threatened by flood disasters for
thousands of years. The Yangtze River Delta (YRD) is located at the lower reaches of the
Yangtze River and is an alluvial plain formed by the siltation of sediments brought by the
Yangtze River [38]. Since the 1980s, flood disasters have intensified, and it is the center of
frequent water disasters in China. The YRD urban agglomeration is a highly developed
economic zone in the eastern coastal area of China, with the highest population density
and urbanization speed [8]. Because of its location in the plain and low-lying areas, the
YRD region is sensitive to its climate and is separated into different air masses by the
boundary line between subtropical and temperate climates. About 70% of the rainfall is
concentrated in spring and summer, which makes these two seasons the most prone to
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flood disasters [39]. During the flood season of 2016, the middle and lower reaches of the
Yangtze River suffered the worst flooding since 1999, involving Hunan, Hubei, Anhui,
Jiangxi, and Jiangsu provinces [40]. Considering its economic background and flood history,
27 cities from 3 provinces and 1 municipality in YRD were chosen to conduct an empirical
analysis, as shown in Figure 1. The research period covers five years, from 2015 to 2019,
which is consistent with the starting year of the “Development Plan for the Yangtze River
Delta Urban Agglomeration”. To avoid the impact of COVID-19, the years 2020 to 2022
were not considered in the model.
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2.2. Framework Establishment

Considering the complex ecosystem of cities, the flood disaster cycle, and the con-
cept of urban resilience, a conceptual framework was built first to identify indicators for
UFR evaluation. The pressure–state–response (PSR) model was used to determine the
urban situation during flood disaster cycles [41], and the social–economic–natural com-
plex ecosystem (SENCE) was adopted to show the complex ecosystem of cities. Both of
these can systematically describe and analyze the interaction between society and the
environment [42–44]. Because of global climate change and the frequent occurrence of
various natural disasters and social events, some scholars have already begun to explore
the applicability of the PSR model in disaster management, such as exploring the factors
affecting the eco-environment during earthquakes and flooding [17,45] or assessing the
risk for coal flood water inrush [46].

In general, the PSR-SENCE framework considers the risks of urban floods (pressure) on
the environment; how they affect the quality and quantity of natural, economic, and social
resources (state); and how society responds to these changes through natural, economic,
and policy changes, as well as changes in awareness and behavior (response). Thus, three
main dimensions with seven subdimensions are considered in this framework to evaluate
UFR, including natural pressure, natural state, social state, economic state, natural response,
social response, and economic response, as shown in Figure 2.
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Figure 2. Conceptual framework.

2.3. Evaluation Indicators Identification

Based on the framework, a comprehensive systematic review (SR) was conducted
to identify the primary indicators of UFR using related previous studies. Following a
literature screening process based on SR, four major steps were adopted, including iden-
tification, screening, eligibility, and inclusion [47]. Indicators with a frequency of over
5 were considered primary indicators, and they were grouped according to the above
framework with the Delphi method. From June to July 2022, taking into account the impact
of COVID-19, 15 experts were invited to justify the indicators through video meetings,
with detailed profiles in Table 1. Questionnaires and interviews were provided for the
experts to judge and score the chosen indicators, and those indicators scoring in the top
80% were selected for the evaluation [48]. Eventually, 24 indicators under the framework
were accepted as shown in Figure 3.
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Table 1. Profiles of the experts.

Basic
Characteristics Percentage Basic

Characteristics Percentage

Gender Male 60% Work experience Over 10 years 13.33%
Female 40% 7–9 years 46.67%

Occupation Government officer 60% 5–6 years 40%
University professor 26.67% Education Doctoral degree 33.33%
Related municipal
company manager 13.33% Master’s degree 40%

Other 26.67%

2.3.1. Indicators in the Pressure Dimension

Indicators in the pressure dimension mainly consider urban natural pressure, which,
in this paper, refers to floods. C1 and C2 are two indicators used to reflect susceptibility to
urban flood disasters [49,50]. C3 reflects the hazard of the causative factors of urban flood
disasters [51]. C4 reflects the stability of a disaster-prone environment during urban flood
disasters [52].

2.3.2. Indicators in the State Dimension

Indicators in the state dimension primarily assess the quality and quantity of natural,
economic, and social resources, including the state of regional and individual economic
conditions, urban construction, and ecological environment, as well as demographic char-
acteristics. In the social state, C5 and C6 reflect the vulnerability of the population and
the adaptability of residents to flood disasters [29,53,54]. C7 reflects the number of people
affected by flood disasters per unit area of urban land and the adaptability of residents to
flood disasters [55]. In the economic state, C8 reflects the robustness and redundancy of the
urban economy [56]. C9 and C10 reflect the robustness and redundancy of the individual
economic resilience of urban residents [8,57]. As for the natural state, common indicators
related to infrastructure, such as drainage systems, green coverage, and road systems are
frequently mentioned to evaluate urban flood resilience [58–60]. C11 reflects the robustness
of the spatial layout of urban drainage [61]; C12 reflects the ability of urban green spaces
to purify surface runoff, promote the natural infiltration of rainwater, and store floodwa-
ter [62]; and C13 reflects the efficiency of the transportation system in response to urban
flood disasters [59,63].

