
Citation: Liu, W.; Li, D.; Meng, Y.;

Guo, C. The Relationship between

Emotional Perception and

High-Density Built Environment

Based on Social Media Data: Evidence

from Spatial Analyses in Wuhan. Land

2024, 13, 294. https://doi.org/

10.3390/land13030294

Academic Editor:

Thomas Panagopoulos

Received: 25 January 2024

Revised: 21 February 2024

Accepted: 23 February 2024

Published: 26 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

The Relationship between Emotional Perception and
High-Density Built Environment Based on Social Media Data:
Evidence from Spatial Analyses in Wuhan
Wei Liu, Dong Li * , Yuan Meng and Chuanmin Guo

School of Urban Design, Wuhan University, Wuhan 430072, China; laboud@whu.edu.cn (W.L.);
2022202090006@whu.edu.cn (Y.M.); chuanminguo@163.com (C.G.)
* Correspondence: dong.li@whu.edu.cn

Abstract: The utilization of Social Media Data (SMD) from location-based services offers a wealth
of information to analyze changes in human emotional perception influenced by high-density built
environments. This study aimed to examine the impact of high-density built environment factors
on human emotion perception. First, a set of indicators for high-density built environments was
established. Subsequently, Natural Language Processing (NLP) was employed to analyze SMD
for sentiment identification and classification. Finally, the Multi-scale Geographically Weighted
Regression (MGWR) model was utilized to investigate the spatial differentiation of human emotional
perception in high-density built environments. The findings revealed that positive emotions display
spatial variations in high-density built environments. Additionally, positive emotions were found to
be influenced by multiple variables, with different variables simultaneously affecting individuals’
positive emotions. Specific built environment indicators showed positive correlations with Open
Space Ratio (OSR), Green Space Ratio (GSR), POI Functional Density (PFD), and Road Network
Density (RND), while negative correlations with Floor Space Index (FSI), Ground Space Index (GSI),
Building Average Layer (BAL), Water Index (WI), and Space Syntax Integration (SSI) were observed.
Normalized Difference Vegetation Index (NDVI), POI Functional Mixture (PFM), Space Syntax Choice
(SSC), and Population Density (PD) exhibited mixed results in different spatial contexts. This research
on human perception provides insights for refined urban design and governance, addressing the
limitations of top-down approaches in dense urban renewal.

Keywords: social media data (SMD); high-density built environment; emotional perception;
MGWR; Wuhan

1. Introduction

Human perception of the living environment is influenced by psychological needs,
generating emotions that are regulated by the human nervous system and serve as funda-
mental representations of mental activities [1,2], and changes in vision [3], time [4], spatial
environments [5], and other factors can lead to fluctuations in emotions. The significance
of emotions to humans cannot be overstated, influencing the way people perceive the
past, present, and future. Early research on emotions in the humanities and social sciences
spanned disciplines such as anthropology [6], sociology [7,8], philosophy [9], political
science [10], and race, gender, and cultural studies [11]. Scholars from diverse fields have
adopted an interdisciplinary approach to explore emotions. With the emergence of the
‘spatial turn’ in contemporary cultural theory, the spatial aspect of emotions has gained
prominence [12]. In the 1960s, some scholars began to explore the issue of human spatial
perception from interdisciplinary fields such as environmental psychology and environ-
mental behavior. The relationship between the urban built environment and individuals
became a focal point of discussion during this period. Representative outcomes of this
era include topics such as city image [13], genius loci [14], place attachment [15], place
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identity [16], and more. Various fields including architecture, urban planning, geography,
and psychology are currently engaged in studying human emotions, with a particular focus
on the interplay between individuals, emotions, and spaces [17]. Research topics range
from emotions in ecological environments and climate change, intimate spaces, politics
and emotions, education and emotions, sense of place and belonging, race and emotions,
special populations and emotions, etc. [18]. As humanism progresses, an increasing num-
ber of scholars recognize the importance of paying attention to emotional perception in
urban space research. This research can contribute to the improvement of the urban built
environment, enhancing the quality of public spaces, addressing issues of social-spatial
inequality, and promoting residents’ well-being [19–21].

Meanwhile, the density of the built environment in which humans reside is continually
increasing, particularly in China. A report from the United Nations Human Settlements
Programme predicted that, by 2030, over 60% of the global population will reside in
urban areas, with 43 cities expected to have a total population exceeding ten million,
one-fifth of which will be in China [22]. High-density built environments have become
one of the primary spatial characteristics of urban development in China, especially in
main urban areas. Influenced by factors such as land prices, development costs, and
investment returns, urban spaces often exhibit higher density, greater intensity, more three-
dimensional construction, and more complex systems. The iterative evolution of spatial
forms and structural patterns has accelerated. The concept of the “Compact City” posits that
high-density construction is conducive to promoting sustainable urban development [23],
improving transportation, conserving energy [24], and enhancing the efficiency of public
resource allocation [25]. However, high-density urban development may also diminish the
quality of the living environment. For instance, the dense construction of high-rise buildings
can worsen urban ventilation conditions, exacerbating the urban heat island effect [26].
Extensive development of hard surfaces can disrupt natural ecological environments,
leading to severe traffic congestion during peak hours. The lack of public activity spaces
contributes to decreased community awareness [27], and high-frequency interactions
among the population may result in psychological health issues such as anxiety, tension,
and irritability [28].

With the rapid urbanization in China, the complexity of the built environment is
increasing. While limited research has been conducted on emotional perception in high-
density built environments, there is a growing discussion on how individuals perceive these
environments and their impact on human emotions [29]. Moreover, benefiting from the
rapid development of Geographic Information System (GIS) and the proliferation of social
media data (SMD) in research methodologies, new pathways have emerged in the study
of emotional perception. In terms of built environments, traditional spatial morphology
research methods based on human-scale measurements face challenges in adapting to the
trends of urban scale enlargement, spatial complexity, and the diversification of factors. Is-
sues such as weak scale perception, limited data samples, and singular analysis approaches
have arisen. However, GIS can facilitate comprehensive and precise quantitative analysis
of high-density built environments through techniques such as big data processing and
visualization [30], spatial morphology assessment [31,32], ecological environment monitor-
ing [33], spatial element identification [34], and spatial statistical research [35]. In terms
of emotional perception, traditional research methods typically fall into two categories:
first, by constructing subjective indicators such as cognition and employing methods like
questionnaire surveys to obtain respondents’ emotional perceptions [36] and second, by
collecting textual information such as travelogues and interviews from travel websites and
inferring people’s emotions towards cities or places through text analysis [37]. In recent
years, the utilization of location-tagged street view images, semantic information from
social media, and machine learning datasets created through perceptual crowdsourcing, in-
telligent recognition, and image segmentation, enables large-scale quantification of spatial
perceptions [38–40]. In the age of the Internet, an increasing number of people choose to
express subjective evaluations of objective things online, tending to share their feelings on
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social networks. Individuals’ perceptions of material spaces are gradually disseminated in
internet-sharing communities. The use of SMD based on location-based services provides
large amounts of information for describing changes in residents’ emotions brought about
by the urban built environment. Meanwhile, Natural Language Processing (NLP) meth-
ods have shown tremendous potential in sentiment analysis research using SMD [41–43].
Taking the example of “sign-in” data from social media platforms, the data are conveyed
in textual form, expressing individuals’ perceptions of things and including emotional
evaluations, location tags, and other information. These data can effectively capture the
diverse viewpoints of various groups towards the urban built environment. It has the
capability to reflect the real-time behaviors of a large population, serving as a record of
individuals’ interactions with physical spaces during their online activities [44].

