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Abstract: Climate plays a significant role in shaping ecosystem-level carbon sinks. Research on
the mechanisms of climate impacts on carbon sinks can contribute to the achievement of carbon
neutrality. Investigating the mechanisms by which climate impact on carbon sinks in ecological
spaces in the Beijing–Tianjin–Hebei region, one of the most important urban clusters in China, is of
great significance. This study employed spatial autocorrelation and econometric models to explore
how various climatic factors impact net primary productivity (which is used to represent carbon sink
capacity) on a spatial scale. We found an increasing trend in NPP across the Beijing–Tianjin–Hebei
urban agglomeration from 2000 to 2020, with marked spatial clustering. Climatic factors exhibited
the best fit with the spatial Durbin model, except for average annual precipitation. The remaining
factors had significant effects on NPP, showing spatial spillover effects. Results also showed that the
average annual temperature, evaporation, and relative humidity had positive impacts on NPP at a
local scale but adverse effects at a regional scale. Average annual sunshine duration and the ground
temperature had negative effects on NPP locally but promoted effects regionally. Furthermore, the
average annual wind speed negatively impacted both local- and regional-scale NPP. This research
provides insights into how climate affects carbon sinks on a small spatial scale, offering important
references for making policy decisions and improving the accuracy of carbon cycling simulations.

Keywords: climate; carbon sinks; spatial effects; Beijing–Tianjin–Hebei urban agglomeration;
econometric models

1. Introduction

The dual carbon strategy is gaining significant attention as a key approach to global
climate governance, aiming to protect the environment and promote a shared future for all
humanity [1]. For instance, in 2020, China pledged to reach peak carbon emissions by 2030
and to achieve carbon neutrality by 2060 [2]. Therefore, strengthening regional resilience to
climate uncertainties and threats is the key to addressing climate change and sustainable
regional development [3]. Enhancing carbon sinks is an important way to mitigate and
adapt to climate change and achieve the goal of the dual carbon strategy [4]. The concept of
the “three zones” [5] emphasizes the sustainable development and conservation of regional
ecosystems through ecological spaces such as grasslands, forests, and wetlands [6], which
are important areas for carbon sinks. Therefore, eco-spatial carbon sinks are an important
target for our attention [7]. Net Primary Productivity (NPP), or the production of plant
biomass, is equal to all of the carbon taken up by the vegetation through photosynthesis
(called Gross Primary Production or GPP) minus the energy lost to respiration. NPP = GPP
− respiration, which is used to represent carbon sink capacity.

Studies have shown that socio-economic factors (e.g., economic development and pop-
ulation size) [8], natural factors (e.g., CO2 concentration in the atmosphere, forest structure
and density [9,10], and plant-available nitrogen [11]), and anthropogenic disturbances (e.g.,
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land use changes) are crucial in determining carbon sinks [12]. Additionally, climate can
directly affect carbon sinks at various scales, making it a significant factor in driving carbon
sinks [13]. However, research exploring the relationship between climate and carbon sinks
tends to focus on a macroscale, such as a global scale, where a temperature rise is often
linked to a decrease in NEP (Net Ecosystem Productivity) [14]. However, the temperature
fluctuates widely across ecosystems at different scales, with different impacts on carbon
sinks. For example, temperature fluctuations have been shown to adversely affect carbon
sinks in high-altitude ecosystems [15]. At the same time, water availability is highly sen-
sitive to interannual carbon balance in semi-arid and subtropical ecosystems [16]. These
findings highlight the variable relationships between climatic factors and carbon sinks
across the ecosystems [17]. However, more research is needed to explore relationships
between climate, particularly local and regional, and carbon sinks [18].

Terrestrial ecosystems in China experience a small interannual variability in carbon
balance [19]. However, different regions experience varying sensitivity to precipitation and
temperature and carbon sink response to climate change [20]. Despite the high variability
in precipitation and temperature across the ecosystems, the available literature suggests
that only these two macroscale variables have been used to assess climate impact on carbon
sinks [21]. More importantly, the role of local-scale climatic variables, such as wind speed,
sunshine duration, relative humidity, and evaporation, in determining the ecosystem’s
carbon sink is often overlooked [22].

In recent years, as urban agglomerations have demonstrated the advantages of syner-
gistic development and governance in environmental management globally, more carbon-
sink-related studies have been conducted at the regional scale [23]. Studies have mainly
adopted methods such as trend analysis, superposition analysis, and correlation coeffi-
cients, mostly focusing on the perspective of dynamic change analysis of driving factors,
with more emphasis on time series analysis but less research on the correlation aspect of
static spatial differentiation [24,25]. The spatial Durbin model can quantitatively detect
the explanatory power of climate factors on NPP and spatial interaction, which can better
address the limitations in the above studies [26].