2.3.3. Indicators in the Response Dimension

Indicators in the response dimension take into account how people react to flood-
related changes, including social and economic responses that reflect social learning and
recovery abilities, as well as natural responses that reflect urban development and ecological
recovery abilities. As for the social response, C14 and C15 reflect the government’s strategic
response to urban flood disasters [64–66]. C16 represents the city’s capacity for learning
and innovation, as well as its ability to reflect on flood disasters [18], and C17 reflects
the ability of the public to make independent judgments, perform rescues, and recover
from flood disasters [67,68]. As for the economic response, C18 reflects the resilience and
redundancy of urban infrastructure in disaster recovery [69]. C19 reflects investment in
disaster prevention and the social response capability of the city [70], and C20 reflects the
adaptive capacity and flexibility of the urban economy [71]. As for the natural response,
the indicators (C21 to C24) are mainly related to emergency resources, including water,
transportation, power, and medical aid [72–74].

2.4. Hybrid Weighting Method

Because the evaluation indicators of urban flood resilience contain both objective data
and subjective data, a combination weighting method that combines both subjective and
objective methods is more appropriate for weighting calculations. For objective weighting,
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the entropy method is a method that determines the weight of each indicator entirely
based on the amount of information contained in each measurement indicator. It can
make up for the utility difference caused by subjective weighting and fully reflect the
information provided by the indicators of urban flood resilience. For subjective weighting,
the analytic hierarchy process (AHP) mainly considers the importance of comparison
between upper- and lower-level indicators but ignores the cross-relationships between
indicators. Therefore, it needs to be combined with other methods. Since there may be
dependency relationships between the various indicators of urban flood resilience, the
superposition of these relationships may have an impact on the final result. The analytic
network process (ANP) can consider the interrelationships between indicators. ANP is
a decision-making method that is suitable for non-independent hierarchical structures
proposed by Professor T.L. Saaty of the United States in 1996 [75]. It is a new practical
decision-making method developed on the basis of ANP. It adopts a relative scale form and
can make pairwise comparisons of the relative importance of elements at the same level and
also measure the decision-making objectives according to the hierarchy, from top to bottom.

In summary, because of the inclusion of both objective data and subjective data in
the measurement indicators of urban flood resilience, a combined subjective–objective
approach, namely, the combination weighting method, is more suitable for calculating the
weights. Because there may be dependence relationships between various urban flood
resilience indicators, the combination of ANP and the entropy method can consider the
interrelationships between indicators and levels, providing a new approach for weight
calculation and helping to improve the objectivity and accuracy of measurement results.
Therefore, combining ANP with the entropy method can effectively address the weaknesses
of other methods, determine the weights of urban flood resilience indicators, and clarify
the interrelationships between various indicators.

Thus, the general formula for calculating the combined weights of urban flood re-
silience can be provided as follows:

wj =
wO

j wS
j

∑24
j=1 wO

j wS
j

, j = 1, 2, . . . , 24 (1)

where wj represents the combined weight of the indicators, wO represents the objective
weight obtained by the entropy method, wS represents the subjective weight obtained by
the ANP method, and j represents the number of indicators, which, in this paper, refers to
the 24 indicators in the measurement framework of urban flood resilience in the Yangtze
River Delta region.

2.5. Evaluation Model Based on VIKOR

The evaluation of flood resilience for the multiple cities in this paper is a multi-criteria
decision-making (MCDM) problem, and therefore, the use of MCDM-related methods to
construct a measurement model is the most appropriate. VlseKriterijumska Optimizacija I
Kompromisno Resenje (VIKOR), which is a multi-criteria optimization and compromise
solution method, is one of the MCDM technologies developed for the multi-criteria op-
timization of complex systems with initial weights. Similar to the technique of order
preference similarity to the ideal solution (TOPSIS), VIKOR is also a compromise-sorting
method based on the ideal point, considering the distance between the solution and the
ideal solution. The optimal solution should be closer to the ideal solution and farther
from the negative ideal solution. However, TOPSIS fails to consider the relative importance of
positive and negative ideal solutions in decision-making, and VIKOR makes up for this defi-
ciency by simultaneously considering the maximization of group utility and the minimization of
individual regret in the decision-making process, making the decision-making more reasonable.
Therefore, this paper chooses the VIKOR method to measure urban flood resilience.

In the VIKOR model, Ai (i = 1, 2, . . . , m) represents the cities being evaluated, where
m = 27 in this case. Bj (j = 1, 2, . . . , n) represents the 24 resilience indicators of flood
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resilience, where n = 24. Xij represents the value of each indicator for each city. The specific
calculation steps are as follows:

(1) Standardize the indicators.
Normalize the original data results in a standardized matrix, V (Formula (2)), where vij

represents the standardized value of the i-th measured city on the j-th resilience indicator,
calculated according to Formulas (3) and (4).

V =
(
vij

)
27×25 (2)

For positive indicators, such as N8–N9, N11–N13, and N15–N25,

vij =
xij − min

i

{
xij

}
max

i

{
xij

}
− min

i

{
xij

} (3)

For negative indicators, such as N1–N7, N10, and N14,

vij =
max

i

{
xij

}
− xij

max
i

{
xij

}
− min

i

{
xij

} (4)

(2) Determine the positive ideal solution (X+) and negative ideal solution (X−) for
each indicator corresponding to each sample city.

X+
i =

max
j

Xij (5)

X−
i =

max
j

Xij (6)

(3) Determine the group utility valve, Sj, and individual regret value, Rj, for each city,
where wj represents the weight of the indicator.

Sj = ∑n
i=1 wi

(
X+

i − Xij
)

X+
i − X−

i
(7)

Rj =
max

i
wi

(
X+

i − Xij
)

X+
i − X−

i
(8)

(4) Determine the compromise value, Qj, for each city, where S− = minjSj,
S+ = maxjSj, R− = minjRj, R+ = maxjRj; ν represents the adjustment coefficient be-
tween the group utility value and the individual regret value. When ν is greater than 0.5, it
indicates a greater focus on the group utility value. When ν is less than 0.5, it indicates a
greater focus on individual regret. Typically, ν is set to 0.5.