This study proposes a research approach that combines GIS and Opinion Mining
(OM) to explore the relationship between quantitative indicators of high-density built
environments and people’s emotional perception in the main urban area of Wuhan. This
study aims to explore two questions regarding urban space: First, what is the relationship
between quantitative indicators of high-density built environments and people’s emotional
perception? Second, can spatial differentiation characteristics be found in the high-density
built environment indicators that affect emotional perception? First, this research estab-
lishes a comprehensive system of indicators for high-density built environments using
diverse data to evaluate and measure spatial morphology and typological features of the
study area. Then, NLP techniques are applied to sentiment result identification in SMD,
revealing the emotional types and proportions of different population groups in various
neighborhoods. Finally, a Multi-scale Geographically Weighted Regression (MGWR) model
is used to explore spatial differentiation characteristics of population emotional perception
and high-density built environments. The significance of this study lies in the quantita-
tive analysis that examines how objective environments influence subjective perceptions,
addressing the top-down singularity in urban renewal processes. It provides scientific
insights and references for the implementation of refined urban design and governance.

2. Materials and Methods
2.1. High-Density Built Environment Indicators and Hypothesis

For the factors influencing human perception in the urban built environment, some
research indicates that areas with high floor space index and mixed urban functions can
increase the visual burden on individuals, leading to heightened feelings of tension [45].
Other studies suggest a positive correlation between open space, green landscapes in the
city, and people’s positive emotions [46]. Additionally, factors such as building height,
road network density, and population density also have a certain impact on human percep-
tion [47]. The ‘5Ds’ index system proposed by Ewing et al. has sparked significant research
on the correlation between residents’ perceptions and the built environment [48]. In this
study, five major categories—Urban Form, Green Environment, Urban Function, Trans-
portation, and Population Density—were selected as primary indicators for quantitative
analysis of high-density built environments. Thirteen influencing factors, including Floor
Space Index (FSI), Ground Space Index (GSI), Open Space Ratio (OSR), Building Average
Layer (BAL), Green Space Ratio (GSR), Normalized Difference Vegetation Index (NDVI),
Water Index (WI), POI Functional Mixture (PFM), POI Functional Density (PFD), Road
Network Density (RND), Space Syntax Integration (SSI), Space Syntax Choice (SSC), and
Population Density (PD), were used as secondary indicators (Table 1). These factors were
analyzed separately, and all data were normalized. The hypothesis posits a significant rela-
tionship between the chosen high-density built environment indicators and the perception
of human emotions, which will be further verified.

The quantitative indicators of Urban Form were based on an indicator system called
“Spacemate”, established by Professor Meta Berghauser Pont, to assess the correlation
between building density and urban fabric [49]. He combined FSI, GSI, OSR, and BAL in
blocks to represent building capacity intensity, block density, open space proportion, and
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building height, respectively. Through these four dimensions, it effectively distinguishes
the spatial characteristics of different urban block forms and environments, avoiding the
limitations of using a single building density indicator to describe the density status of
blocks and urban environments [50,51]. The Greening Environment quantitative indica-
tors encompassed three secondary indicators: GSR, WI, and NDVI. The type of green
space in the GSR was selected from the Chinese standard for classification of urban green
space [52], which included green space within the four categories of urban construction
land: park green space, protective green space, square space, and subsidiary green space.
The WI represents the difference between the minimum distance from the neighborhood
to the surrounding adjacent waters within a specific range; a higher value indicates a
better waterfront environment. This index was utilized to convey the ecological quality
of the neighborhood and its surrounding natural environment [53]. The NDVI quantifies
the state of vegetation growth by measuring the difference between near-infrared and
red light, reflecting the radiative quantification of the relative abundance and activity of
green living vegetation, and is widely used in quantitative studies of vegetation cover [54].
Urban Function quantitative indicators were analyzed quantitatively through Point of
Interest (POI) data. First, kernel density analysis was employed to identify the cluster-
ing patterns of POI features, studying their spatial functional density and distribution
characteristics [55]. Second, information entropy was utilized to calculate the functional
diversity of POIs, where higher entropy values indicated a greater variety of land use types
with different functions [56]. POI classifications included restaurants, scenic spots, public
facilities, shopping malls, transportation nodes, finance facilities, educational institutions,
culture facilities, business, life services, sports and leisure, medical services, government
institutions, and accommodation services. The quantitative indicators of Transportation
consisted of RND, SSI, and SSC. RND reflected the efficiency and capacity of urban road
traffic [57]. Spatial Syntax was proposed by British scholar Bill Hillier in the 1970s, and the
basic principle is to describe the quantitative relationship between spaces with mathemati-
cal topological relations, which can be used to interpret the way and degree of influence
of urban spatial morphology on human spatial behaviors [58]. Among them, SSI is the
degree of agglomeration or disagglomeration between an element and other elements in a
spatial system. It measures the ability of a space to attract arrival traffic as a destination. A
higher degree of integration implies better accessibility within the space, facilitating the
accumulation of pedestrian traffic. SSC, the frequency of an element in a spatial system as
the shortest topological distance between two nodes, reflects the likelihood of a space being
penetrated; the higher the degree of choice, the more likely a space is to be penetrated by
vehicle flows [59,60]. Population Density is an indicator reflecting the degree of population
concentration within a certain area and directly influencing residents’ perception of the
living environment. While lower population density contributes to increased residential
comfort, it is unfavorable for intensive mixed land use and sustainable transportation [61].
Conversely, higher population density leads to a decrease in per capita public resources, and
the dense population and activities can also create a sense of oppression for residents [62].

Table 1. Calculation and statistics of influencing factors.

Indicator
Calculation Method Formula Reference

Primary
Indicator

Secondary
Indicator

Urban Form

FSI
(Floor Space Index)

Ratio of gross floor area to site
area

FSI = Ar
AI

Berghauser, P. (2004) [49]

Ar is the sum of all floor areas
in the block, and AI is the area
of the block.

