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Abstract: Guanling-Zhenfeng County, a microcosm of the ecologically fragile karst area in south-
west China, experiences rapid population growth and urban expansion which intensifies land use
transformation and ecological landscape fragmentation. Exploring the spatiotemporal characteristics
of landscape fragmentation and its causes in Guanling-Zhenfeng County is of great significance in
maintaining the stability of the ecosystem and ecological protection in karst areas. In this study, a
comprehensive landscape fragmentation index (FI), geographic probe, multi-scale geographically
weighted regression (MGWR), and PLUS model were used to quantitatively explore the spatiotempo-
ral characteristic heterogeneity, causes, and future scenario projections of landscape fragmentation
in Guanling-Zhenfeng County from 2000 to 2020. The results showed that: (1) the distribution
of each landscape index was characterized by obvious spatial differentiation. Among them, the
spatial distribution trends of patch density (PD) and largest patch index (LPI) were opposite and
the distribution trends of Shannon diversity index (SHDI) and Shannon evenness index (SHEI)
were similar. There were fewer heterogeneous patches in the study area from 2000 to 2020, and the
landscape shape was more regular and less fragmented. (2) The overall landscape fragmentation
in Guanling-Zhenfeng County from 2000 to 2020 was dominated by moderate fragmentation, with
the smallest percentage of extreme fragmentation, and heavy fragmentation was mainly distributed
in the north-central part of the study area. (3) Natural and social factors jointly affect the landscape
fragmentation in Guanling-Zhenfeng County, and there is a significant interactive enhancement effect
among the factors, with population density being the most important influence factor. In addition,
the effects of the factors on landscape fragmentation showed significant spatial non-stationarity.
(4) The characteristics of landscape fragmentation changes in Guanling-Zhenfeng County under
different scenarios varied significantly, with the largest percentage of increase in heavy landscape
fragmentation under the business-as-usual scenario (BAU), the next under the land use planning
scenario (LUP), and the smallest under the ecological protection scenario (ESP).

Keywords: ecologically fragile areas; geographically weighted regression model (MGWR); landscape
fragmentation; PLUS model; spatiotemporal heterogeneity

1. Introduction

Since the 20th century, increasing warming has led to dramatic changes in the global
ecological environment [1–4]. Accelerated urbanization and rapid population growth have
exacerbated regional land use changes, which have a key role to play in the problems of
climate change and landscape fragmentation [5–7]. Land use is considered to be one of
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the activities by which humans exert the greatest influence on the Earth’s land surface,
with significant impacts on landscape ecosystems [8,9]. Types of land use form the basic
structural units of landscape ecosystems, and the structural stability and functionality of
landscapes are considered fundamental to maintaining the continued survival and devel-
opment of human society [10]. When humans promote the transformation of landscape
structure and function through land use, oftentimes this behavior will trigger the phe-
nomenon of fragmentation of landscape patterns, and the self-regulation and restoration
capacity of the landscape system will face great challenges and uncertainties [11]. Changes
in landscape patterns induced by land use change provide a way to indirectly analyze
subsequent changes in landscape fragmentation. Exploring landscape fragmentation and
its spatiotemporal heterogeneity based on landscape pattern indicators helps to reveal the
spatiotemporal pattern and differentiation mechanism of land use, and at the same time
provides scientific support for the optimization of land use structure and the sustainable
use of land resources.

Southwest China is the largest continuous karst region in the world, and in the context
of its unique geological background (widespread distribution of carbonate rocks) and high
degree of landscape heterogeneity, the combination of carbonate bedrock characteristics
with geomorphology and other features has resulted in an extremely fragile ecosystem
that is highly sensitive to changes in the external environment [12,13]. Guanling-Zhenfeng
County is in the hinterland of the southwest karst area, with fragmented surface, poor
regulation and water retention capacity [14]. Influenced and constrained by the special
geological background and climatic conditions, ecological problems such as high rock expo-
sure rate, shallow soil layer, serious soil erosion, etc. exist there, making it an ecologically
fragile area [15]. The urbanization process has been accelerating in recent years, and the
landscape pattern of Guanling-Zhenfeng County has undergone drastic changes, with the
fragmentation of the landscape further aggravated, causing great impacts on the fragile
karst ecosystem [16,17]. From the special geographic environment of the karst ecological
fragile area, the analysis of spatiotemporal heterogeneity and causes of landscape frag-
mentation can not only effectively reveal the root causes of the ecological problems in the
area, but also have a demonstrative and guiding significance in promoting the research on
sustainable management of karst areas and other types of fragile ecological regions around
the globe.