Qj = ν
Sj − S−

S+ − S− + (1 − ν)
Rj − R−

R+ − R− (9)

(5) Calculate the urban flood resilience (UR). The value of UR is between 0 and 1, and
the larger the value, the greater the urban flood resilience.

UR = 1 − Q (10)

(6) Justify the compromise value. Assuming that cities A(1) and A(2) are first- and
second-rank cities, respectively, the compromise solution, A(1), should satisfy the following
two conditions:
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C1. Acceptable Advantage

UR

(
A(2)

)
− UR

(
A(1)

)
≥ 1/(n − 1) (11)

where n represents the number of indicators.
C2. Acceptable Stability in Decision-Making
S(A(1)) is the minimum value of individual regret, S, and R(A(1)) is the minimum

value of group utility, R.
(7) According to the above conditions, the final solution is determined as follows:
If all conditions are met, then A(1) is the final compromise value, which represents the

city with the highest urban flood resilience.
If only condition C1 is met, then both A(1) and A(2) are the final compromise values,

representing the city with the highest flood resilience.
If only condition C2 is met, then the compromise solution set A(1), A(2), . . . , A(r)

is obtained, where A(r) is determined by UR

(
A(1)

)
− UR

(
A(r)

)
< 1/(n − 1) with the

maximum value of r.

2.6. Measurement Standard of UFR

Urban flood resilience can be classified into five levels, as shown in Table 2, based on
the calculated values of Formula (10) after the compromise solution is verified.

Table 2. Measurement standard of urban flood resilience.

Level of Urban Flood Resilience Value Range of Urban Flood Resilience

Very High Resilience (VH) (0.80 < UR ≤ 1.00)
High Resilience (H) (0.60 < UR ≤ 0.80)

Moderate Resilience (M) (0.40 < UR ≤ 0.60)
Low Resilience(L) (0.20 < UR ≤ 0.40)

Very Low Resilience (VL) (0.00 < UR ≤ 0.20)

With the measurement standard of the UFR and evaluation results from VIKOR, the
ranks of each city can be obtained according to their specific level of UFR. In order the quantify
the fluctuation of the UFR, the ranks of cities can be compared. By comparing the changes in
the rankings of the UFR index between the beginning (2015) and the end (2019), all cities can
be divided into three categories: relatively stable cities (RS, with rankings fluctuating between
0 and 3), cities with moderate fluctuations (MF, rankings fluctuating between 4 and 10), and
cities with significant fluctuations (SF, rankings fluctuating at values over 10).

Furthermore, in order to analyze the changes in UFR over a continuous period of
time, the annual change rates of the resilience indices of each city in the YRD region from
2015 to 2019 are also calculated. Combined with the overall change rate for the period
of 2015–2019, the types of fluctuations in resilience were divided into four categories:
(1) the gradually increasing type, mainly referring to the resilience index of a city gradually
increasing over the study period; (2) the fluctuating increasing type, mainly referring to
an overall upward trend in resilience over the study period, but with some downward
trends in certain periods; (3) the fluctuating decreasing type, mainly referring to an overall
downward trend in resilience over the study period, but with some upward trends in
certain periods; (4) the gradually decreasing type, mainly referring to the resilience index
of a city gradually decreasing over the study period.

2.7. Data Sources

The indicator data of the city’s flood resilience measurement system come mainly
from the following types of information. The statistical description of the indicators can be
found in Table 3.
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Table 3. Statistical description of the flood resilience indicators of the YRD.

Indicators Unit Max Min Average Standard Deviation

C1 mm 2619.80 405.70 1521.90 351.43
C2 mm 328.70 34.80 112.76 49.71
C3 % 0.08 0.00 0.03 0.02
C4 - 0.96 0.09 0.53 0.28
C5 % 35.00 15.09 21.75 3.76
C6 % 19.73 9.86 13.82 2.56
C7 people/m2 3826.00 192.42 821.35 659.04
C8 RMB 174,270.00 28,808.00 88,845.80 35,174.73
C9 % 55.30 16.85 37.71 4.88
C10 % 3.93 0.00 0.65 0.53
C11 km/km2 57.40 6.90 17.62 6.29
C12 % 51.01 37.25 42.31 2.57
C13 m2/people 22.82 1.44 7.56 4.44
C14 - 4 2 3.36 0.50
C15 - 5.00 2.00 2.82 0.68
C16 % 34.05 12.15 21.17 3.60
C17 % 23.34 8.85 14.02 3.29
C18 RMB 10,000 8,635,958.00 26,781.00 1,047,939.28 1,503,934.45
C19 % 117.38 7.41 43.24 29.33
C20 % 69.90 26.98 48.25 9.01
C21 km/km2 0.58 0.12 0.44 0.09
C22 car/10,000 people 20.36 0.95 6.43 4.59
C23 % 339.47 57.23 156.09 68.75
C24 bed/10,000 people 112.99 13.92 52.92 17.79

(1) City yearbooks and bulletins: Statistical indicators (C5–C14 and C19–C23) in the
indicator system are derived from the “China City Statistical Yearbook”, the “Jiangsu Sta-
tistical Yearbook”, the “Zhejiang Statistical Yearbook”, the “Shanghai Statistical Yearbook”,
and statistical bulletins from various provinces and cities from 2015 to 2020.

(2) Meteorological data websites: The rainfall-related indicators (C1, C2, and C3) in
the indicator system are derived from Chinese and provincial meteorological data websites,
such as the Nanjing Meteorological Bureau website.