The Beijing–Tianjin–Hebei (in the following, the Beijing–Tianjin–Hebei is abbreviated
as B-T-H) urban agglomeration is a strategic urban region driving rapid socio-economic
development in China [27]. In 2020, the region’s energy consumption reached 480 million
tons of standard coal, accounting for 9.6% of the national total energy consumption in
China [28]. Increased energy consumption also enhances carbon emissions [29]. To mitigate
carbon emissions, the “Outline of the B-T-H Coordinated Development Plan” [30] high-
lights the need for carbon sink enhancement measures, and the region should lead the way
in coordinated development and reform, drive innovation-driven economic growth nation-
wide, and serve as a demonstration zone for ecological restoration [31]. Given the sound
basis of synergistic development in the B-T-H region, it is an important pilot demonstration
site to explore the mechanisms of climate impacts on carbon sinks [32].

In view of the prior studies, this paper drew on existing research, selected seven
climate and phenological factors, and used spatial econometric models to complement
the mechanisms of climate influence on carbon sinks in ecological spaces in the B-T-H
urban agglomeration region [33]. Using 20-year data, this paper aimed for the following:
(1) to investigate the spatial and temporal patterns of carbon sinks in ecological spaces
in the B-T-H region; (2) to understand the mechanisms by which climate factors drive
carbon sinks at small scales using spatial econometric models; (3) to estimate the spatial
spillover effects of carbon sinks using a spatial Durbin model parameterization; and (4) to
decompose the spatial spillover effects of climate drivers and explore the mechanism of
action for the region and neighboring regions. The target of the study is to provide more
scientific guidance for increasing the development of carbon sink policies in the B-T-H
region and to increase the accuracy of local- and regional-scale carbon cycle simulations.
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2. Materials and Methods
2.1. Study Area

The B-T-H urban agglomeration is located in Northern China and consists of two
municipalities (Beijing and Tianjin) and 11 prefecture-level cities (Figure 1). The region
experiences a temperate continental monsoon climate characterized by hot and humid
summers and cold and dry winters [34]. The average annual temperature ranges from
11.5 to 12.5 ◦C, and the annual precipitation ranges from 531 to 644 mm. The ecological
space across the B-T-H region comprised three important ecological functional areas: the
water conservation area in the northern B-T-H region, the water conservation and soil
conservation area in the Taihang Mountain area, and the wind and sand fixation area in the
Hunshandake Sandy Land [35]. According to the third national land and space survey, the
region occupied 218,000 square kilometers, with cultivated land covering 64,572.8 square
Km and construction land covering 27,488.1 square Km. More than 44% of the total area was
covered by ecological space, providing vast prospects for green economic development.
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Figure 1. Location map of the study area showing the B-T-H region.

2.2. Variable Selection and Data Sources
2.2.1. Variable Selection

The impact of climate on carbon sinks in the B-T-H ecological space was studied from
2000 to 2020 at 10-year intervals by measuring NPP. NPP is the rate plants absorb carbon
dioxide from the atmosphere and convert it into carbohydrates through photosynthesis.
As the rate of net plant biomass grows, NPP can be considered as the net carbon uptake
by an ecosystem. Therefore, higher NPP values generally indicate a stronger carbon sink
capacity of an ecosystem [36].

Seven climate-related variables, average temperature (Tem), annual precipitation (Pre),
annual evaporation (Evp), annual average wind speed (Win), annual sunshine duration
(Ssd), annual average relative humidity (Rhu), and annual ground temperature (Gst),
were selected as explanatory variables. Considering the spatial autocorrelation and data
processability, the predictor and response variables were acquired by dividing the study
region into grids (20 km × 20 km), obtaining 508 raster cells. We divided the region into
grids to accurately and completely represent the unevenly distributed ecological spaces
at the county level and align with the coordinated implementation of the developmental
plan of the B-T-H region. The grids were then identified to establish a geographical weight
matrix.
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2.2.2. Data Sources

NPP data were obtained from the Resource and Environment Science and Data Center
(https://www.resdc.cn/) (accessed on 1 May 2023). NPP was calculated using the light
energy utilization model, the GLO_PEM (Global Primary Energy Model).

Climate data were acquired on the annual spatially interpolated dataset of meteorologi-
cal elements from the Resource and Environment Science and Data Center
(https://www.resdc.cn/DOI/DOI.aspx?DOIID=96) (accessed on 1 May 2023). Land use
data were obtained from Wuhan University with a 30-meter resolution. Socio-economic
data were sourced from the “Beijing Statistical Yearbook (beijing.gov.cn)” (accessed on 1
May 2023), “Tianjin Statistical Yearbook (tianjin.gov.cn)” (accessed on 1 May 2023), and
“Hebei Statistical Yearbook (hebei.gov.cn)” (accessed on 1 June 2023). Statistical and com-
putational analyses were conducted using ArcGIS 10.8 and Stata. The spatial weight matrix
was performed using Geoda software (http://geodacenter.github.io/) (accessed on 1 May
2023).

2.2.3. Statistical Methods

We explored the spatial attributes of carbon sinks across ecological spaces in the B-
T-H agglomeration using the most common spatial analyses, the Global Moran’s I, Local
Moran’s I, and the spatial econometric model.