Landscape fragmentation has now become an international research hotspot in ecol-
ogy and global environmental change. Research tendency converges on three aspects:
assessment of spatial and temporal change of landscape fragmentation, factors driving
landscape fragmentation, and impacts of landscape fragmentation [18–30]. In evaluating
the degree of landscape fragmentation, scholars generally adopt the landscape pattern
index method to characterize landscape fragmentation. For instance, Jiao et al. assessed the
degree of fragmentation of the green space pattern in the Wuhan metropolitan area through
a combination of primary and secondary landscape indicators [18]. Fu et al. revealed the
spatiotemporal change of landscape fragmentation in the watershed by selecting a suitable
landscape index [19]. Some scholars have also adopted the moving window approach
to assess landscape fragmentation [20–22]. Previous studies on the drivers of landscape
fragmentation have tended to focus on both natural and socioeconomic factors [23,24]. In
addition, without considering the spatial heterogeneity of landscape fragmentation, many
scholars have integrated and analyzed landscape fragmentation with urbanization, land
use, climate, and other factors based on ecological and environmental perspectives, which
provides valuable suggestions for ecosystem service management [25,26]. Simultaneously,
research on the impacts of landscape fragmentation covers a wide range of fields, and tends
to explore the impacts of landscape fragmentation on ecosystem services, habitat quality,
and biodiversity [25,27,28].

Summarizing previous studies, research on landscape fragmentation has concentrated
on the use of single landscape pattern indicators to characterize landscape fragmentation.
It also has a weak research base for predicting future scenarios of landscape fragmentation,
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which is not conducive to the development of long-term sustainable ecological conservation
strategies. Moreover, due to the difficulty of data acquisition and the complexity of technical
methods, relatively few systematic studies have been conducted on the spatial and temporal
heterogeneity and causes of landscape fragmentation in the karst region of Southwest
China. Therefore, a comprehensive landscape fragmentation index (FI), geographic probe,
multi-scale geographically weighted regression (MGWR), and PLUS model were used to
quantitatively explore the spatiotemporal characteristic heterogeneity, causes, and future
scenario projections of landscape fragmentation in Guanling-Zhenfeng County from 2000 to
2020. The research objectives of the paper are: (1) to assess and analyze the spatiotemporal
heterogeneity of landscape fragmentation in Guanling-Zhenfeng County from 2000 to 2020,
(2) to investigate the driving mechanisms affecting landscape fragmentation in the study
area, and (3) to simulate land use changes in Guanling-Zhenfeng County under different
scenarios from 2000 to 2060 and reveal the trends of landscape fragmentation at all levels
as well as the spatial distribution.

2. Materials and Methods
2.1. Study Area

Guanling County (105◦15′–105◦49′ E, 25◦19′–26◦05′ N) is located in the slope area of
the eastern Yunnan-Guizhou Plateau on the south side of the ridged slope tilting toward
the Guangxi hills, with the terrain high in the northwest and low in the southeast. The
terrain varies greatly (370–1850 m), and the mountains often undulate and roll. Zhenfeng
County (105◦25′–105◦56′ E, 25◦07′–25◦44′ N) is located in the southwestern part of Guizhou
Province, on the banks of the Beipanjiang River in the upper reaches of the Pearl River,
belonging to the Buyi and Miao Autonomous Prefecture of Qianxinan, and bordering with
Guanling and other counties to the north. As of the end of 2021, Guanling and Zhenfeng
counties (hereinafter referred to as “Guanling-Zhenfeng Country”) (Figure 1) had a total
population of more than 840,000 and a total area of 2979.9 km2. In recent years, rapid
population growth and urban expansion in Guanling-Zhenfeng County have exacerbated
land use transformation and ecological landscape fragmentation. At the same time, the
region is a typical karst rocky desertification (refer to the loss of surface soil, exposure of
bedrock, loss of agricultural use of land and ecological degradation due to soil erosion)
mountainous area with high and low relief, complex and diverse types of landforms,
extensive distribution of carbonate rocks, and serious soil erosion. This study will provide
a scientific basis and reference for the overall development planning, regional ecological
protection planning, and the formulation of relevant land use policies in the fragile karst
ecosystems of southwest China.

2.2. Data Sources and Processing

LULC data (2000, 2010, 2020) were obtained from the Globeland 30. Global geographic
information public goods and were divided into five categories: cropland, forest, grassland,
water, and building. To verify the accuracy and dependability of LULC data, we integrated
Google Maps and field survey data. The findings revealed that the overall classification
of LULC data was 84% accurate, and the kappa coefficient was more than 0.80, which
meets research requirements. Other sources of data used in this study and more detailed
information can be found in Table 1.