(3) Geographic data websites: The topographic and geomorphic feature indicators (C4)
and water resource regulation capacity indicators (C22) in the indicator system are derived
from various open-source geographic data websites, such as the Geographic Spatial Data
Cloud website and Google Maps.

(4) Government-related websites: The evaluation indicators (C15 and C16) in the indicator
system are derived from official government websites of various provinces and cities, such as
the Shanghai Municipal People’s Government website (http://www.shanghai.gov.cn/), the
Nanjing Municipal People’s Government website (http://www.nanjing.gov.cn/), the Jiangsu
Provincial Bureau of Statistics website (http://tj.jiangsu.gov.cn/index.html), etc.

3. Results
3.1. Weighting Results

The weight calculation results of the ANP method show that the weight of resilience in
the response dimension (0.4934) is the highest, followed by the state dimension (0.3108), and
the lowest is the pressure dimension (0.1958). Among the pressure dimension indicators,
flood risk (C3) has the highest weight; among the state dimension indicators, the drainage
network condition (C11) has the highest weight; and for the response dimension, water
resource regulation capacity (C21) has the highest weight. Among all indicators, flood risk
(C3), water resource regulation capacity (C21), and emergency management capacity (C15)
are the three indicators with the highest weights. As for the results of the entropy method,
public transportation service capacity (C22), aging degree (C5), and social security capacity
(C19) are the three indicators with the highest weights. By combining the objective and

http://www.shanghai.gov.cn/
http://www.nanjing.gov.cn/
http://tj.jiangsu.gov.cn/index.html
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subjective weighting results, the final weight results of urban flood resilience are shown in
Table 4. Emergency management capacity (C15), urban maintenance and construction capacity
(C18), and social security capacity (C19) are the three indicators with the highest weights.

Table 4. Weight of urban flood resilience indicators.

Indicators Objective
Weight wO

Subjective Weight
wS

Hybrid Weight
wj

Ranks Weight in the
Dimension

Ranks in the
Dimension

C1 0.017 0.020 0.010 21 0.073 4
C2 0.032 0.053 0.049 9 0.364 1
C3 0.012 0.128 0.044 11 0.329 2
C4 0.048 0.023 0.032 16 0.236 3
C5 0.076 0.037 0.081 2 0.246 1
C6 0.034 0.013 0.013 19 0.038 6
C7 0.028 0.043 0.035 14 0.106 4
C8 0.042 0.049 0.060 8 0.183 3
C9 0.012 0.018 0.006 24 0.020 9

C10 0.053 0.005 0.007 23 0.021 8
C11 0.034 0.080 0.079 3 0.242 2
C12 0.025 0.048 0.035 15 0.105 5
C13 0.061 0.007 0.012 20 0.037 7
C14 0.026 0.026 0.020 17 0.037 10
C15 0.023 0.102 0.068 6 0.127 4
C16 0.021 0.059 0.036 13 0.067 9
C17 0.057 0.011 0.018 18 0.033 11
C18 0.067 0.034 0.065 7 0.122 5
C19 0.072 0.044 0.091 1 0.170 1
C20 0.035 0.008 0.009 22 0.016 6
C21 0.024 0.111 0.078 4 0.144 2
C22 0.077 0.016 0.036 12 0.068 8
C23 0.059 0.042 0.072 5 0.133 3
C24 0.065 0.024 0.046 10 0.085 7

3.2. Results of the UFR Evaluation
3.2.1. General Results

According to the classification of the UFR measurement levels in Section 2.6, the flood
resilience index of each city in the YRD region from 2015 to 2019 can be classified into five
categories. After classification, a yearly classification table of the flood resilience level of the
cities in the YRD region can be obtained, as shown in Table 5. From 2015 to 2019, the flood
resilience level of cities in the YRD region significantly improved. Among them, 23 cities had
moderate resilience or above in 2019, accounting for 85.19%, with only 4 cities having low
resilience, and the number of cities with relatively low resilience was 0. This means that, except
for a few cities, the flood resilience levels of most cities in the research area have developed to
a moderate level or above in the past five years, indicating that the flood resilience of cities in
the research area is steadily improving.

The detailed results of the UFR in YRD during the calculation period are shown in
Figure 4. From a regional perspective, the UFR index in the YRD region has shown a
significant upward trend in the past five years. According to calculations, the average UFR
index in the region was 0.4569 in 2015, but it dropped to 0.4243 in 2016, a decrease of about
7.14%. This may be due to heavy rainfall in 2016 [76]. During the summer of 2016, the
entire YRD region was affected by continuous heavy rainfall, causing the mainstream of
the Yangtze River, Dongting Lake, and Poyang Lake to exceed the warning water level,
and many cities in Jiangsu, Anhui, and Zhejiang suffered from severe floods, resulting in
huge losses. Therefore, the UFR index in 2016 showed a significant decrease. After that, the
average UFR index values in the region from 2016 to 2019 were 0.4243, 0.4294, 0.4587, and
0.5539, showing an upward trend year by year. The increases in the UFR index were 1.21%,
6.81%, and 20.77%, respectively, indicating that the UFR in the YRD region is continuously
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improving, and the magnitude of improvement is increasing, but the overall level is still at
a moderate level.

Table 5. Classification of urban flood resilience levels of the cities in YRD.