1. Moran’s I

(1) Global Moran’s I

Empirical evidence suggests that climate factors exhibit both spatial dependence and
heterogeneity. Therefore, global Moran’s I was employed to examine the spatial attributes of
carbon sinks across ecological spaces. Global Moran’s I is the most widely used measure of
spatial autocorrelation in ecological and environmental studies, which assesses the degree
of clustering among geographic features. Moran’s I calculates spatial autocorrelation by
comparing the correlation between the attribute values of each geographic unit and those
of its neighboring units. Moran’s I was calculated as follows:

Moran′s I =
N
s0

∑N
i=1 ∑N

j=1 ωij(yi − y)(yi − y)

∑N
i (yi − y)2

In Moran’s I, s0 was calculated as follows:

s0 =
N

∑
i=1

N

∑
j=1

ωij

Moran’s I statistics range from −1 to 1, where positive values indicate positive spa-
tial autocorrelation or clustering (i.e., neighboring units are similar), suggesting spatial
dependency. In contrast, negative values indicate negative spatial autocorrelation or spatial
dispersion (i.e., neighboring values are dissimilar), suggesting inverse spatial dependency.
An autocorrelation value of 0 implies a random distribution in space.

(2) Local Moran’s I

The local Moran’s I is a local autocorrelation statistic based on global Moran’s I and
provides the contribution of each spatial unit’s observation. The local Moran’s I statistic
was calculated as follows:

Local Moran′s I =
yi − y

S2
i

N

∑
j=1,j 6=1

ωij(yi − y)

https://www.resdc.cn/
https://www.resdc.cn/DOI/DOI.aspx?DOIID=96
beijing.gov.cn
tianjin.gov.cn
hebei.gov.cn
http://geodacenter.github.io/
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where S2
i is defined as follows:

s2
i =

∑N
j=1,j 6=1 ωij

N − 1
− y2

where N represents the number of spatial grids (observations), s0 represents the sum of
all elements in the spatial weight matrix, yi represents the observed value of variable y in
spatial unit I, and ωij represents the element in the spatial weight matrix.

2. Spatial econometrics models

(1) The Ordinary Least Squares (OLS) model

The OLS is a statistical method used to estimate the relationship between a dependent
variable and one or more independent variables. It is widely used in regression analysis.
The OLS models aim to minimize the sum of squared differences between observed and
predicted values. The formula for the OLS model can be presented as

Y = β0 + β1X1 + β2X2 + . . . + βnXn + ε

where Y is the dependent variable; X1, X2, . . ., Xn are the independent variables; β0, β1,
β2, . . ., βn are the coefficients representing the relationship between the dependent and
independent variables; and ε is the error term representing the unexplained variation in
the dependent variable.

(2) Spatial weight matrix:

A spatial weight matrix [508, 508] was constructed using the First Law of Geography,
which states that the relationship between geographic regions weakened as the geographic
distance increased. The Geoda software was used to construct a binary spatial weight ma-
trix, which was then converted to a standardized spatial weight matrix with 508 × 508 grids
using Stata. The equation for spatial econometrics modeling is as follows:

w =


w11w12 · · ·w1n
w21w22 · · ·w2n

...
...

...
wn1wn2 · · ·wnn


Spatial econometric models are statistical models used to analyze spatial correlation

and dependence. They extend traditional econometric models by incorporating spatial
factors to capture the mutual influence and dependency between neighboring areas in
geographic space. Specifically, spatial econometric models introduce a spatial weight
matrix, which measures spatial correlation and spatial adjacency among different areas,
reflecting the degree of interconnectivity in geographic space. The matrix includes endoge-
nous interaction (WY) and exogenous interaction (WX). The most commonly used spatial
econometric models include the Spatial Lag Models (SLM) and Spatial Error Models (SEM).

The Spatial Durbin Model (SDM) simultaneously incorporates WY and WX interaction
effects and is expressed as follows:

Y = ρWY + Xβ + WXθ + ε, ε ∼ N
(

0, δ2
)

where Y represents the dependent variable, W is the spatial weight matrix used to capture
the spatial correlation between the sample units, X is a matrix of independent variables,
β is a coefficient vector of the independent variables, θ is a coefficient for the exogenous
interaction effect, WX is a matrix of spatially lagged independent variables, and ε is an
error term. Assuming that ε follows a multivariate normal distribution, with zero mean
and a constant scalar diagonal variance–covariance matrix, δ2. When θ = 0, it corresponds
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to the SLM. When θ = −ρβ, it corresponds to the SEM. When the error term of the model
exhibits spatial correlation, it is known as the SLM and expressed as follows:

Y = ρWY + Xβ + ε, ε ∼ N
(

0, δ2
)

When the spatial dependency among the dependent variables leads to spatial correla-
tion in the model, it is referred to as the Spatial Error Model, also known as the SEM, and is
expressed as follows:

Y = Xβ + λWu + ε, ε ∼ N
(

0, δ2
)

where u is the random error vector, and λ is the spatial correlation coefficient among the
regression residuals.