GSI
(Ground Space Index)

Ratio of building base area to
site area

GSI =
∑n

i=1 mi
S

i is a building in the block, mi
is the building base area of the
ith building, and S is the area
of the block.
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Table 1. Cont.

Indicator
Calculation Method Formula Reference

Primary
Indicator

Secondary
Indicator

OSR
(Open Space Ratio)

Ratio of open space area to
site area

OSR =
S−∑n

i=1 mi
S

i is a building in the block, mi
is the building base area of the
ith building, and S is the area
of the block.

BAL
(Building Average Layer)

Average Layer of buildings in
the block

BAL =
∑n

i=1 li
N

i is a building in the block, li is
the number of layers in the ith
building, and N is the number
of buildings in the block.

Green
Environment

GSR
(Green Space Ratio)

Ratio of green space area to
site area in the block

GSR = Gr
AI

-Gr is the sum of the areas of
the various types of green
spaces in the blocks, and AI is
the area of the block.

NDVI
(Normalized Difference

Vegetation Index)

Calculated based on the
reflectance of light in the
visible and near-infrared

portions of the
electromagnetic spectrum.

NDVI = NIR − R
NIR + R

Jin, K. (2020) [54]NIR is the reflectance in the
near-infrared spectrum, and R
is the reflectance in the red
spectrum.

WI
(Water Index)

Minimum distance from the
block to the surrounding

water

WI = K − NEAR_DIST

Wang, J. (2016) [53]K takes the value of 3000 m
search radius, and
NEAR_DIST is the closest
distance to the water.

Urban
Function

PFM
(POI Functional Mixture)

Ratio for each type of POI
function point

PFM =
−∑n

i−1(pi × lnpi), (1, 2, 3, . . . , n)

Xue, B. (2018) [55]
i is the number of POI types in
the block, and pi is the ratio of
the number of types of ith
POIs in the block to the total
number.

PFD
(POI Functional Density)

Kernel density at each POI
functional point

PFDi =
Ci
Si

,∈ (1, 2, 3, . . . , n)

Miaoyi, L.I. (2018) [56]

PFDi is the POI data point
density fraction (points/km2)
for a facility point within a
block, Ci is the sum of the
values of the POI points for
that facility point within the
block, and Si is the area of the
block (km2).

Transportation

RND
(Road Network Density)

Ratio of road length to site
area in a block

RND = Rl
AI

Jenelius, E. (2009) [57]Rl is the sum of the lengths of
all types of roads in the block,
and AI is the area of the block.

SSI
(Space Syntax Integration)

The ratio of the generalized
distance to the generalized

distance from the line segment
to all other line segments

SSI = 1
∑k dik

Hillier and Iida’s (2005) [59]dik is the shortest path
between line i and line k. r =
500 m

SSC
(Space Syntax Choice)

Ratio of the number of times
the shortest path crosses an

axis to the shortest path

SSC = ∑j ∑k
djk (i)

djk

Xia, X. (2013) [60]
djk is the shortest path
between line segment j and
line segment k, and djk(i) is
the shortest path between line
segment j and line segment k
that contains line segment i. r
= 500 m

PD
(Population Density)

Ratio of residential population
in a block-to-block area

PD = P
AI

Burton, E. (2002) [61]
Shen, Y. (2019) [62]

P is total population in the
block, and AI is the area of the
block (km2).

2.2. Study Area

Wuhan is recognized by the United Nations as one of the world’s “Design Capital”,
and it is also a nationally renowned historical and cultural city, as well as the central city and
the only sub-provincial city in the central region of China. This research used all the blocks
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in the main urban area of Wuhan as the research objects, covering an area of approximately
690 square kilometers, with a total of 2665 blocks. This included eight administrative
districts: Hanyang District, Jiang’an District, Jianghan District, Qiaokou District, Wuchang
District, Hongshan District, Qingshan District, and Jiangxia District. The total population is
approximately 7.1 million, accounting for about 52% of the total population of Wuhan. This
area is home to a large number of migrants and has the highest population density and the
most intense urban development in Wuhan. It is also an area with a highly concentrated
urban vitality. Therefore, the main urban area of Wuhan can serve as a typical case for
studying the perception of emotions in high-density built environments (Figure 1).
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Figure 1. Study Area.

2.3. Data Resources
2.3.1. Built Environment Data

The built environment data were comprised of six categories: Buildings Vector data,
Green Space and Water Space Vector data, NDVI data, POI data, Road Network data,
and Population data. The Building Vector data and Road Network data were sourced
from the Open Street Map platform, while the Green Space and Water Space Vector data
were obtained from the National Geomatics Information System of China. The NDVI data
(250 m) were provided by the Resource and Environment Science and Data Center of China,
and the POI data were collected from the Baidu Maps platform. The Population data were
obtained from the statistical data of the seventh population census of the Wuhan Municipal
People’s Government by the Wuhan Geomatics Institute (Table 2).

2.3.2. Emotional Perception Data

First, the emotional perception data were extracted using a Python program by searching
the Weibo platform for the keyword “Wuhan sign-in” and obtaining a large number of
geospatial information, which referred to data associated with geographical locations within
the content. The geospatial information included details such as the geographical coordinates
(latitude and longitude) of the location from which a post or message was published. When
users on Weibo choose to share their location or tag a specific place in their posts, this
geospatial information becomes part of the metadata associated with the content. It enables
users to provide context about where they are or what they are experiencing. These data,
collected from approximately 300,000 Weibo sign-in posts from 11 March 2021 to 8 December
2023, include text content, titles, posting time, likes, comments, and other details. Since Weibo
data cover a wide range of information, in order to accurately reflect the impact of urban built
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environments on people’s emotions, the study used a “keyword filtering” method (keywords
examples: buildings, streets, neighborhoods, parks, green spaces, urban environment, etc.) to
clean the Weibo data. Irrelevant public opinion, entertainment, advertising, and commercial
data were removed, leaving 15,888 valid Weibo posts related to urban built environments
and geographical locations. Finally, the spatial distribution of emotional perception data was
processed, analyzed, and mapped using ArcGIS 10.8.

Table 2. Statistics of data sources.