Measurement Standard
2015 2016 2017 2018 2019

Numbers % Numbers % Numbers % Numbers % Numbers %

Very High Resilience 0 0 0 0 0 0 0 0 3 11.11%
High Resilience 4 14.81% 2 7.41% 1 3.70% 5 18.52% 7 25.93%

Moderate Resilience 12 44.44% 14 51.85% 13 48.15% 9 33.33% 13 48.15%
Low Resilience 11 40.74% 10 37.04% 12 44.44% 13 48.15% 4 14.82%

Very Low Resilience 0 0 1 3.70% 1 3.70% 0 0 0 0
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From a provincial perspective, Jiangsu, Zhejiang, and Anhui have shown the same
development trend as the entire region, and their average urban flood resilience index
has been rising year by year since 2016. In 2019, Jiangsu Province reached an average
flood resilience index of 0.6299, rising from a moderate resilience level to a relatively high
resilience level. Zhejiang and Anhui provinces still maintain a moderate resilience level,
but the increase in the flood resilience index is higher than that of Jiangsu province. In
contrast, Shanghai has shown a completely opposite trend in resilience development. Since
2015, the urban flood resilience index has declined year by year, with values of 0.7508,
0.6225, 0.5543, 0.4462, and 0.4056. The largest decline occurred between 2017 and 2018,
reaching 19.5%. This trend is related to the rapid development of Shanghai: a large number
of people have migrated to the city [77], and construction land continuously occupies green
space, leading to a continuous decline in the urban flood resilience index.

From a municipal perspective, most cities have shown an upward trend in flood
resilience over the years, as shown in Figure 5. Suzhou, Wuxi, and Changzhou, which are
close in geography and have similar development situations, have shown a more consistent
upward trend and reached a relatively high level of flood resilience in 2019. Among them,
Suzhou has the most obvious upward trend and is at the relatively highest level among all
the cities. Some cities, such as Nanjing, Nantong, Hangzhou, Ningbo, Huzhou, Shaoxing,
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Jinhua, and Hefei, have gradually improved from a moderate resilience level to a high
resilience level over the past five years. Except for Shanghai and Yancheng, the flood
resilience index of other cities has increased to varying degrees. The fluctuation curves of
urban flood resilience over the past five years show that there are differences in the level of
urban flood resilience between cities in the Yangtze River Delta region, and the magnitude
of fluctuations is also different.
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3.2.2. Trends and Fluctuation Results

Based on the fluctuation classification defined in Section 2.6, it is found that, between
2015 and 2019, there were 15 relatively stable cities in terms of flood resilience, 10 cities
with moderate fluctuations, and 2 cities with significant fluctuations as shown in Table 6.
At the provincial level, cities in Anhui province showed more stable fluctuations in flood
resilience compared with those in Jiangsu, Zhejiang, and Shanghai. At the city level, the
rankings of 17 cities showed positive development (making up 62.96% of the total), while
the remaining 10 cities showed varying degrees of decline in flood resilience rankings.
Among them, Shanghai and Hangzhou had the most significant fluctuations, with Shanghai
falling 21 places in 5 years, while Hangzhou rose 11 places. This result is related to the
economic, social, and natural development characteristics of the two cities’ urban systems.

Table 6. Changes in ranks of urban flood resilience indexes in Yangtze River Delta cities.

YRD Cities Rank in 2015 Rank in 2016 Rank in 2017 Rank in 2018 Rank in 2019 Changes of Rank

Shanghai 1 2 4 13 22 −21 (SF)
Nanjing 8 9 9 8 11 −3 (RS)

Wuxi 10 5 5 5 3 7 (MF)
Changzhou 2 3 1 1 2 0 (RS)

Suzhou 3 1 2 2 1 2 (RS)
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Table 6. Cont.

YRD Cities Rank in 2015 Rank in 2016 Rank in 2017 Rank in 2018 Rank in 2019 Changes of Rank

Nantong 11 11 7 3 9 2 (RS)
Yancheng 20 20 15 23 26 −6 (MF)
Yangzhou 17 15 17 15 14 3 (RS)
Zhenjiang 6 7 12 14 16 −10 (MF)
Taizhou, JS 21 23 22 18 20 1 (RS)
Hangzhou 15 16 13 4 4 11 (SF)

Ningbo 7 6 6 9 10 −3 (RS)
Wenzhou 16 19 16 19 21 −5 (MF)

Jiaxing 19 22 23 26 12 7 (MF)
Chaozhou 4 4 3 6 6 −2 (RS)
Shaoxing 9 12 10 7 7 2 (RS)

Jinhua 5 10 8 10 5 0 (RS)
Zhoushan 26 27 27 27 27 −1 (RS)

Taizhou, ZJ 14 13 14 11 13 1 (RS)
Hefei 12 8 11 12 8 4 (MF)
Wuhu 18 18 20 16 15 3 (RS)

Ma’anshan 22 17 19 17 17 5 (MF)
Tongling 13 14 18 21 18 −5 (MF)
Anqing 24 26 26 20 25 −1 (RS)

Chuzhou 23 21 21 22 19 4 (MF)
Chizhou 27 25 25 25 23 4 (MF)

Xuancheng 25 24 24 24 24 1 (RS)

Based on the change rate classifications, a chart depicting the changes in urban resilience
levels in the YRD from 2015 to 2019 was created, as shown in Figure 6. The resilience levels
of cities in the region have all undergone varying degrees of change between 2015 and
2019. Among them, there was only one city with a gradually increasing type, Wuxi, which
benefited from relatively low flood risk, as well as the development of the economy and green
infrastructure, resulting in a gradual increase in resilience over the years. There was also
only one city with a gradually decreasing type, Shanghai, which was mainly due to the rapid
urbanization and population growth, resulting in a decrease in ecological carrying capacity
and weakened resistance to floods, leading to a significant decline in urban resilience. In total,
22 cities had a fluctuating increasing type, accounting for 81.48%, indicating that most cities
have balanced the development of urbanization and flood disaster responses in recent years,
and the resistance and disaster response capabilities of cities have continuously improved,
resulting in an overall upward trend in urban resilience. The remaining three cities had a
fluctuating decreasing type, accounting for 11.11%, i.e., Yancheng, Zhenjiang, and Wenzhou.
These cities were closely connected to the fluctuating increasing type, as they were in a stage
of rapid development, but their development and response to flood disasters were still in a
process of adjustment, resulting in a significant fluctuation and decline in urban resilience.