Table 1. Sources of data for the study.

Data Source Year of Data Access Spatial Resolution (m)

LULC http://globeland.org/ 2000, 2010, 2020 30 m
DEM https://search.asf.alaska.edu/#/

2019 12.5 m
Elevation

Based on ArcGIS 10.3 from DEMSlope
Aspect

http://globeland.org/
https://search.asf.alaska.edu/#/
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Table 1. Cont.

Data Source Year of Data Access Spatial Resolution (m)

Soil type https://geocloud.cgs.gov.cn/ 2008
-

Lithology -
Population density WorldPop https://www.worldpop.org/ 2020 1 km

Distance from the road http://www.dsac.cn 2020 -
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Figure 1. Location map of Guanling-Zhenfeng County. Among them, the karst areas of Southwest
China include eight provinces: SiChuan—SC, YunNan—YN, GuangXi—GX, GuangDong—GD,
HuNan—HN, HuBei—HB, and ChongQing—CQ.

2.3. Research Methods
2.3.1. Landscape Pattern Analysis

Quantitative analysis of landscape patterns and exploration of the dynamic charac-
teristics of landscape pattern changes are the basis for studying the interaction between
landscape pattern changes and ecological processes [29]. In the process of landscape pattern
analysis, the landscape index is usually chosen for quantitative analysis. In this study,
according to the special characteristics of the karst region in Southwest China, with refer-
ence to the theory of landscape ecology, the patch density (PD), largest patch index (LPI),
landscape shape index (LSI), area-weighted mean shape index (AWMSI), aggregation index
(AI), separation index (DIVISION), Shannon evenness index (SHEI), and Shannon diversity
index (SHDI) were used as seven indicators to quantify the characteristics of change of
landscape fragmentation in the study area from 2000 to 2020, and the calculation methods
and descriptions are detailed in the literature [30].

As the landscape pattern index is scale-dependent, a spatial scale that is too large/small
cannot accurately reflect the regional landscape characteristics [31]. Based on Fragstats4.2,
ArcGIS10.3, and GS+9.0 software interoperation and referring to existing studies [32], three
landscape pattern indices, SHDI, SHEI, and PD, were selected for moving window analysis,
and GS+9.0 geostatistics software was used to simulate different moving windows. The
semi-variance function of landscape fragmentation under different moving window radii
was used to analyze the response of the spatial characteristics of landscape indices to scale

https://geocloud.cgs.gov.cn/
https://www.worldpop.org/
http://www.dsac.cn
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through the change pattern of the block–base ratio. The semivariance function is calculated
as follows:

y(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 a = 1, (1)

where h is the target spatial distance, Z(xi) and Z(xi + h) are the values of Z(x) on xi and xi +
h, N(h) is the total number of sample pairs. In Figure 2a the basic parameters include the
block gold value CO, partial abutment value C+CO and block base ratio CO/(C + CO). The
block–basis ratio can reflect the high or low spatial variability of the variables. The smaller
the value is, the higher the spatial correlation is and the more stable the spatial structure
is [29]. When the block–basis ratio reaches relative stability, it indicates that the degree of
variability of spatial variables is low, indicating that this scale is the optimal window radius
used to characterize the landscape index of the study area.
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2.3.2. Landscape Fragmentation Index Construction

There is regularity and variability in the changes of landscape fragmentation indices
at regional spatial scales, and the distribution of spatial and temporal heterogeneity of
landscape fragmentation within the whole region cannot be better characterized among
the indices. Constructing a comprehensive index of landscape fragmentation has been
effective in addressing this problem [10,33]. Consequently, in this study, a comprehensive
landscape fragmentation index was constructed to characterize the degree of landscape
fragmentation in Guanling-Zhenfeng County. The expressions are:

FI = a · PDnor + b · LPInor + c · LSInor + d · DIVISIONnor+
e · AMMSInor + f · AInor + g · SHDInor + h · SHEInor

(2)

where FI is the integrated fragmentation index and PDnor, LPInor, LSInor, DIVISIONnor,
AMMSInor, AInor, SHDInor, and SHEInor are the normalized values.