Data Access Time Sources Format

Block Area of Wuhan - Wuhan Geomatics Institute .shp
Buildings of Wuhan December 2022 Open Street Map .shp

Road Network of Wuhan December 2022 Open Street Map .shp
POI in Wuhan June 2023 Baidu Map .xlsx

Green Space of Wuhan September 2023 National Geomatics Center of China .shp
Water Space of Wuhan September 2023 National Geomatics Center of China .shp

NDVI of Wuhan March 2023 Resource and Environment Science and
Data Center .tif

Population of Wuhan August 2022 Wuhan Geomatics Institute .csv

2.4. Methods
2.4.1. Research Framework

This study used GIS to analyze urban spatial environmental and population data. It
was used to develop an indicator system for high-density built environments at the block
level, validating multicollinearity. Additionally, utilizing NLP, this research examined SMD,
evaluating subjective perceptions of the urban built environment through sentiment analysis
of semantic expressions. Spatial autocorrelation analysis was then performed based on the
spatial distribution characteristics of the study area. Subsequently, this study established
the MGWR model, with objective high-density built environment indicators as independent
variables and human emotional perception data as dependent variables. These variables
were then subjected to regression analysis to investigate the spatial differentiation features of
human emotional perception (Figure 2).
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2.4.2. Emotional Perception Classification

Natural Language Processing (NLP) is a field of artificial intelligence and computa-
tional linguistics that focuses on the interaction between computers and human language,
which is used to extract meaning, sentiment, and context from the text. In the realm of
emotion classification, the initial stages of research often simplify emotions into positive
or negative categories for easier measurement. However, as studies have advanced, ad-
ditional types of emotions have been incorporated. Drawing from existing literature on
emotion classification [63] and data features [64], this study identified five main types
of emotions: joy, affection, distress, anger, and disgust. Joy and affection are typically
classified as positive emotions, whereas distress, anger, and disgust are categorized as
negative emotions (Table 3). First, this research utilized a corpus dataset of 15,888 Weibo
texts and applied the jieba library along with the Baidu stop word list to segment the
texts, eliminating numerical values, English characters, and irrelevant terms. Subsequently,
employing the TF-IDF model, the texts were transformed into vectors. The TfidfVectorizer
function from the sklearn library was employed to convert each Weibo text into a TF-IDF
vector. Following this, a subset of 1500 texts was randomly chosen from the corpus dataset
at a rate of 10% and annotated based on their emotional content to establish a training
set. A model for emotion classification was then developed using the random forest algo-
rithm. The Random Forest Classifier function from the sklearn model was utilized to create
the emotion classification model and predict the emotional categories of the remaining
unannotated data [65]. Lastly, the ratio of individuals perceiving positive and negative
emotions within each neighborhood in relation to the total Weibo statistical population of
the neighborhood was calculated to determine the positive and negative emotion values of
each neighborhood.

Table 3. Example of Weibo emotion classification.

Emotion Type Text Example

Positive

Joy
I took a stroll in the Hankou Historical Block. On
both sides of the street, were various Western-style
buildings. What a surprising and romantic walk.

Affection
The skyline of Wuhan is spectacular. The city
landmarks are visible at a glance, making it
endlessly fascinating.

Negative

Distress Wuhan is huge, with tall and numerous buildings.
There is always a strange sense of loneliness.

Disgust
There are so many traffic lights in Wuhan, and the
city is congested every day. Everything feels chaotic,
especially during rush hour, which can be uffocating.

Anger

Why have so many vibrant communities been
demolished? The old-fashioned local atmosphere is
fading away, and high-density residential buildings
feel like prisons.

2.4.3. Spatial Autocorrelation Analysis

This study employed spatial autocorrelation to analyze the perception of positive and
negative emotions separately in the population within block areas. Spatial autocorrelation
was primarily applied to the distribution patterns of geographical elements, including both
global and local spatial autocorrelation [66]. Using ArcGIS 10.8, this paper utilized Moran’s
I to investigate the spatial autocorrelation of emotional perceptions in the population in the
urban main area of Wuhan. Additionally, the Local Indicators of Spatial Association (LISA)
was employed to explore the spatial clustering characteristics of emotional perceptions in
the study area.
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Global spatial autocorrelation analysis is commonly employed for spatial aggregation
data analysis. Moran’s I is an indicator used to evaluate spatial autocorrelation, with values
ranging from −1 to 1. Moran’s I closer to 1 indicates that spatial units are more clustered,
suggesting an overall pattern of spatial aggregation and positive correlation. Conversely,
Moran’s I closer to −1 indicates a more dispersed overall spatial distribution, suggesting
a negative correlation. When the Moran’s I value is close to 0, the overall distribution is
random, indicating no significant spatial influence. A significance level of p < 0.05 indicates
the rejection of the null hypothesis, confirming the existence of spatial autocorrelation. The
formula is given below:

Iglobal =
∑n

i=1 ∑n
j=1 ωij(xi − x)

(
xj − x

)
s2∑n

i=1 ∑n
j=1 ωij

(1)

where n is the total number of study areas, xi and xj are the values of an attribute feature x
at areas i and j, respectively, ωij is an element in spatial weight matrix ω that is used to
denote the neighboring relationship of spatial regions at n positions, x is the mean of all
attribute values, and s2 is the sample variance.

Local spatial autocorrelation indicators can be used to measure the degree of the local
spatial association between the center areas and the surrounding areas by examining the
distribution pattern of individual entry attribute values in the heterogeneous space. LISA
values were divided into four quadrants, including the High-High, Low-High, Low-Low,
and High-Low. The formula is given below:

Ilocal =
(xi − x)2

S2

n

∑
j=1

ωij
(
xj − x

)
(2)

where xi and xj are the values normalized to areas i and j, respectively, ωij is the spatial
weight between features i and j, x is the mean of the corresponding attribute, and s2 is the
sample variance.

2.4.4. Multi-Scale Geographically Weighted Regression (MGWR) Model

This study employs the Multi-scale Geographically Weighted Regression (MGWR)
model, which is an optimized version of the Geographically Weighted Regression (GWR)
model, to empirically analyze the human perception of the high-density built environment
in the main urban area of Wuhan. Prior to establishing the model, it is necessary to
validate the multicollinearity among the independent variables. Multicollinearity refers to
a strong correlation between explanatory variables, which may interfere with the regression
results and significance. Using ArcGIS 10.8 for the multicollinearity test of Urban Form,
Green Environment, Urban Function, Transportation, and Population Density variables,
the Variance Inflation Factor (VIF) was adopted as the screening indicator because it is a
crucial metric for multicollinearity tests. Variables with VIF > 7.5 were excluded to reduce
the impact of inter-variable correlation on the results. The formula is given below:

VIFj =
1(

1 − R2
j

) (3)

where R2
j represents the coefficient of determination for the jth independent variable

obtained from a regression model.
GWR is a spatial statistical technique used for exploring and modeling spatially

varying relationships between a dependent variable and independent variables across
different locations. GWR is particularly useful when the relationships between variables
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vary across space, violating the assumption of global stationarity in traditional regression
models. The formula is given below:

Yi = β0(ui, vi) + ∑k
j=1 β j(ui, vi)xij + εi (4)

where Yi is the dependent variable for observation i, β0(ui, vi) and β j(ui, vi) are location-
specific coefficients, xij is the value of the jth independent variable for observation i, εi is
the error term, and (ui, vi) represents the spatial coordinates of observation i.