3. Results
3.1. Spatial and Temporal Variability of Ecological Spatial Carbon Sinks in B-T-H Region

The study first calculated trends in NPP for 2000, 2010, and 2020 (Figure 2). From
2000 to 2020, the total NPP in the ecological spaces across urban agglomeration initially
showed an increasing trend. The total NPP was 131,264 gC in 2000 and 155,274 gC in
2010, while it was 195,821 gC in 2020. Combining NPP distribution and spatial distribution
pattern with B-T-H topography (Figure 3a) and B-T-H ecosystem support area planning
(Figure 3b), NPP was lower in northwest regions but higher in the north and west regions.
Correspondingly, the NPP value of the northwestern dam steppe in which the Bashang
Plateau Ecological Protection Zone in the B-T-H region is located is relatively low, while
the NPP of the Yanshan-Taipei Mountains Ecological Protection Zone is high [37].
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Before applying spatial econometric models, we used global and local Moran’s I statis-
tics to analyze the spatial autocorrelation of NPP in ecological spaces. The Moran’s I values
were 0.555, 0.335, and 0.798, respectively, for 2000, 2010, and 2020, and the corresponding
z-values were 22.276, 13.884, and 32.124 (Table 1). The Moran’s I values remained positive
throughout the observation period, indicating that the spatial distribution of NPP exhibited
either a high–high (H-H) or low–low (L-L) pattern with significant spatial autocorrelation.
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Table 1. Global Moran’s index for eco-spatial NPP in the Beijing–Tianjin–Hebei region.

Variables I E(I) sd(I) z p-Value

NPP2000 0.555 −0.002 0.025 22.276 0.000
NPP_2010 0.335 −0.002 0.024 13.884 0.000
NPP2020 0.798 −0.002 0.025 32.124 0.000

The Moran scatter plots for the years 2000, 2010, and 2020 also showed that NPP
exhibited high–high (H–H) or low–low (L–L) spatial distribution patterns. The spatial
autocorrelation in NPP observed from Moran’s I suggested a need for further analysis
using spatial econometric models (Figure 4).
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3.2. Estimation of Spatial Measurement Models
3.2.1. Ordinary Least Squares Regression and Selection Tests for Spatial Models

Ordinary Least Squares regression analysis was employed to relate average annual
NPP with various climatic factors. The R-squared value (>0.5) indicated a relatively good fit
of the models (Table 2). As the use of OLS regression (Table 2) alone to estimate the effects
of explanatory variables on NPP may create certain biases, further tests will be conducted
applying spatial models.

Table 2. OLS regression model test results.

ols_ind ols_time ols_spatiotemporal ols_random

Tem −0.207 * −0.020 −0.436 *** −0.214 ***
Pre −0.097 1.168 *** −0.875 *** 1.525 ***
Evp −1.338 *** 0.625 ** 1.928 *** −1.199 ***
Win −0.836 *** −0.832 *** −1.138 *** −0.641 ***
Ssd 2.382 *** −0.518 * 0.515 0.869 ***
Rhu −0.096 *** −0.006 −0.042 * −0.034 ***
Gst 0.396 *** −0.127 ** 0.078 0.161 ***

_cons 2.144 *** 1.051 *** −0.044 1.424 ***
R2 0.516 0.521 0.564 0.477
N 1524.000 1524.000 1524.000 1524.000

*, **, and ***, respectively, indicate the significance levels at 10%, 5%, and 1%.

According to the above Moran’s I index calculation results, there is an obvious positive
spatial spillover effect of the ecological space NPP in Beijing–Tianjin–Hebei, and considering
the effect of the interaction term, the SDM model, SLM model, and SEM model are chosen
to analyze the effect of different climatic factors on NPP. However, it is necessary to choose
the appropriate measurement model according to the test and determination rules, and the
test results are shown in Table 3.

Table 3. LM, LR, and Hausman testing.

Methods _cons p Methods _cons p

LM–spatial lag 97.890 0.000 Wald–spatial lag 254.78 0.000
Robust LM–spatial lag 13.702 0.000 LR–spatial lag 289.62 0.000

LM–spatial error 321.628 0.000 Wald–spatial error 138.98 0.000
Robust LM–spatial error 237.441 0.000 LR–spatial error 380.27 0.000