As for each dimension, the changing trends can also be grouped into four categories.
As shown in Figure 7, the evolution trend of UFR is influenced by changes in various
dimensions. The gradually increasing type is primarily influenced by the rise of the
resilience in the state and response dimensions; the fluctuating increasing type is mainly
affected by the fluctuation and rise in pressure and response dimensions, as well as the ups
and downs in the state dimension; the fluctuating decreasing type is mainly affected by
the wavelike decline in the state dimension; and the gradually decreasing type is mainly
affected by the gradual decrease in the state dimension. In terms of the pressure dimension,
the number of cities with gradually increasing and fluctuating upward types is relatively
high. All cities exhibit an upward trend in the response dimension, but the state dimension
shows a polarization tendency, with nearly equal proportions of cities displaying upward
and negative trends. Therefore, the improvement of flood resilience in most cities is due to
the improvement of resilience in the pressure and response dimensions, while resilience in
the state dimension remains the main obstacle to the improvement of UFR.
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4. Discussion and Implications
4.1. Sensitivity Analysis for UFR

As mentioned in Section 2.4, the adjustment coefficient, ν, between group utility
and individual regret is generally set to 0.5, which means that there is no difference
between group utility and individual regret and that the decision mechanism has reached
a consensus. When ν > 0.5, the decision mechanism considers maximizing group utility
(S); when ν < 0.5, the decision mechanism considers minimizing individual regret (R). If
ν = 0, only R reflects the compromise value (Q), which reflects the urban flooding resilience
index UR. If ν = 1, only S reflects the urban flood resilience index UR. Therefore, through
sensitivity analysis and considering different ν values, different UFR results and their
changes in the YRD region can be obtained. When ν = 0, individual regret (R) reflects the
final compromise value (Q), which, in turn, reflects the level of UFR in each city. The larger
the R value, the worse the corresponding indicator of the city’s flood resilience. Therefore,
by comparing the R values corresponding to ν = 0, the resilience evaluation indicators that
need to be improved in each city can be identified, and then, the strategies for improving
the resilience of each city can be guided.

As shown in Figure 8, the different colors in the graph correspond to different values of
ν (considering a comparison interval of 0.1), and each ν value corresponds to a city’s flood
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resilience index UR. The results show that the urban flood resilience indexes of Suzhou,
Jiaxing, and Hefei remain basically unchanged or changed very little (the change in the
UR value with the ν value is within 0.05), indicating that these cities have the highest
robustness. Among these cities, Suzhou has a relatively high level of urban flood resilience,
Jiaxing has a medium level, and Hefei has a high level, indicating that the relative changes
in their flood resilience are basically stable compared with other cities. In addition, Wuxi,
Huzhou, and Shaoxing also exhibit good robustness (the change in the UR value with the ν

value is within 0.1), and their urban flood resilience levels are not greatly affected by the ν

value. The results show that the flood resilience levels of these cities have both the greatest
group utility and the least individual regret, and the measurement results are relatively stable.
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On the other hand, with the change in the ν value, the flood resilience index of
other cities shows different trends, indicating that the results are affected by the group
utility and individual regret of decision-makers. The urban flood resilience indexes of
Shanghai, Nanjing, Yangzhou, Ningbo, Wenzhou, Huzhou, and Zhoushan increase with
the increase in the ν value. This means that when decision-makers focus on maximizing
group utility, the flood resilience index of these cities will increase; that is, in consideration
of the overall YRD region, the flood resilience of these cities is relatively high. When the
ν value decreases, the flood resilience indexes of other cities increase. Therefore, when
decision-makers consider minimizing individual regret, these cities will show better urban
flood resilience.

When the ν value is zero, the individual regret (R) reflects the compromise value (Q)
and then reflects the flood resilience level of each city. Therefore, the city flood resilience
index that needs to be improved can be clarified by comparing the R values corresponding
to ν = 0. The largest individual regret value represents the worst value for each index, which
urgently needs improvement in the corresponding city. For example, Shanghai performs
the worst in the aging level (C5) and population exposure (C7) indicators. The aging level
in Shanghai reached 35% in 2019, and the population density was 3823 people/square
kilometer, both of which were the highest among 27 cities [78]. Improving these two aspects
is essential for enhancing Shanghai’s urban flood resilience.
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Therefore, by analyzing the individual regret values of each city’s corresponding
indicators, the city flood resilience indicators that need to be improved urgently can be
summarized as shown in Table 7. Each city can develop corresponding strategies and
measures for improving urban flood resilience based on the indicators that need to be
improved. Among them, some cities need to focus on improving certain indicators, such as
Nanjing and Changzhou, which are lacking in flood warning capabilities, and Yangzhou,
which needs to further improve its emergency management capabilities. Some cities need
to improve multiple indicators, such as Anqing, which needs to improve its regional
economy, urban roads, social security capabilities, communication capabilities, and medical
assistance capabilities; vigorously develop the economy and infrastructure construction;
and enhance its ability to resist and respond to flood disasters.

Table 7. Urban flood resilience indicators that urgently need to be improved by cities in YRD.