Entropy value is a measure of the degree of disorder or chaos of the system. Informa-
tion is interpreted as a reduction in the degree of disorder of the system—the greater the
entropy value of the system, the smaller the amount of information it contains. The basic
idea of the entropy method for determining objective weights is that if the data sequence of
an attribute has greater variation, its corresponding weight coefficient will be greater [34].
The steps for determining the weighting coefficients are as follows:
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Set the multi-attribute decision-making problem with m decision-making scenarios
(denoted as S = {S1, S2, . . ., Sm}) and n attributes (denoted as C = {C1, C2, . . ., Cn}); and set
the attribute values of scenarios Si and attributes Cj to bij.

(1) For normalized decision matrices B = (bij)m × n, make:

pij =
bij

m
∑

i=1
bij

, i = 1, 2, . . . , m; j = 1, 2, . . . , n (3)

(2) The information entropy value of the attribute output is:

hi = −(ln n)−1
m

∑
i=1

pij ln pij, j = 1, 2, . . . , n (4)

when pij = 0, it is specified that pij ln pij = 0, then: 0 ≤ hj ≤ 1.
(3) Calculation of the coefficient of variation of the attribute dj:

dj = 1 − hj, j = 1, 2, . . . , n (5)

(4) Calculating attribute weighting coefficient:

wj =
dj

n
∑

j=1
dj

, j = 1, 2, . . . , n (6)

The weighting coefficients a, b, c, d, e, f, g, and h corresponding to the above eight
landscape fragmentation indices were finally determined to be 0.2186, 0.091, 0.1277, 0.1808,
0.061, 0.0556, 0.1492 and 0.1161, respectively. Meanwhile, the composite landscape frag-
mentation index of the study area was divided into five classes at equal intervals: micro-
fragmentation (0, 0.2), slight fragmentation (0.2, 0.4), moderate fragmentation (0.4, 0.6),
heavy fragmentation (0.6, 0.8), and extreme fragmentation (0.8, 1) [35,36].

2.3.3. Geographic Probe

The study used a geodetector model to measure the causes of landscape fragmentation
in Guanling-Zhenfeng County. The model mainly consists of factor detections, interaction
detection, ecological detection, and risk detection [15]. This paper is based on previous
studies combined with the special geomorphology and data availability of the study
area [7,37–41]. The elevation (X1), slope (X2), aspect (X3), lithology (X4), soil type (X5),
population density (X6), and distance from the road (X7) were selected as the main influence
factors to explore the causes of spatial fragmentation of the landscape. Each driver was
discretized by ArcGIS10.3 and used as the independent variable of the geodetector. The
calculation formula is as follows [37]:

q = 1 − 1
Nσ2

L

∑
i=1

Niσ
2
i (7)

where q is an indicator of the detectability of landscape pattern influencing factors, the
interval is (0, 1), and the larger the value of q is, the stronger the heterogeneity of spatial
stratification is. The value of 0 indicates that the factor is irrelevant to the influence of
landscape fragmentation. n and σ2 are the sample size and variance, respectively. i denotes
the partition (i = 1, 2, 3, . . ., L). The interaction types of the interaction detectors are shown
in Table 2.
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Table 2. Interaction type of interaction detector.

Basis of Judgment Interaction

q(X1 ∩ X2) < min [q(X1), q(X2)] nonlinear weakening
Min [q(X1), q(X2)] < q(X1 ∩ X2) < max [q(X1 ∩ X2)] single-factor nonlinear attenuation

q(X1 ∩ X2) > max [q(X1 ∩ X2)] two-factor enhancement
q(X1 ∩ X2) = q(X1) + q(X2) mutually independent
q(X1 ∩ X2) > q(X1) + q(X2) nonlinear enhancement

2.3.4. Multiscale Geographically Weighted Regression Model

Traditional regression methods such as ordinary least squares (OLS) assume that
regression parameters remain spatially constant, ignoring spatial heterogeneity among
geographic relationships. However, spatial heterogeneity is inherent in the process of
landscape fragmentation [10,25]. Geographically weighted regression (GWR) considers
and estimates regression results for spatial variation and has advantages in explaining
the spatially heterogeneous relationships between response variables and explanatory
variables, however it uses a fixed bandwidth and does not consider the role of spatial
scale in this process [42,43]. Compared with GWR, the multiscale geographically weighted
regression (MGWR) model adds spatially smooth variables to GWR, allowing different
processes to operate at different spatial scales as well as selecting independent bandwidths
for the optimization of the respective variables. This makes the model results closer to the
real situation and credible. The MGWR model expression is as follows [44]:

yi =
n

∑
j=1

ajxij +
n

∑
j=n+1

β j(ui, γj)xij + εi (8)

where (ui, γj) denotes the spatial location of sample i, j denotes the number of samples,
xi denotes the explained value of the independent variable of sample i, xij denotes the
observed value of independent variable j at location i, aj is the regression coefficient of
the global variable, βj is the regression coefficient of the local variable, and εi denotes the
random error term.