MGWR is primarily applied in studies related to soil pollution [67], the distribution of
transportation facilities and travel behavior [68], urban built environment ventilation [26],
block vitality assessment [35], etc. However, it has been rarely employed in studies related
to emotional perception.

MGWR is an extension of GWR, allowing for the consideration of multiple scales or
bandwidths in the estimation of spatial relationships. While GWR focuses on capturing
spatially varying relationships at a single fixed bandwidth, MGWR introduces the concept
of multiple bandwidths to accommodate variations in the spatial scale of relationships
across the study area [69]. MGWR transforms GWR into a Generalized Additive Model
(GAM) and utilizes a backfitting algorithm. Through an iterative process, it directly
associates individual response variables with predictor variables [70]. The formula for
MGWR is as follows:

Yi = β0(ui, vi, si) + ∑k
j=1 β j(ui, vi, si)xij + εi (5)

where si denotes the scale parameter for observation i, and the remaining parts are the
same as those described for GWR.

3. Results
3.1. Overview of Data Quantification
3.1.1. High-Density Built Environment

We conducted a quantitative analysis of the high-density built environment indicators
in the main urban area of Wuhan and described the spatial distribution characteristics
(Figure 3).

In terms of Urban Form indicators, the blocks with higher FSI were mainly distributed
linearly along the banks of the Yangtze River and the city’s main roads, while areas with lower
FSI, such as the Wugang Industrial Area, Nan’anzui Area, and East Lake Scenic Area, exhibited
block and circular distributions (Figure 3a); GSI and OSR showed an inverse relationship. The
Hankow Hanzheng Street and Wuchang Liangdao Street are historical areas in Wuhan. These
areas had a higher GSI and a smaller OSR, exhibiting a certain fan-shaped feature (Figure 3b,c);
blocks with higher BAL were mainly concentrated in residential areas, such as the Hanyang
Sixin area, the Hankow Houhu area, the Wuchang South Lake area, Hongshan Yuanlin Road,
and Guanggu Avenue area, and exhibited a concentric decreasing pattern around the rail
transit stations (Figure 3d). In terms of Green Environment indicators, blocks with higher GSR
were mainly distributed in the areas near mountains and waters, such as along the Yangtze
River, Han River, East Lake, South Lake, Sha Lake, and other regions. In contrast to the GSI,
the GSR was lower in the Hankow Hanzheng Street and Wuchang Liangdao Street areas
(Figure 3e); blocks with higher NDVI were mainly distributed along the East Lake, which is
primarily composed of natural scenic areas with less urban development. The NDVI was lower
in the Hanzheng Street area, Wuchang Riverside area, and Baishazhou area (Figure 3f); the
distribution of rivers and lakes in Wuhan was dense, with most blocks having a higher WI.
However, the WI was lower in the Zhongnan Road area of Wuchang, the Guanggu Business
District area, Renhe Road area, and the Houhu area of Hankou, as well as the Gutian Road area
and Changgang Road area (Figure 3g). In terms of Urban Function indicators, blocks with high
PFM were mostly located near water, mainly distributed in the southern area of South Lake, the
northern area of the Han River, and the Sanjiao Lake area (Figure 3h); kernel density revealed
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that blocks with high PFD were concentrated within the Second Ring Road, particularly in the
historical area of Hankow (Figure 3i). In terms of Transportation indicators, the blocks with
higher RND were located along Liberation Avenue in Hankow, Zhongbei Road in Wuchang,
and Yingwu Avenue in Hanyang (Figure 3j). According to the calculations of the integration
and choice degrees based on Space Syntax within a radius of 500 m, the distribution showed
some similarities. Specifically, the highest indicators were found within the region enclosed by
Jianghan Avenue, Wuhan Avenue, Liberation Avenue, and Wusheng Road (Figure 3k,l). Blocks
with higher PD were mainly concentrated at the intersection of the Yangtze River and the Han
River, which marks the origin of urban development in Wuhan (Figure 3m).
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3.1.2. Spatial Characterization of Emotional Perception

Our research findings indicate that, among a total of 2665 blocks, the dataset contained
15,888 emotion-tagged sign-in data with POI information distributed across 526 blocks
(Figure 4). Within these blocks, 486 were linked to positive emotions, while 168 were
linked to negative emotions. The analysis of emotion types revealed that 12,748 instances
of sign-in data were associated with positive emotions, representing 80.24% of the dataset.
Specifically, there were 6763 instances of joy (42.57%) and 5985 instances of affection
(37.67%). Conversely, there were 3140 instances of sign-in data linked to negative emotions,
making up 19.76% of the total dataset. Within this category, there were 453 instances of
anger (2.85%), 2304 instances of distress (14.5%), and 383 instances of disgust (2.41%).
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According to the sign-in data with the spatial information in GIS, a kernel density map
was generated to further analyze the spatial distribution structure of human emotional
perception (Figure 5). Overall, the spatial distribution of emotion-tagged POIs showed a
scattered pattern within the Second Ring Road and the East Lake surrounding area, without
distinct boundaries or path features. The POIs were primarily concentrated in the old town,
commercial districts, natural scenic areas, and university campuses. A three-dimensional
heatmap was created based on the frequency of sign-in at the POIs. By sorting the sign-in
frequency of emotion-tagged POIs and grouping them based on similar locations, it was
discovered that Jianghanguan Commercial Area, Wuhan Tiandi Commercial Area, East
Lake Scenic Area, Jiedaokou Commercial Area, Optics Valley Commercial Area, Wuchang
Riverside, Hanjie Commercial Area, and Wuchang Old Town were the high-frequency
sign-in areas (Figure 6), It is worth noting that the amount of sign-in data in Jianghanguan
Commercial Area were significantly higher than other regions. This area is a renowned
tourist attraction in Wuhan, attracting a large number of visitors who leave location-tagged
comments to show their presence. Therefore, this region had the most significant impact
on spatial data, potentially leading to a certain bias in the perception of emotions.
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In order to gain further insights into the specific opinions of the eight high-frequency
sign-in areas, it is necessary to analyze the semantics of the sign-in texts to extract typical
user opinions. Based on the similarity of comment viewpoints and their relevance to spatial
elements, clustering was performed to group the opinions of each activity space, and a
word cloud was generated (Figure 7). The results indicate that users generally have positive
impressions of various regions in Wuhan, resulting in similar comment viewpoints for
each type of activity space. Specifically, users showed a high level of appreciation for
natural environments such as the East Lake Scenic Area and Wuchang Riverside, with
predominantly positive comments. The typical opinions of historical and cultural districts
like Wuchang Old Town and Jianghanguan Commercial Area highlight the vibrant street
atmosphere and high-density street network, which can lead to a sense of congestion.
Wuhan Tiandi Commercial Area and Hanjie Commercial Area, as commercial districts,
received comments mostly related to shopping, with a diverse range of commercial spaces
that bring a sense of enjoyment, although the high-density environment can feel slightly
overwhelming. For the Optics Valley Commercial Aera, which is further from the city
center, comments often mentioned a liking for its “high-tech” atmosphere, convenient
transportation, and high-rises. Opinions about the Jiedaokou Commercial Area, which is
near universities, were generally positive.
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3.2. Regression Model Results
3.2.1. Spatial Clustering Features of Emotional Perception

