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Abstract: Sand prevention and control are the main tasks of desertification control. The MU Us
Sandy Land (MUSL), one of China’s four main deserts, frequently experiences droughts and has a
very fragile biological environment. Climate change is the main factor leading to drought, and it
may result in more serious drought situations in the future. The Temperature Vegetation Dryness
Index (TVDI) was established using land surface temperature and normalized difference vegetation
index data. In this paper, we investigate spatial and temporal change characteristics, future change
trends, and the time-lag effect of TVDI on climate factors at different scales in MUSL from 2001 to
2020 using Sen + Mann–Kendall trend analysis, Hurstexponent, partial correlation analysis, and lag
analysis methods. The results show that (1) the overall drought shows a spatial characteristic of
gradually alleviating from west to east (TVDI = 0.6). A significant drying trend dominated 38.5%
of the pixels in the fall (Z = 1.99), and a highly significant drying trend dominated the rest of the
three seasons (Z average = 2.95) and the whole year (Z = 3.47). (2) In the future, dry autumn, winter,
and the whole year will be dominated by continuous drying, and spring and summer will mainly
change from dry to wet. The main relationships between winter TVDI and temperature (−0.06) and
precipitation (−0.07) were negative, while evapotranspiration (0.18) showed a positive correlation.
The six land use types in spring, summer, fall, and the whole year were primarily non-significantly
positively correlated with temperature and evapotranspiration. (3) At the seasonal scale, the sensitive
factors in spring and autumn were opposite, with spring TVDI responding quickly to precipitation
(0.3 months) and being less sensitive to temperature (1.8 months) and evapotranspiration (2 months).
At the interannual scale, desert land TVDI was most sensitive to precipitation (2.6 months) and least
responsive to temperature (3 months).

Keywords: TVDI; climate factors; spatial and temporal characteristics; time-lag effect; seasonal
drought; MU Us Sandy Land

1. Introduction

Among the most frequent natural catastrophes worldwide is drought, which is distin-
guished by its high frequency, protracted time span, and wide effect scope [1]. The envi-
ronmentally delicate dry and semi-arid regions are particularly vulnerable to the effects of
changing climate, and the deterioration of drought poses a huge challenge to the manage-
ment and protection of ecosystems in these areas [2]. In the northern Chinese agro-pastoral
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ecotone, large-scale climate change is characterized by reduced rainfall and increased tem-
peratures, leading to land degradation and agricultural disasters [3]; in addition, human
activities change the surface circumstances (such as shifting land utilization, water con-
servancy project regulation and storage) through direct and indirect ways, and then affect
the natural processes, such as hydrological cycle processes, and ultimately act on regional
drought [4]. Owing to the combined consequences of intense human behavior and changing
climate, drought events occur frequently and persist globally, resulting in serious damage
to ecosystem services, depletion of surface and groundwater resources, land desertification,
and crop yield reduction, which hinders social and economic sustainable development [5].
Research indicates that the worldwide economic damages resulting from drought were
assessed to have reached USD 124 billion between 1998 and 2017. The frequency and length
of droughts have grown by 29% since 2000, impacting around 1.4 billion individuals [6].
The temperate dry and semi-arid zones are home to the MUSL, one of the most important
ecologically sensitive areas and important agricultural production bases in China. Due to
the dual constraints of climate change and overgrazing, rainfall in the region is reduced,
aggravating desertification and worsening the drought situation [7,8]. Drought directly
causes crop yield reduction in the region and indirectly causes land desertification, further
increasing the frequency of extreme climate events such as sandstorms, affecting air quality
both inside and outside the region, and adversely affecting the growth of local agriculture
and animal husbandry [9,10]. In addition, MUSL is an important part of the ecosystem of
the Loess Plateau, which is crucial for windbreak along with sand fixation and maintaining
regional ecological balance [11]. Therefore, it is essential to investigate the mechanism as
well as pattern underlying drought development in MUSL.