2.3.5. PLUS Model

To better assess and predict future land use changes, various land use simulation
models have been developed such as CLUE-S, Cellular Automata CA (Cell Automata),
FLUS, and CA-Markov models [44–47]. These models are usually linear and quantitative
based, and cannot consider all land use change processes. The PLUS model is more
advantageous using the rule mining framework of the land extension analysis strategy
(LEAS) and the random forest-based multitype meta-cellular automata model. In addition,
it provides good insight into the potential influence factors of land use change under
different future scenarios [7].

Setting multiple scenarios to predict regional landscape fragmentation can help to un-
derstand the mechanisms and influencing factors of landscape fragmentation and provide
decision makers with different perspectives to formulate scientific and effective ecological
protection policies [48]. In this paper, based on the PLUS model and land use simulation
data in the study area, we set up a business-as-usual (BAU), land use planning (LUP),
and ecological protection (ESP) scenario with reference to existing studies [49,50]. The
spatiotemporal patterns of landscape fragmentation in Guanling-Zhenfeng County in 2030
and 2060 were investigated under different scenarios of carbon peak (2030) and carbon
neutral (2060).

3. Results
3.1. Characteristics of Landscape Pattern Change

The block–base ratios of the PD- and SHEI-indices decreased with increasing window
radii (Figure 2a), and the block–base ratios changed more when the ratio was 150–300 m.
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The block–base ratios of the SHDI-indices showed a fluctuating change (relatively stable)
trend, and the change trend of the block–base ratios of all three indices tended to level off
after reaching 450 m. Therefore, 450 m was chosen as the characteristic analysis scale of the
landscape pattern in the study area.

During the study period, largest patch index (LPI), area-weighted mean shape index
(AWMSI), and Shannon evenness index (SHEI) increased and then decreased. Patch density
(PD), landscape shape index (LSI), and Shannon diversity index (SHDI) decreased year
by year, aggregation index (AI) continued to increase, and separation index (DIVISION)
decreased and then increased (Figure 2b–e). Landscape fragmentation is influenced by
both the natural environment and human activities, and the analysis of changes in the
degree of landscape fragmentation based on the grid perspective is conducive to further
analysis of the influence of anthropogenic activity and natural factors (Figure 3(a1–e3)).
From the spatial scale, the distribution of the selected landscape indices has obvious spatial
differentiation characteristics. Among them, the spatial distribution of patch density (PD)
and largest patch index (LPI) was opposite, while the distribution trend was similar to that
of the landscape shape index (LSI) (Figure 3(a1,b1,c1)). High-value areas of PD and LSI
and low-value areas of LPI are mainly distributed in the north-central part of the study
area. The distribution trends of the SHDI and SHEI indices are similar (Figure 3(d1,e1)) and
the high-value areas are widely distributed in the study area, however the overall trend is
decreasing, indicating that the study area is occupied by some landscape types with higher
dominance from 2000 to 2020, with fewer heterogeneous patches, more regular landscape
shapes, and less fragmentation.
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3.2. Analysis of the Spatiotemporal Pattern of the Composite Index of Landscape Fragmentation

The overall landscape fragmentation in Guanling-Zhenfeng County from 2000 to 2020
was dominated by moderate fragmentation, and the proportion of moderate fragmentation
grade in the total area of the study area was 51.73%, 49.03%, and 52.14% in 2000, 2010,
and 2020, respectively (Figure 4a–c). The proportion of extreme fragmentation was the
smallest. With the change in time, the landscape fragmentation in the study area showed a
trend of decreasing the area of heavy and extreme fragmentation and increasing the area of
slight and moderate fragmentation. Heavy fragmentation was mainly distributed in the
north-central part of the study area, and moderate fragmentation was widely distributed in
the study area. From 2000 to 2010, moderate and heavy fragmentation showed a decreasing
trend, and slight and light fragmentation showed an increasing trend. Micro fragmentation
increased the most, and moderate fragmentation mainly shifted to light fragmentation
(Figure 4d,g). Compared with the previous period, only moderate fragmentation showed
an increasing trend from 2010 to 2020, and the areas contributed by micro, light, and heavy
fragmentation were 44.34 km2, 334.28 km2, and 118.91 km2, respectively (Figure 4e,h). In
the period between 2000 and 2020, the three layers of slight, light, and moderate fragmenta-
tion showed an increasing trend, and moderate fragmentation increased significantly in
most areas. Heavy fragmentation showed a decreasing trend, with a decrease in area of
118.20 km2.
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County in 2000, 2010, and 2020, respectively; (d–i) are the chordal maps of the integrated index of
fragmentation transfer of each grade in 2000–2010, 2010–2020, and 2000–2020, respectively, and the
net increase in area transferred in the corresponding time periods.
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3.3. Exploring the Causes of Landscape Fragmentation and Spatial Nonsmoothness