The results reveal that Moran’s Index for the positive emotion indicator in the main
urban areas of Wuhan was 0.009, with a z-score of 3.062 and a p-value of 0.002, demon-
strating a significant level of 0.01. This suggests a spatial positive correlation among the
positive emotion indicators at the block level (Figure 8a). On the other hand, Moran’s
Index for the negative emotion indicator was 0.004, with a z-score of 1.396 and a p-value
of 0.163, indicating that the distribution of negative emotions at the block level is random
(Figure 8b). Therefore, this study focuses solely on investigating the relationship between
positive emotions and high-density built environments.
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To further investigate the characteristics of clustering effects, this study utilizes Lo-
cal Indicators of Spatial Association (LISA) analysis to examine the spatial patterns and
features of positive emotions in the block-level distribution within the main urban areas
of Wuhan (Figure 9). The results show a significant spatial autocorrelation in the distri-
bution of positive emotions among 1018 blocks. The spatial distribution demonstrates an
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uneven state, revealing four different types of cluster distributions: “high-high”, “low-low”,
“high-low”, and “low-high”. In addition, there is a strong interdependence among the
neighborhoods. Specifically, 30.3% of the blocks exhibited a “low-low” cluster distribu-
tion feature, indicating that these areas have low positive emotion values, affecting the
surrounding blocks with similarly low positive emotion values. These blocks were mainly
located in the fringe areas of the main urban area, dominated by industrial areas such as
the Wugang industrial area, the Baishazhou industrial area, and the Hanyang Economic
Development Zone. On the other hand, 1.3% of the blocks exhibited a “high-high” cluster
distribution feature, indicating that these areas have high positive emotion values, influenc-
ing the surrounding blocks with similarly high positive emotion values. These blocks were
primarily situated in commercial and waterfront areas, such as the Jiedaokou commercial
area, Optics Valley commercial area, Hankow riverside, and the area around East Lake
Scenic. Other “high-low” and “low-high” clusters were sporadically distributed in the
transitional zones between clustered areas.
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3.2.2. Independent Variable Screening

In order to avoid bias in the estimation results due to the mutual influence of factors, it
is necessary to test each factor and select the optimal ones as variables for the construction
of the MGWR model. In this study, we used Ordinary Least Squares (OLS) regression
analysis with 13 explanatory variables and the positive emotion values of the blocks as the
dependent variables. The results show that the Variance Inflation Factor (VIF) values of all
13 explanatory variables are less than 7.5, indicating the absence of multicollinearity issues
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among the variables. Therefore, we used all variables as explanatory variables for model
construction (Table 4).

Table 4. Statistics of collinearity test results of variables.

Variables Coefficient [a] Probability [b] Robust_Pr [b] VIF [c]

FSI −8.645 0.165 0.154 3.553
GSI 7.139 0.890 0.757 3.724
OSR 29.286 0.456 0.156 2.682
BAL −1.080 0.395 0.175 2.006
GSR 3.736 0.513 0.479 1.227

NDVI 108.529 0.063 0.290 1.331
WI −0.008 0.308 0.057 1.135

PFM −7.565 0.029 0.060 2.286
PFD 7183.923 0.588 0.774 1.315
RND −0.256 0.997 0.997 1.299
SSI 0.296 0.620 0.512 1.025
SSC 10.021 0.433 0.687 1.564
PD 0.001 0.550 0.377 1.074

3.2.3. Regression Coefficients and Spatial Distribution of Explanatory Variables of the
MGWR Model

(1) MGWR Regression Model Results

According to Table 5, the goodness-of-fit measures for the MGWR model indicate an
R2 value of 0.504 and an adjusted R2 value of 0.400. In terms of optimal bandwidth, the
population density and NDVI have relatively smaller bandwidths of 44 and 52, respectively,
suggesting that their effects on positive emotions operate at a smaller scale. FSI, PFM,
and SSI have slightly larger bandwidths of 122, 126, and 277, respectively. The optimal
bandwidths for the other variables are all greater than 400, indicating that their influence is
on a more global scale.

Table 5. Results of MGWR.

Diagnostic Information

AIC 1208.355
AICc 1244.946

R2 0.504
Adj. R2 0.400

Bandwidths

FSI 122
GSI 484
OSR 484
BAL 484
GSR 484

NDVI 52
WI 482

PFM 126
PFD 409
RND 484
SSI 277
SSC 484
PD 44

(2) Descriptive Statistics of Standardized Regression Coefficients

The coefficients’ standard deviations reflect the variation in the relationship between
positive emotions and explanatory variables. According to Table 6, the variables with
larger standard deviations are PD, NDVI, FSI, and PFM, indicating greater variation in their
effects. Conversely, the coefficients of other explanatory variables have smaller degrees of
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variation. In terms of the absolute values of the coefficient means, the three factors that had
the largest overall impact on positive emotions are PFD, PD, and NDVI, in that order. The
absolute values of the medians show that PFD had the largest overall impact on positive
emotions. In terms of significance, only PFD had a significant impact on positive emotions
across all blocks. NDVI, PD, FSI, PFM, and SSI had significant impacts on positive emotions
in some blocks, but not all blocks. On the other hand, GSI, OSR, BAL, GSR, WI, RND, and
SSC did not have a significant impact on positive emotions in any of the blocks.

Table 6. Descriptive statistical results of standardized regression coefficients of explanatory variables
for MGWR model.