Indicators That Need to
Be Improved Cities Indicators That Need to Be Improved Cities

C1: Climate change Wenzhou C13: Urban road conditions
Yancheng, Wenzhou,

Jiaxing, Jinhua, Tongling,
Anqing, Xuancheng

C2: Heavy short-term rainfall Chizhou C14: Flood disaster early warning ability Nanjing, Changzhou
C3: Flood risk Yancheng C15: Emergency management ability Yangzhou

C4: Topographic features Chizhou C16: Knowledge learning ability Zhoushan
C5: Aging degree Shanghai C17: Public reaction ability Taizhou, Xuancheng

C6: Children percentage Wenzhou C1: Urban maintenance and
construction budget Tongling, Chizhou

C7: Population exposure to floods Shanghai C19: Flood insurance Anqing, Chizhou
C8: Regional economic status Anqing C20: Economic diversity Chuzhou

C9: Residents’ economic status Ma’anshan C21: Water and power supply Zhoushan

C10: Employment status Hefei C22: Public transportation service capacity Anqing, Chuzhou,
Chizhou, Xuancheng

C11: Drainage network Yancheng C23: Communication capacity Anqing
C12: Green coverage Jiaxing C24: Medical aid capacity Anqing, Chuzhou

4.2. Implications for Flood Resilience Improvement
4.2.1. Implications for the YRD Region

According to the UFR evaluation results, the overall UFR of the region is at a moderate
level and shows an upward trend, but it is significantly affected by rainfall, and resilience
in the pressure dimension fluctuates greatly, requiring long-term dynamic monitoring and
calculation. The YRD region is densely covered with rivers, with a developed water sys-
tem [38]. Under extreme rainfall scenarios, besides the Yangtze River, there is a possibility
of flooding from tributary lakes and rivers such as Tai Lake, West Lake, Chao Lake, the
Huangpu River, and the Qinhuai River [79]. In order to improve the UFR and promote
the coordinated development of resilience in the pressure, state, and response dimensions,
an overall regional flood map is suggested to be put forward. Developed cities in the
world have all come up with their own flood maps, such as the New York Flood Map
and the London Thames CFMP Plan [80,81]. These maps, including regional flood risk
maps, flood risk diagnosis, and resilience enhancement paths, can be used as a guide [82],
which helps to clarify existing and potential problems, deepen the overall understanding
of regional flood disasters, guide future planning, and promote the implementation of
relevant policies.

Furthermore, considering the current lack of resilience-related content in the policies
of the YRD region [83], there is a need to increase the priority of climate change adaptation
in urban governance. Although current regional planning has focused on environmental,
education, medical, and technological issues, compared with controlling greenhouse gas
emissions and building smart cities [34], climate change adaptation and resilience improve-
ment have not received sufficient attention in the governance of the YRD. The region is
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mainly a subtropical monsoon climate and faces severe climate change in the future [17].
Therefore, climate change adaptation should be included in regional development planning
to improve the region’s ability to respond to climate change, flood catastrophes, and other
associated challenges through a top-down approach. We suggest strengthening the role of
resilience in urban planning and governance and developing a detailed regional climate
action plan to enhance UFR.

4.2.2. Implications for the Provinces

In addition to implementing the overall regional strategy discussed above, the “Three
Provinces and One Municipality” in the YRD should develop overall improvement strategies
tailored to the specific situations of their respective UFR level in accordance with the internal
needs of each province for improving flood resilience in conjunction with current policies.

As for the municipality Shanghai, although it is the leading city in the economy of
the YRD region, its UFR is relatively moderate within the region. The overall resilience in
the state dimension shows a trend of decline, which should be the focus of its resilience
strategy. Because Shanghai has the highest aging population level in the YRD and is the
only megacity in the region, its population exposure level is relatively high and urgently
needs to improve its social resilience. The “Shanghai City Master Plan (2017–2035)” also
pointed out the need to strictly control the city’s permanent population and control the
population size. Compared with other provinces in the YRD, Shanghai is relatively less
affected by floods, but the increasing population may lead to more problems, such as land,
transportation, water use, energy consumption shortages, etc. [27]. Shanghai currently
includes resilient city development in its overall work deployment and has proposed
building a “more sustainable and resilient ecological city” [84,85]. Under the supervision of
regional resilience strategies, this must play to its strengths while avoiding vulnerabilities
in order to take a leading role in the YRD region.

As for the other three provinces, Jiangsu province is currently at a relatively high level
of resilience. The flood resilience of the three cities in Suzhou, Wuxi, and Changzhou is at a
relatively high level, exerting a positive radiating effect on surrounding cities. Therefore,
Jiangsu province should, based on its current level of urban development, incorporate the
resilience concept into its new “strong, rich, beautiful, and high” blueprint, guided by the
aforementioned flood resilience strategy in the YRD region. To address flood disasters,
provincial flood resilience policies and strategies should be developed while also steadily
pushing urban resilience construction; balancing social, economic, and environmental
growth; and building a resilient Jiangsu to deal with future climate change.

The UFR in Zhejiang province is at a relatively moderate level within the YRD region,
but the development of resilience within the province is not well coordinated. There
are significant differences in the pressure, status, and response dimensions between the
southern and northern parts of Zhejiang, which echoes the rapid regional disparity within
the province since the reform and opening up of China [86]. Additionally, according
to the assessment of resilience in the pressure dimension and the data from water and
drought disaster reports in previous years, the coastal areas of Zhejiang Province have
also been greatly affected by floods and waterlogging. To close the gap between cities
within the province, Zhejiang province is encouraged to engage in top-level design and
incorporate flood resilience building into regional coordinated development based on the
aforementioned regional strategy.