First, the Lagrange Multiplier (LM) and Robust LM tests (Table 3) were combined to
determine the form of spatial correlation (whether it exists in the error term, SEM, or the lag
term, SLM). Second, the Wald test and Likelihood Ratio (LR) test were used to determine
whether the Spatial Durbin Model (SDM) could be simplified into the Spatial Error Model
(SEM) and Spatial Lag Model (SLM). If the original hypothesis is rejected at the same time,
then SDM is the best-fit model; if the results show the rejection of the original hypothesis
of the Wald test and the Robust LM lag value is significant, then the SDM model cannot
be optimized as an SLM model; if the results show the rejection of the original hypothesis
of the LR test and the Robust LM lag value is significant, then the SDM model cannot be
optimized as an SEM model. According to the test results in the table, all the statistics in the
LM test were significant, indicating that both the SLM and SEM models were applicable.
Subsequently, the Wald test and LR test comparing the SEM model and the SLM model
rejected the original hypothesis and passed the 1% significance test, so the SDM model
could not be optimized for the SLM model and the SEM model. In the end, the SDM was
used for regression analysis.
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3.2.2. Spatial Durbin Model Results

Regression results were compared using SDM random effect, spatial fixed effect, time
fixed effect, and spatiotemporal fixed effect. The spatiotemporal fixed effects produced
more significant results. Integrating with the Hausman test, the fixed effect model was
chosen, as it exhibited lower endogeneity. Finally, a spatiotemporal fixed effect model was
selected for analysis, and the results are presented in Table 4.

Table 4. Estimated results of SDM.

SDM_ind SDM_time SDM_spatiotemporal SDM_random

Tem 1.217 *** 0.728 ** 1.237 *** 0.523

(3.67) (2.16) (3.74) (1.57)

Pre −0.238 −0.120 −0.155 −0.245

(−0.50) (−0.27) (−0.33) (−0.56)

Evp 8.543 *** 8.778 *** 8.659 *** 8.545 ***

(11.07) (12.42) (11.25) (12.18)

Win −0.725 ** −1.700 *** −0.692 * −1.602 ***

(−2.04) (−5.33) (−1.96) (−5.03)

Ssd −6.794 *** −6.569 *** −6.840 *** −6.597 ***

(−8.36) (−8.72) (−8.44) (−8.79)

Rhu 0.113 ** 0.078 ** 0.098 ** 0.105 ***

(2.53) (2.04) (2.19) (2.80)

Gst −1.777 *** −1.360 *** −1.806 *** −1.124 ***

(−5.07) (−3.84) (−5.18) (−3.21)

_cons 0.498 ***
(4.28)

Wx

Wx Tem −1.561 *** −0.803 ** −1.733 *** −0.612 *
(−4.32) (−2.29) (−4.78) (−1.77)

Wx Pre −0.080 0.612 −0.479 0.784 *
(−0.15) (1.28) (−0.89) (1.65)

Wx Evp −9.396 *** −9.257 *** −8.840 *** −9.240 ***
(−11.42) (−12.29) (−10.21) (−12.62)

Wx Win 0.174 1.375 *** −0.001 1.296 ***
(0.45) (4.02) (−0.00) (3.82)

Wx Ssd 8.992 *** 7.078 *** 8.950 *** 7.279 ***
(10.04) (8.88) (9.89) (9.23)

Wx Rhu −0.196 *** −0.092 ** −0.169 *** −0.127 ***
(−3.86) (−2.25) (−3.29) (−3.17)

Wx Gst 2.044 *** 1.417 *** 2.025 *** 1.205 ***
(5.55) (3.83) (5.51) (3.32)

Spatial
rho 0.543 *** 0.587 *** 0.523 *** 0.580 ***

(20.41) (22.01) (18.91) (22.40)

Variance
sigma2_e 0.285 *** 0.470 *** 0.283 *** 0.440 ***

(27.18) (27.27) (27.23) (21.94)

lgt_theta 2.566 ***
(4.59)

*, **, and ***, respectively, indicate the significance levels at 10%, 5%, and 1%.
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Results (Table 5) showed that annual average temperature, evaporation, and relative
humidity had significant positive effects on NPP (p < 0.01). In contrast, annual average
sunshine duration and ground temperature had significant negative effects (p < 0.01).
Additionally, annual average wind speed showed a significant negative effect on spatial
carbon sequestration (p < 0.1). However, annual average precipitation showed mixed
results across multiple models, with no consistent effects.

Table 5. Results showing direct and indirect effects of climate variables on NPP.

Direct Indirect Total

Tem 1.125 *** −2.167 *** −1.042 ***
(3.52) (−5.20) (−4.36)

Pre −0.237 −1.049 −1.286 ***
(−0.55) (−1.62) (−2.79)

Evp 8.232 *** −8.547 *** −0.315
(11.89) (−8.30) (−0.43)

Win −0.741 ** −0.709 * −1.450 ***
(−2.27) (−1.65) (−7.00)

Ssd −6.268 *** 10.629 *** 4.361 ***
(−8.61) (9.63) (5.30)

Rhu 0.085 ** −0.238 *** −0.153 ***
(2.00) (−4.07) (−4.10)

Gst −1.696 *** 2.154 *** 0.458 ***
(−4.94) (5.64) (4.02)

r2 0.199
ll −1200.000

aic 2540.307
bic 2700.179
N 1524.000

*, **, and ***, respectively, indicate the significance levels at 10%, 5%, and 1%.