Variables Mean STD Min Median Max

p ≤ 0.005
Number of
Significant

Values

FSI −0.149 0.132 −0.686 −0.118 0.131 95
GSI −0.079 0.003 −0.083 −0.079 −0.028
OSR 0.035 0.004 0.020 0.036 −0.069
BAL −0.007 0.002 −0.010 −0.007 −0.000
GSR 0.050 0.010 0.020 0.053 0.060

NDVI 0.100 0.338 −0.421 −0.001 1.375 107
WI −0.030 0.008 −0.045 −0.033 −0.010

PFM 0.010 0.125 −0.511 0.042 0.158 35
PFD 0.184 0.042 0.143 0.163 0.303 486
RND 0.018 0.004 0.010 0.017 0.028
SSI 0.023 0.062 −0.214 0.045 0.086 1
SSC −0.037 0.006 −0.044 −0.038 −0.018
PD 0.147 0.430 −1.712 0.009 1.575 100

(3) Spatial Heterogeneity of Regression Coefficients

Spatial visualization of the MGWR coefficient regression results yielded the following
findings (Figure 10a).

In terms of Urban Form variables, FSI was generally negatively correlated with positive
emotions. However, in the eastern part of the research area, the correlation was significant.
In contrast, in the northwestern and southwestern parts of the research area, there was a
positive correlation between FSI and positive emotions, with coefficient values ranging
from −0.686 to 0.131 (Figure 10a). GSI and BAL were both negatively correlated with
positive emotions. In the central part of the research area, the correlations were significant.
However, the coefficient range for GSI was between −0.083 and −0.069, decreasing towards
the western part, while the coefficient range for BAL was between −0.011 and −0.004,
decreasing towards the eastern part (Figure 10b,d). OSR was significantly positively
correlated with positive emotions in the eastern part of the research area, with coefficient
values ranging from 0.020 to 0.040. Moreover, there was a strong spatial heterogeneity, with
a rapid decrease from east to west (Figure 10c).

In the Green Environment variables, GSR was positively correlated with positive
emotions, with coefficient values decreasing from west to east and ranging from 0.060
to 0.020 (Figure 10e). NDVI showed a unique pattern. In the northern and eastern parts
of the research area, it was significantly positively correlated with positive emotions,
with coefficient values ranging from 0.123 to 1.375, exhibiting significant fluctuations.
However, in the western and southern parts, it was significantly negatively correlated
with positive emotions, with coefficient values ranging from −0.421 to −0.124, showing
relatively smaller fluctuations (Figure 10f). WI was negatively correlated with positive
emotions, with coefficient values decreasing from south to north and ranging from −0.045
to −0.010 (Figure 10g).
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(b) GSI, (c) OSR, (d) BAL, (e) GSR, (f) NDVI, (g) WI, (h) PFM, (i) PFD, (j) RND, (k) SSC, (l) SSI, and
(m) PD.

In the Urban Function variables, PFM exhibited two types of correlations with positive
emotions. In the eastern part of the research area, it was negatively correlated with positive
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emotions, with coefficient values ranging from −0.512 to −0.060, showing significant
fluctuations (Figure 10h). Conversely, in the western part of the research area, it was
positively correlated with positive emotions, with coefficient values ranging from 0.023 to
0.158 (Figure 3h). PFD was positively correlated with positive emotions, with coefficient
values decreasing from east to west and ranging from 0.143 to 0.303 (Figure 10i).

In the Transportation variables, RND was positively correlated with positive emotions,
with coefficient values decreasing from south to north and ranging from 0.010 to 0.028
(Figure 10j). SSI was negatively correlated with positive emotions, with coefficient values
decreasing from east to west and ranging from −0.044 to −0.018 (Figure 10k). SSC also
exhibited two types of correlations with positive emotions. In the eastern part of the
research area, it was negatively correlated with positive emotions, with coefficient values
ranging from −0.214 to −0.016. Conversely, in the western part of the research area, it was
positively correlated with positive emotions, with coefficient values ranging from 0.024 to
0.086 (Figure 10l).

PD also showed two types of correlations with positive emotions. In the central part
of the research area, it was positively correlated with positive emotions, with significant
clusters of blocks. The coefficient values ranged from 0.260 to 1.575, showing significant
fluctuations. In contrast, in the eastern part of the research area, it was negatively correlated
with positive emotions, with significant clusters of blocks. The coefficient values ranged
from −1.712 to −0.055, also exhibiting significant fluctuations (Figure 10m).

4. Discussion
4.1. Interpretation of the Effects of Spatial Heterogeneity of Variables
4.1.1. Urban Form

Overall, FSI was negatively correlated with positive emotions, particularly in the east-
ern areas where the Wuchang and Hongshan districts are located. These regions encompass
a large number of lakes such as East Lake, South Lake, and Sha Lake. The development
intensity of land in these lakeside areas is relatively low, resulting in better natural and
ecological landscapes. A study by Lan et al. (2021) further validates these findings, in-
dicating that natural conditions can positively impact individuals’ physical and mental
well-being by reducing anxiety and distress [71]. Moreover, in the Erqi area of Hankow
and the Sanjiaohu area of Hanyang, the FSI is negatively correlated with positive emotions.
This may be attributed to these areas being designated as key control zones in urban design,
where new construction considers natural environmental factors and human perceptual
needs. Positive emotions display a negative correlation with GSI and BAL but a positive
correlation with OSR, indicating that reduced urban development may be advantageous for
fostering positive emotions. The presence of open spaces and lower building heights can
contribute to a more expansive view and alleviate feelings of confinement. These results
align with those of Wang et al. (2022) [72]. In the Wuchang Riverside area, GSI and BAL
demonstrate notable trends due to their historical significance and strict height regulations
for new constructions within the Wuchang Ancient City. Similarly, OSR and FSI exhibit
consistent patterns, particularly in the eastern lakeside regions.

4.1.2. Green Environment

GSR was positively correlated with positive emotions, with spatial heterogeneity
observed between the western and eastern regions. The western areas (Qiaokou, Jianghan,
and Jiang’an districts) have more developed land and fewer urban green spaces, leading
to a stronger correlation. Conversely, the eastern areas (Wuchang and Hongshan districts)
feature large lakes and mountains, resulting in a weaker correlation. In regions with
limited green spaces, the impact of GSR on positive emotions was more pronounced. NDVI
showed a dual relationship with positive emotions, being significantly positively correlated
in the Erqi Riverside Business District, Gutian area, the area along East Lake, and the area
along South Lake, which have large urban parks and green spaces. However, there was
a significant negative correlation in other areas, with substantial differences that may be
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attributed to variations in people’s spatial perceptions. In densely built-up areas where
architecture dominates urban spaces, individuals perceive the city as primarily serving
functional purposes, with vegetation playing a secondary role [73]. On the contrary, in
natural scenic areas, people visit with the specific purpose of experiencing the natural
environment, including sights, sounds, and ecological elements [74]. WI was negatively
correlated with positive emotions, possibly due to Wuhan’s abundant rivers and lakes,
leading to widespread water coverage that is easily accessible and not considered a scarce
resource within the city. In contrast, areas with less water coverage can accommodate more
extensive urban development, providing greater urban service advantages.