Comparing the MGWR model with OLS and GWR models, MGWR had the smallest
heteroscedasticity R2 and the lowest residual spatial autocorrelation (Figure 5). The MGWR
model was more advantageous in understanding the spatial non-stationarity of the influ-
encing factors of landscape fragmentation and in explaining the scale effects of different
independent variables. In addition, to avoid bias in the results due to interactions among
the influence factors, this study conducted a covariance test for each driver and finally
selected seven influence factors that passed the test (slope, lithology, soil type, population
density, and distance from the road) to further perform multiscale geographically weighted
regression modeling analysis with landscape fragmentation.
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Figure 5. Comparison of OLS, GWR, and MGWR models: (a–c) show the residual scatter plots of
the three models; (d) shows the model residual box plots; (e–g) show the spatial distribution of the
residuals of the OLS, GWR, and MGWR models; and (h) shows the optimal bandwidth generated by
MGWR and the standard deviation of MGWR parameter estimates.

According to the results of the factor detection analysis (Table 3, Figure 6b), the
influence factors explained the spatial heterogeneity of landscape fragmentation in the
study area to different degrees. Their explanatory power is in descending order: population
density (X6) > distance from the road (X7) > soil type (X5) > lithology (X4) > elevation (X1)
> slope (X2) > aspect (X3). The influence force of population density (X6) on landscape
fragmentation was significantly higher than that of other factors, with a q-value of 0.1309.

Table 3. Geodetector results for influence factors of landscape fragmentation.

q Value
Elevation Slope Aspect Lithology Soil Type Pop DFR

0.0117 0.0076 0.0014 0.0119 0.0467 0.1309 0.1078

Meanwhile, by calculating and comparing the q-value of each single factor and the
q-value of the two factors superimposed, the geodetector can determine whether there is an
interaction between the two factors and whether the interaction is strong, weak, directional,
linear or nonlinear, etc. The degree of influence of all interaction factors on the spatial
heterogeneity of landscape fragmentation was significantly enhanced compared to single
factors (Figure 6a, Table 3).
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The Influence of each factor on landscape fragmentation in different regions has
obvious spatial differences (Figure 6c–g), reflecting the spatial non-smoothness of each
factor. Among the factors, the regression coefficients of lithology mainly had positive
effects on landscape fragmentation, and the positive effects were strongest in the central
part of the study area and gradually weakened to the north and south (Figure 6e). The
regression coefficient of population density takes values between −0.53 and 1.04, and the
high value of the negative coefficient effect is mainly distributed in the north of the study
area, while the high value of the positive coefficient effect is concentrated in the south of
the study area (Figure 6g). The slope and distance from the road have mainly negative
effects on landscape fragmentation in spatial distribution (Figure 6c,d), and the negative
effect areas account for 66.12% and 86.37% of the total study area, respectively, meaning
that the greater the slope is and the farther the distance from the road is, the lower the
degree of landscape fragmentation is. The regression coefficient of population density is
mainly positive (Figure 6g), and the area showing a positive effect accounts for 81.27%. It is
noteworthy that the regression coefficients of soil type on landscape fragmentation show a
“banding” trend from south to north and from east to west, (Figure 6f).