3.2.3. Analysis of Direct and Spatial Spillover Effects

The direct effect coefficients for annual average temperature, evaporation, and relative
humidity were positively significant (p < 0.01; Table 6). Conversely, their indirect effect
coefficients were negatively significant (p < 0.01). These results indicate that annual average
temperature, evaporation, and relative humidity positively impact local-scale NPP while
restricting carbon sequestration in neighboring areas. The direct effect of annual average
sunshine duration and ground temperature on NPP was negative, while their indirect
effects were positive. Increases in local annual average sunshine duration and higher
ground temperature locally diminish NPP while promoting it in neighboring areas. The
direct and indirect effect coefficients of annual average wind speed were−0.741 and−0.709,
respectively (p < 0.05), exhibiting diminishing effects on NPP at local and adjacent areas.

3.2.4. Robustness Test

The relationships between the carbon sequestration capacity of ecological spaces at
a spatial scale and climate variables partly conformed to the SEM and SLM (Table 6).
However, both fits were not as good as the SDM, confirming the robustness of the Wald
test and LR test in Section 3.2.1 and justifying the use of SDM.
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Table 6. Results from SEM and SLM models.

SEM_ind SEM_time SEM_both SLM_ind SLM_time SLM_both SLM_random

Main Main

Tem −0.462 *** 0.142 −0.165 x1 −0.258 *** −0.003 −0.415 *** −0.132 ***
(−3.31) (1.26) (−1.25) (−3.06) (−0.06) (−4.96) (−3.11)

Pre 0.400 1.054 *** −0.424 x2 0.029 0.685 *** −0.549 *** 0.836 ***
(1.11) (4.07) (−1.16) (0.14) (5.37) (−2.65) (6.47)

Evp 0.279 4.999 *** 6.030 *** x3 −0.481 ** 0.688 *** 1.623 *** −0.482 **
(0.53) (7.05) (9.24) (−2.24) (2.62) (5.07) (−2.53)

Win −0.718 *** −1.133 *** −1.016 *** x4 −0.421 *** −0.528 *** −0.686 *** −0.384 ***
(−3.98) (−8.17) (−5.44) (−4.54) (−8.60) (−7.14) (−6.54)

Ssd 0.263 −4.292 *** −4.124 *** x5 1.424 *** −0.552 ** 0.302 0.375 *
(0.40) (−6.61) (−5.80) (4.38) (−2.13) (0.86) (1.70)

Rhu −0.068 ** 0.017 0.024 x6 −0.067 *** 0.004 −0.030 * −0.014 *
(−2.50) (0.93) (0.82) (−4.37) (0.52) (−1.88) (−1.69)

Gst 0.546 *** −0.494 *** −0.268 ** x7 0.232 *** −0.094 * 0.036 0.102 **
(5.45) (−3.79) (−2.28) (4.82) (−1.79) (0.69) (2.33)

lambda 0.575 *** 0.673 *** 0.632 *** Rho 0.484 *** 0.426 *** (1.06)
(14.31) (21.04) (20.74) (19.50) (16.63)

sigma2_e 0.363 *** 0.497 *** 0.307 *** sigma2_e 0.353 *** 0.569 *** (16.85) (18.27)

(26.48) (26.33) (26.69) (27.34) (27.23)

r2 0.414 0.088 0.044 r2 0.479 0.440 0.336 *** 0.552 ***

ll −1400 −1700 −1300 Ll −1400 −1800 (27.40) (21.95)

aic 2895.524 3423.239 2665.870 Aic 2822.983 3524.670 2.737 ***

bic 2943.486 3471.201 2713.832 Bic 2870.945 3572.632 (4.17)

N 1524.000 1524.000 1524.000 N 1524.000 1524.000 0.140 0.587

*, **, and ***, respectively, indicate the significance levels at 10%, 5%, and 1%.