4.1.3. Urban Function

PFM also exhibited two types of correlations with positive emotions. It shows a
positive correlation with positive emotions in areas along both sides of the Yangtze River,
known for scenic spots and commercial districts. Conversely, in the Optics Valley High-
tech Zone and Jiedaokou area, it exhibited a negative correlation. This is due to the
different characteristics of these areas, the former being industrial and high-tech features
and the latter being research and development hubs. Commercial areas with a high
functional mixture tend to elicit higher positive emotions due to convenient services and
entertainment, while research and development areas have a quieter environment, leading
to lower positive emotions. PFD showed a positive correlation with positive emotions,
especially in the eastern region where universities dominate. This is because students in
this region may face transportation challenges and a limited activity range; thus, a higher
functional density improves convenience and reduces travel costs [75].

4.1.4. Transportation

RND was positively correlated with positive emotions, especially in the eastern region.
This relationship can be explained by the geographical features of the eastern region, which
include numerous water bodies and mountains. These geographical characteristics make it
more difficult to build roads, leading to lower road network density and less convenient
transportation. In this region, higher road network density was associated with improved
positive emotions due to the enhanced convenience it offers for travel and commuting. SSI
and SSC primarily assess the accessibility and permeability of motorized lanes, reflecting
the ease of reach and navigability for vehicles. SSI showed a negative correlation with
positive emotions, particularly in the Hankou Historic District and Wuchang Ancient
City areas. This is because higher integration in these areas results in easier access for
motorized vehicles, leading to congestion and lower positive emotions among pedestrians.
This finding aligns with the research conducted by Ahmed (2023) [76]. Conversely, lower
vehicular traffic and a focus on pedestrian movement in an area tended to evoke more
positive emotions. SSC showed two distinct correlations with positive emotions. In the
central region of the study area, SSC was positively correlated due to the concentration
of urban service functions and high demand for commuting, especially during rush hour.
This is facilitated by the presence of a long tunnel and multiple bridges across the Yangtze
and Han Rivers, enhancing navigability and transportation convenience, thereby boosting
positive emotions [77]. Conversely, in the eastern region, SSC was negatively correlated
with positive emotions, likely due to lower traffic demand and fewer visitors. The Qingshan
District in the eastern region, known for heavy industries like steel manufacturing, lacks
diversity in functions, suffers from environmental pollution, and is not considered an
attractive destination for visitors.

4.1.5. Population Density

PD demonstrated correlations with positive emotions in two distinct ways. In the
central region of the study area, PD showed a positive correlation with positive emotions,
leading to significant clusters of blocks. This phenomenon can be attributed to the area’s
popularity as a tourist destination, drawing in a large number of visitors. The presence
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of tourists and various activities organized by businesses create a vibrant atmosphere,
fostering positive emotions among individuals. Conversely, in the eastern region of the
study area, PD was negatively correlated with positive emotions, resulting in significant
clusters of blocks as well. The eastern region is home to the East Lake Nature Reserve,
where individuals seek solace in the natural environment and tranquility. They prefer
less crowded spaces, which contributes to lower positive emotions associated with higher
population density in this particular area.

4.2. Limitation of Social Media Data

While social media data provide a vast amount of data for various research purposes,
they also come with certain limitations, such as missing demographic information, key-
word censorship, location data scarcity, fluctuations in social media behavior, and privacy
concerns [78]. These constraints may introduce biases in the research results. In this study,
it was difficult to obtain detailed personal information of Weibo users, or the related in-
formation lacked authenticity, e.g., regarding gender, age, education, income, birthplace,
and so on. Different individuals have varied perceptions of the built environment and the
results of Weibo data cannot represent the whole population. However, according to the
2020 Weibo User Development Report [79], we can infer the general demographic profile.
Weibo has approximately 511 million monthly active users, with 224 million daily active
users, of which 48% were born in the 1990s, 30% in the 2000s, and 22% in the 1980s or
earlier, with a male-to-female ratio of 1:1.2. This sample bias leads to research findings that
only reflect the emotional perceptions of individuals in that age group. This is also one
of the reasons why spaces are associated with higher education institutions and cultural
and entertainment centers, where young people gather. However, this does not diminish
the research potential of the method because the advantage of big data research lies in its
ability to make macroscopic and large-scale trend assessments. To mitigate the impact of
demographic information on the results, further research could incorporate micro-level
data, such as survey questionnaires and physio-psychological measurements, to enrich the
study findings.

5. Conclusions

This study, grounded in a human-centric perspective and quantifying SMD through
NLP, investigated people’s perceptions in the main urban areas of Wuhan, which are
high-density built environments. By examining the relationship between quantifiable
indicators of high-density built environments and emotional perception, this research
explored how the objective environment influences subjective experiences. The results
indicate the following: First, positive emotions exhibit spatial differentiation in high-density
built environments. Furthermore, it was found that positive emotions are influenced by
multiple variables, with different variables simultaneously affecting individuals’ positive
emotions. Second, concerning specific built environment indicators, positive emotions
are positively correlated with OSR, GSR, PFD, and RND. Conversely, they are negatively
correlated with FSI, GSI, BAL, WI, and SSI. NDVI, PFM, SSC, and PD exhibit ambivalence
in different spatial contexts.

This research has applications in planning practices. Planners may refer to the findings
of this quantitative study on urban space for optimizing urban spatial layouts, addressing
residents’ psychological health concerns, and alleviating the “urban diseases” resulting
from rapid urban development. There are four urban planning strategies that may con-
tribute to generating positive emotion in increasingly dense built environments:

• Increasing public open spaces in high-density residential areas to provide ample
outdoor activity areas and simultaneously adding vegetation can help regulate micro-
climates, ultimately enhancing feelings of comfort.

• Planning mixed-use developments around transportation nodes and scenic areas,
as well as strengthening the layout of public service facilities to enhance functional
diversity.
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• Increasing road network density in the peripheries of central urban areas to improve
accessibility, while restricting vehicle traffic in central urban areas.

• Controlling construction scale and limiting building height in old towns and surround-
ing areas, preserving sufficient view corridors.

However, this study only offers a preliminary investigation of the relationship between
human emotional perception and high-density built environments on a large scale by using
social media text data. As urban areas globally undergo increasing densification, it is
beneficial to explore various aspects of people’s lived experiences in relation to density
and determine their psychological impacts. Future research must delve into micro-scale
environmental factors like urban images, block morphology, architectural features, and
open spaces, employing advanced methods like deep learning, physiological monitoring
technology, and virtual simulation technology to reveal the intricate relationships between
human perception and built environments.
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