3.4. Patterns of Spatiotemporal Variation in Landscape Fragmentation under Different Scenarios

Utilizing the baseline imagery from 2010, the PLUS model was used to predict the
area of each kind of LULC in 2020 (Figure 7a,b). By analyzing the correlation between the
predicted and actual values, the R-squared value of the fitted curve for the PLUS model
is 0.89 (Figure 7c) and the predicted overall accuracy (OA) and figure of merit (FOM) for
LULC in 2020 reached 0.87 and 0.14, respectively, satisfying the research needs. Based on
the LULC in 2020, the change of LULC in the Guanling-Zhenfeng region in 2030 and 2060
were predicted. In 2030 and 2060, the spatial distribution of landscape fragmentation in
the study area differs significantly under different scenarios (Figure 8). In 2030, moderate
fragmentation is dominant in the study area and heavy fragmentation is concentrated
in the north-central part of the study area, with percentages of 2.67%, 2.08%, and 1.89%
under the BAU, LUP, and ESP scenarios, respectively (Figure 8g). In contrast, heavy
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fragmentation is significantly improved in 2060 under different scenarios, and only the
BAU scenario still has a small distribution, with the percentage decreasing to 1.01%. Light
fragmentation dominates the fragmentation in the region simulated by the LUP and ESP
scenarios (60.94% and 70.18%), while the BAU scenario is still dominated by moderate
fragmentation (47.80%).
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Figure 8. Spatiotemporal variation characteristics of landscape fragmentation under different future
scenarios: (a–f) indicate the spatial distribution of landscape fragmentation under BAU, LUP, and
ESP scenarios in 2030 and 2060, respectively; (g,h) are the percentages of fragmentation at each level
under the corresponding scenarios.

4. Discussion
4.1. Specificity Analysis

Current research on landscape fragmentation focuses on tropical rainforests around
the world, temperate forests in North America and Europe, and the eastern plains and
coastal urbanized areas of China [51–53]. Relatively few studies have been conducted in
karst regions. Nevertheless, the karst region of southwest China was the first to be classified
as a fragile environment by the American Association for the Advancement of Science
(AAAS) [54,55]. The region’s unique geological features, fragile ecological environment,
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rapid population growth, urban expansion, and changes in land use patterns have led to
a very high degree of landscape fragmentation, which is difficult to recover from once
it occurs [15,56,57]. At the same time, the karst region in Southwest China is one of the
most concentrated and largest areas of poverty in China, and there is a vicious circle of
Poverty-Population-Environment (PPE) that plagues the world today (poverty-population
growth-land degradation) [58]. Against this background, it is particularly urgent to carry
out research on landscape fragmentation in the southwest karst region.

This study explored a combination of geodetectors and multi-scale geographically
weighted regression modeling and found that population density was the most significant
influencing factor, which is consistent with the results of existing studies [10,59,60]. At the
same time, human production and disturbances have become a major source of landscape
fragmentation [61,62]. There is a threshold effect for the impact of anthropogenic activity
on landscape fragmentation (Figure 9), and if a threshold is exceeded and no positive
intervention is implemented on the ecological environment, there will be a loss of ecosystem
function and biodiversity [63,64].
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Figure 9. Schematic diagram of risk area identification, modified from Zhang et al. (2022). Note:
the horizontal coordinates represent the Anthropogenic Activity Intensity (AAI) impact intensity
values; and the vertical coordinates represent the FI values of the composite index of landscape
fragmentation. Points A and B represent the threshold points where the slope of the curve changes
significantly; the interval filled by the diagonal line on the left side indicates that FI is positively
correlated with AAI and is used to characterize the risk zone of the impact of anthropogenic activity
intensity on landscape fragmentation.

Since the the growth of China’s economy and the acceleration of urbanization, land
use types have achieved mutual transition, and the landscape pattern has undergone great
changes [10]. Enhanced human disturbance has become a key factor in consolidating
landscape fragmentation [65].

From 2000 to 2020, the total population of Guanling-Zhenfeng County increased from
316,200 to about 800,000, and the population density exceeded the national average by
64% [66], symbolizing the growing size of cities and population growth. The transition
of the population from rural to urban areas will inevitably lead to spatial and temporal
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shifts in the structure and layout of land use, which is mainly manifested in the reduction
of agricultural land such as cropland and forest and the increase of built-up land in urban
areas [67,68]. As a mirror of social and economic development, land use can intuitively
reflect various problems exposed in the process of social transformation and development
through landscape pattern indicators. Due to the special nature of landforms, land use
in the karst region of Southwest China needs to consider factors such as topographic
undulations and the interaction between surface water and underground karst systems,
which makes land use and land use very limited. Therefore, the state should actively
study the optimal spatial development pattern of land, construct a spatial planning system,
reduce the interference of human activities on the natural landscape system in combination
with the background of special natural conditions, and formulate appropriate land use
protection and ecological protection strategies.