4. Discussion
4.1. Comparative Analysis of Results

The main objective of this paper is to analyze the influence mechanism of climate
factors in spatial carbon sinks in the B-T-H region by incorporating geographic factors
into the research [38]. During the study period, the overall trend of spatial carbon sink in
ecological spaces in B-T-H was on the rise, and the possible reason for this is the influence
brought by the implementation of the Beijing–Tianjin Wind and Sand Source Control
Project since 2000. The Beijing–Tianjin Wind and Sand Source Control Project is a control
measure for land sanding in the areas around Beijing and Tianjin, which was introduced to
consolidate soil and prevent sand as well as to reduce sand and dust weather in Beijing
and Tianjin. The project area extends from Damao Banner in Inner Mongolia in the west
to Arukolqin Banner in Inner Mongolia in the east, from Daixian County in Shanxi in
the south to Dongwuzhumuqin Banner in Inner Mongolia in the north, and it involves
75 counties (banners) in five provinces (districts and municipalities), including Beijing,
Tianjin, Hebei, Shanxi, and Inner Mongolia (Figure 5). The first phase of the project took
12 years to implement 7.08 million mu of afforestation, planting 150 million trees, and
the second phase of the project, which was launched in 2013, completed 2.139 million mu
of afforestation. Over the past 20 years, the project has completed a total of 9.22 million
mu of afforestation, and the deserted forested mountains and sandy land “should be
green as much as possible”, which effectively reversed the expansion of the momentum
of sandification. The project has effectively reversed the expansion of desertification and
realized the ecological function of carbon sequestration and sink enhancement. With the
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implementation of the policy, all five major wind and sand hazard areas in B-T-H have been
treated for more than 20 years, significantly increasing the spatial carbon sink capacity [39].
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Moran’s I statistics showed a significant spatial autocorrelation of carbon sinks in B-T-
H, with a high–high and low–low aggregation in spatial distribution. The high NPP areas
were located in the Yanshan and Taihang Mountains, the green barriers for the development
of B-T-H urban agglomerations. In the context of the integrated development of B-T-H,
the “demonstration effect” exists between regions, which can lead the neighboring regions
to follow suit and increase the ecological spaces and carbon sinks. Regional synergistic
development has been successful in many regions; in Sweden, for example, its climate
policy takes into account cross-sectoral equity—i.e., the spatial autonomy of carbon sinks—
and multi-level cooperative governance to achieve a win–win situation for both carbon
sinks and the economy, which makes Sweden a leading model for climate policy in the EU
and other OECD (Organization for Economic Co-operation and Development) countries or
regions [40]. The land use of green space is mainly dominated by forests and grasslands,
which have long growth cycles, and therefore management is a long-term process [41]. If
not taken seriously, huge areas of ecological space can, in turn, become a source of carbon
emissions and a barrier to climate mitigation [42].

Compared to the existing literature, this paper not only examined the relationship
between climate factor and NPP using traditional modeling methods (e.g., OLS) but also
examined its spatial spillover effects using spatial measurement methods and the results
of a spatial panel Durbin model of carbon sink with a spatiotemporal effect. Results
showed that precipitation had little effect on carbon sinks in ecological spaces in urban
clusters; however, many large-scale studies only consider precipitation factors [43,44],
which provides limited information on carbon balance and sinks in small regions [45].
The spatial spillover effects of annual average temperature, evaporation, and relative
humidity were significant, positively impacting carbon sequestration in local areas but
limiting others. One possible reason for these results could be higher temperatures that
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cause water to evaporate faster [46], thus increasing relative humidity. In general, climate
factors have a consistent impact on carbon sequestration in ecological spaces at different
spatial scales [47]. More than rainfall, evapotranspiration and relative humidity at the
scale of urban agglomerations can reflect the combined effects of both temperature and
the water environment [48]. Sunshine duration also played an important role in carbon
sequestration in the B-T-H ecosystem, but the direction of effects varied with the scale.
For instance, the annual average sunshine duration and ground temperature showed a
negative impact on local-scale carbon sequestration; the same variables increased carbon
sequestration in neighboring areas. The scale-dependent effect of sunshine on carbon
sequestration is likely due to changes in cloud cover resulting from the interaction between
sunshine duration and atmospheric conditions [49], such as an increase in relative humidity
that leads to more cloud cover, reducing sunshine duration. Therefore, sunshine duration
and relative humidity have contrasting effects on the NPP across ecological spaces. Ground
temperature generally affects the carbon sequestration capacity of ecological spaces by
influencing vegetation growth. High temperatures inhibit vegetation growth, but the
direction of their effect is the opposite [50]. The mechanism of the transition between
atmospheric and ground temperatures and its effect on NPP needs further study.

Annual average wind speed had a negative impact on NPP on both the local and re-
gional scales. These findings may be related to the changes in carbon dioxide concentration
in the atmosphere caused by higher wind speed as shown in previous studies [51]. As the
influence mechanism of carbon sinks is an integrated and complex system, with climate,
CO2 concentration, and nitrogen deposition interacting with each other, the role of other
driving factors cannot be completely excluded. Therefore, the limitations in factor selection
and data acquisition made the explanatory power of climate factors in this study somewhat
subjective.

4.2. Application Value

The rapid economic and social development from 2000 to 2020 has led to the expansion
of construction land, such as urban and rural settlements, to the periphery of the B-T-
H urban agglomerations. Simultaneously, the proportion of living space has increased
from 8.3% to 13%, and the production space has decreased from 50.8% to 46.1%, but the
proportion of ecological space has not changed much (Figure 6). Ecological space is an
important carbon sink and climate reservoir. Because the “Ecological space” is dominated
by land types such as grassland and woodland, its carbon sink capacity usually becomes
stronger over time [52,53]. From a practical point of view, strengthening the protection and
management of ecological space and improving the structure of existing vegetation and the
quality of tree stands further improve carbon sequestration [54]. Subsequently, the “Three
Zone Space” should be rationally laid out in a mutually beneficial symbiotic relationship to
promote the enhancement of carbon sinks.