Compared with other provinces in the YRD region, the UFR of Anhui province is
at a relatively low level, with both low resilience in the state and response dimensions.
Cities such as Anqing, Chizhou, and Tongling have long been in the low cluster of flood
resilience, and most cities in the province face the most severe flood risk. Furthermore,
Anhui is also the largest flood discharge area in the YRD [40]. Therefore, improving
urban flood resilience in Anhui province is of the highest urgency and priority, and it
is necessary to comprehensively enhance flood resilience at the overall level and then
address specific issues through targeted strategies. Possible strategies and measures can be
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considered, including advancing the comprehensive flood management mode of human–
water harmony, managing middle and small rivers, and strengthening key basic research
on flood control and disaster reduction [87,88].

4.2.3. Implications for the Cities

Each city in the YRD region has unique natural and geographical environments and
social histories, which require specific analysis for the improvement of UFR. Therefore,
under the premise of following regional and provincial development requirements and
strategies, the corresponding enhancement strategies should be tailored to each city’s
specific circumstances. Each city should carefully assess its unique development character-
istics and current level of UFR, utilizing benchmarking to identify areas for improvement.
Subsequently, cities should propose corresponding measures aligned with the policies and
requirements of YRD integration, aiming to enhance their urban flood resilience.. Detailed
suggestions can be found in Table 8.

Table 8. Improvement strategies for each city in the YRD.

Cities Priority Strategy Cities Priority Strategy Cities Priority Strategy

Shanghai

Control aging and
population density

growth, improve social
resilience in the
state dimension

Taizhou

Enhance disaster early
warning capability;

strengthen knowledge
learning and emergency

management abilities

Taizhou
Control population,

improve emergency and
early warning capabilities

Nanjing Strengthen municipal
infrastructure resilience Hangzhou

Control aging, balance
residents’ employment

and income
Hefei Develop urban economy

Wuxi

Comprehensively
improve natural,

economic, and social
resilience in the

response dimension

Ningbo
Strengthen urban

infrastructure
construction

Wuhu
Improve emergency, early

warning and
learning capabilities

Changzhou Improve infrastructure
resilience Wenzhou Strengthen flood control

and reduce flood risk Ma’anshan
Develop urban economy

and improve
residents’ income

Suzhou
Control aging and
strengthen urban

municipal
infrastructural resilience

Jiaxing

Protect the ecological
environment, pay

attention to the
disaster-prone

environment, reconsider
urban planning

Tongling

Consider the flood risk
map in urban planning,

develop the
urban economy

Nantong Huzhou

Improve the disaster
early warning and

emergency
response capabilities

Anqing

Yancheng

Control air pollution and
strengthen urban

municipal
infrastructural resilience

Shaoxing Control the
population density Chuzhou

Yangzhou

Enhance disaster early
warning capability;

strengthen knowledge
learning and emergency

management abilities

Jinhua Reconsider the
urban planning Chizhou

Zhenjiang

Control aging and
population density
growth, strengthen

infrastructural resilience

Zhoushan
Improve the learning and
recovery abilities related

to disasters
Xuancheng

Improve infrastructure
resilience and improve

emergency, early
warning, and

learning abilities

Furthermore, considering the national development plan, the high-resilience cities in
the YRD region are encouraged to strengthen their radiating effect on their surrounding
neighboring cities and drive the relevant metropolitan areas to improve their flood resilience.
Cities with a moderate level of resilience should plan ahead of time and learn from the
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experiences of advanced cities. Because moderate-resilience cities account for a relatively large
proportion, these cities can be prioritized in regional planning. Low-resilience cities should
begin with their current condition, do a good job of responding to flood disasters, make up
for inadequacies, and then examine overall flood resilience improvement.

5. Conclusions

This paper proposed a conceptual framework for urban flood resilience evaluation,
combining the PSR model and SENCE theory. The indicators measure natural, economic,
and social resilience from the pressure, state, and response dimensions in the stages of
the flood disaster cycle. The proposed evaluation framework was applied to 27 cities
in the YRD region. The results showed a notable upward trend of UFR for the region
throughout the period. Jiangsu, Zhejiang, and Anhui provinces have shown the same
gradual development trend, while Shanghai showed a totally different trend. The cities
were grouped into different categories according to their changing resilience trends. In
total, 81.41% of cities showed a fluctuating increasing trend in urban flood resilience during
the period, while only Shanghai showed a gradually decreasing trend.

The relative evaluation method VIKOR was employed in this paper to assess the
balance among all the cities as well as within individual cities, making the results more
rational and compelling. The sensitivity analysis revealed that Suzhou, Jiaxing, and Hefei
have the highest robustness, as their UFR scores are almost unchanged or vary very
little. When considering the individual regret value, it is also useful to show which
indications in each city need to be improved immediately. Following the entire process,
the regional, provincial, and city-level implications can be easily provided, along with
suggested guidelines for further flood resilience improvement. Cities may establish more
effective flood resilience plans and build sustainable and adaptive urban landscapes by
using an integrated strategy that addresses social, economic, and natural aspects.

The proposed methodology and evaluation procedure are simple to implement and
useful for measuring flood resilience standards; identifying flaws; and providing improve-
ments at the regional, provincial, and city levels. They clearly demonstrate the shifting
trends, strengths, and weaknesses of each city, allowing for the development of specific
measurements for each city within the context of the entire ecosystem. They can also be
applied to international regions or cities to investigate UFR trends, identify gaps, and
recommend flood prevention and resilience enhancement methods. UFR under pandemic
situations can be considered in future works.
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