4.2. Insights and Suggestions for Ecological Management

The results of the MGWR model clearly illustrate the spatially heterogeneous response
between landscape fragmentation and different influence factors, which provides substan-
tial support for actionable as well as practical ecological improvement measures. It was
found that the area with a positive effect of lithology and landscape fragmentation was
mainly located in the central part of the study area, and the corresponding lithologies
were mainly tuffs and dolomites, which may be because both lithological distribution
areas are extremely vulnerable zones with a wide distribution of lithology and are prone
to landscape fragmentation [69]. Therefore, when exploring the influence factors of land-
scape fragmentation, region-specific lithologies should be fully considered. Meanwhile,
population density is an important factor influencing landscape fragmentation in Guanling-
Zhenfeng County, which is in high agreement with the findings of Zhang [55], and the
high value of the positive effect coefficient between population density and landscape
fragmentation is concentrated in the southern part of the study area. The PLUS model
combines the spatial factors affecting land use change with geographic image dynamics,
which enhances the spatial and temporal dynamic expression and prediction ability of the
model and has high accuracy in the simulation of future land use change [37]. Based on
the simulation results of the PLUS model, it can be seen that the LUP and ESP scenarios
can effectively improve the regional landscape fragmentation phenomenon, and the ESP
scenario has a more significant improvement effect. Although the landscape fragmentation
phenomenon is also improved in the BAU scenario, the improvement rate is slower than
that of the LUP and ESP scenarios, and the proportion of heavy fragmentation increases
slowly in the predicted time period. The findings are consistent with those of Gao et al. [70].
Without policy interventions for landscape fragmentation in the ecologically fragile karst
areas of Southwest China, deeper fragmentation may occur. To improve regional landscape
fragmentation, land use policies in the study area should focus on ecological conservation.

4.3. Pervasive Contributions and Limitations

In the context of the “double carbon target,” vegetation restoration in the karst region
of Southwest China has received much attention from scholars because of its great carbon
sequestration potential [71–73]. However, the existence of landscape fragmentation poses
a serious threat to the carbon sequestration capacity of ecosystems and climate change
in the southwest karst region [38,56]. In this study, a new and integrated framework for
analyzing the change of landscape patterns is proposed by integrating methods such as
multiscale geo-weighted regression and the PLUS model, and its formation mechanism
is explored from a spatially explicit perspective. By applying this framework, we can
not only overcome the limitations of a single analysis method and compensate for the
inadequacies of previous studies on the influence factors of landscape fragmentation in
karst areas but also provide a more comprehensive and accurate evaluation of the current
landscape fragmentation of karst ecosystems in Southwest China, which can provide a
theoretical basis and support for maintaining ecosystem connectivity, improving its carbon
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sequestration capacity, and mitigating climate change [56]. At the same time, combining
landscape pattern change with future scenario prediction can better diagnose and predict
the change trend of ecosystem landscape fragmentation, which is beneficial for managers
to take timely and effective measures to intervene in the ecosystem and promote the
protection and restoration of the ecological environment in karst areas. In addition, the
research framework can be applied to other regions of the world to provide case studies
and references for ecological management in similar karst areas. However, there are still
some limitations for further improvement. First, the interaction analysis of geographic
probes can only involve two influence factors, which may not be sufficient to reflect the
combined contribution of each factor. Second, although this study explored landscape
fragmentation in karst ecosystems, only one study area was selected for the study, which
may have limitations. Therefore, it is necessary to further expand the scope of the study in
future studies and combine other related fields for interdisciplinary cooperation to improve
the credibility of the research results.

5. Conclusions

This study provides further insights into the spatiotemporal characteristics and influ-
encing factors of landscape fragmentation in Guanling-Zhenfeng County. On a spatial scale,
the distribution of the landscape indices is characterized by significant spatial differentia-
tion. Among them, the spatial distribution trends of patch density (PD) and largest patch
index (LPI) were opposite, and the distribution trends of Shannon diversity index (SHDI)
and Shannon evenness index (SHEI) were similar. The overall degree of fragmentation
in the study area decreases from 2000 to 2020, with moderate fragmentation dominating,
extreme fragmentation accounting for the smallest proportion, and heavy fragmentation
mainly occurring in the north-central part of the study area. Natural and social factors
jointly affect the landscape fragmentation in Guanling-Zhenfeng County, and there is a
significant interactive enhancement effect among the factors, with the population density
being the most important influence factor. In addition, the effects of the factors on landscape
fragmentation showed significant spatial non-stationarity. The characteristics of landscape
fragmentation changes under different scenarios varied significantly, with the ecological
protection scenario having the smallest percentage of fragmented area in the moderate or
higher class. The comprehensive framework proposed in this study not only provides a
scientific basis for the formulation of ecological conservation planning and land use policies
in the fragile karst ecosystem in Southwest China, but also provides reference value for
other regions.
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