For future applications, on the one hand, the establishment of an ecosystem-based
carbon cycling model is necessary to improve the prediction of the stability of ecolog-
ical spatial carbon sinks [55]. We suggest that it is necessary to conduct intensive and
long-term ecosystem carbon monitoring on a wide geographical scale [56], incorporating
meteorological indicators such as wind speed, evaporation, sunshine hours, and ground
temperature, in addition to basic precipitation and temperature, to improve the spatial
carbon sink simulation model across ecological spaces [57]. With this, we can accurately
assess the ecosystem carbon sink capacity and their dynamics under various climate and
policy scenarios and regulate climate policies more accurately using simulation results [58].
On the other hand, although climate factors are hard to control, we cannot just sit back
and wait for the significant climate impacts; more importantly, we need to find targeted
adaptation strategies, such as adjusting the spatial zoning and optimizing land use layout
based on the spatial autocorrelation of carbon sinks [59] For example, the design of urban
breezeway is based on the direct and indirect effects of wind speed [60], especially for the
Beijing–Tianjin Heat Island Cluster; the impact of sunshine hours is used to improve the
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plant community and the reasonable layout of green belts [61]. In this paper, the spatially
accurate estimation of carbon sinks across ecological spaces under various climate factors
can help the government to quickly and accurately adjust the climate policy and realize the
visualization of carbon sinks under different scenarios, which is of great significance for
China to effectively and timely achieve the double carbon goal.
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4.3. Future Research

We can improve the NPP estimation model through the mechanism of climate factors
on carbon sinks. On the one hand, the commonly used simulation models, such as plus
(patch-generating simulation) [62] and flus (Future Land Use Simulation) models, can
benefit from this research and be further developed [63]. By simulating land use develop-
ment trends and using Invest (https://naturalcapitalproject.stanford.edu/software/invest)
(accessed on 1 May 2023) software, it is possible to predict future carbon sinks and the
evolution of land use patterns over time; however, additional pre-processing is necessary
to improve the accuracy of these predictions by considering the combined effects of CO2
and climate factors. On the other hand, various machine learning-based prediction models,
including gray prediction model, power function model, accumulation expansion method,
etc. are based on the principle of using the data of biomass density, soil, etc. to calculate
the increment of carbon sink for a specific region, which is easy to ignore the spatial effect
of the NPP [64]. The calculations should be made from a larger scale, so that the spatial
overflow effect can be included in the consideration and the prediction accuracy can be
increased. Furthermore, the more established biome-bgc models, in turn, tend to focus
only on precipitation and temperature elements; it is common to use only mtclim to make
rough calculations [65], and the results obtained are not sufficiently precise. It is better to
use observation data for climatic factors with significant spatial characteristics. In future
studies, when estimating NPP, especially in urban clusters, it is essential to consider the
impact of multiple climate factors simultaneously.

5. Conclusions

In this study, we analyzed the spatial effects of different climate-influencing factors
on carbon sinks in the ecological space in the B-T-H region using NPP data. Additionally,
by using spatial econometric models, the specific climate factors influencing carbon se-
questration were identified. We then quantitatively analyzed the contributions of different
interannual climate factors to the spatial patterns of carbon sequestration within ecological
spaces and spatial spillover effects. The results indicate the following:

https://naturalcapitalproject.stanford.edu/software/invest
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(1) A significant increasing trend in NPP from 2000 to 2020 in ecological regions of the
B-T-H area, with clear regional and agglomeration characteristics. Therefore, it is
advised to proactively adjust land use and climate policies to promote sustainable NPP
growth. When implementing ecological spatial governance, it is crucial to consider the
interactive effects of urban agglomeration and the surrounding areas and strengthen
cooperative governance between regions;

(2) Spatial regression models, especially the SDM, showed the best fit for this study,
indicating the presence of both endogenous and exogenous interactions in the model.
Under the fixed effect condition, annual precipitation did not have a significant impact
on spatial-scale carbon sequestration in the ecological spaces. However, interannual
temperature, evaporation, and relative humidity showed a positive effect on carbon
sequestration. Annual sunshine duration, ground temperature, and wind speed had
a negative impact on carbon sequestration. Considering the spatial autocorrelation
of NPP, when building carbon sequestration simulation models, a larger geographic
region should be considered, including both the target area and its neighboring spaces,
to improve the accuracy of the models;

(3) Various climate factors not only have direct effects on carbon sequestration patterns
locally, but they also exhibit spatial spillover effects. Annual average temperature,
evaporation, and relative humidity enhanced carbon sequestration locally but reduced
regionally. In contrast, annual sunshine duration and ground temperature negatively
affected carbon sequestration locally but enhanced regionally. Annual wind speed
had a negative effect on NPP both at local and regional scales. Considering the direct
and indirect effects of specific climate factors, reasonable recommendations can be
made for urban agglomeration and addressing climate change, such as improvement
in land use structures and solar and wind resources development.
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