At present, remote sensing has become the main means of drought monitoring,
and the drought index is the quantitative expression of drought degree. Numerous re-
searchers have conducted extensive study work with different drought indexes. For exam-
ple, Zhou et al. [12] used the ESTARFM model to extract vegetation temperature condition
index (VTCI) from Sentinel-2 as well as low spatial resolution MODIS images. They then
analyzed its relationship with the fused VTCI, applying Terra MODIS VTCI metadata.
Their findings demonstrate that the fused VTCI drought monitoring ability is better than
Terra MODIS VTCI. However, VTCI is susceptible to cloud cover, vegetation type, sensors,
and other factors, resulting in reduced reliability. In 1981, Jackson et al. [13] introduced the
crop water stress index (CWSI), which needs to be estimated based on actual transpiration.
Due to the complexity and limitations of the estimation method of actual transpiration
(the Penman–Monteith formula remains only useful in humid conditions), Liu et al. [14]
created a non-parametric method (NP) based on imagery from Landsat 8 and CLDAS
materials to calculate realistic evapotranspiration. The Penman–Monteith (P-M) method
was used to compute potential evapotranspiration, and the results indicate that CWSI-
NM has a stronger relationship with measured soil moisture levels than standard CWSI,
making it a dependable method in persistent drought assessment. However, this method
depends on specific meteorological conditions. The climatic characteristics of MUSL are
low precipitation, high evaporation, and strong wind speed. These extreme and complex
environmental conditions affect the accuracy and applicability of CWSI. Tang et al. [15],
based on the perpendicular drought index (PDI) and the modified perpendicular drought
index (MPDI), assessed the soil humid conditions throughout the crop growing season.
Results demonstrate that PDI and MPDI have high applicability in the inversion of soil
moisture, but when the vegetation coverage is very high, especially close to 1, it is easy
to produce negative values. Wei et al. [16] established a comprehensive drought index
(CDI) using spatial principal component analysis (SPCA) and verified it by standardized
precipitation evapotranspiration index (SPEI), gross primary productivity (GPP), vegeta-
tion condition index (VCI), and soil moisture (SM). The results show that CDI is a reliable
drought index in short-term drought monitoring. However, building CDI in northern
desert regions and areas with low vegetation cover is challenging due to the lack of ET and
PET information.
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In summary, the applicability of different drought indices is affected by various factors.
Therefore, the selection of drought indices in this study area needs to consider many
aspects, including climatic conditions, vegetation coverage, and data coverage. Because
VSWI and MPDI are suitable for high vegetation coverage areas, CWSI is suitable for
regions with partial vegetation coverage, and PDI is appropriate for monitoring drought in
areas with low vegetation coverage or bare surfaces. VTCI is limited to drought research
at specific time scales [17,18]. Sandholt et al. [19] mentioned a temperature vegetation
drought index (TVDI) using a simplified NDVI-LST feature space. This index combines
information from visible, near-infrared, and thermal infrared bands to observe soil moisture.
It is particularly suitable for monitoring arid areas with variable climates and significant
changes in vegetation cover. The land cover of the MUSL ranges from bare land to areas
with partial vegetation coverage and extends to regions with high vegetation coverage in
the southern cultivated lands. This distribution aligns well with the vegetation distribution
characteristics observed in the LST-NDVI feature space. Many researchers have used TVDI
for drought monitoring and compared the monitoring capabilities of other drought indices
and achieved good results. For example, Guo et al. [20] employed TVDI to track the features
of the drought in Shandong Province between 2011 and 2020. They realized that the east-
central region of the province had a severe drought and that TVDI and GLDAS 0–10 cm
had a strong correlation. They also found that TVDI had a certain lag on precipitation.
Luo et al. [21] constructed TVDI, the vegetation supply water index (VSWI), VCI, and TCI
based on MODIS data. Through correlation analysis using observed soil moisture within
the 0–20 cm depth range, they found that TVDI exhibited a stronger correlation than the
other three remote-sensing drought indices.

In addition, when discussing the influencing factors of drought, particularly in the
context of MUSL, the focus has been primarily on temperature, precipitation, topography,
and population density [22,23]. However, this approach overlooks crucial climate char-
acteristics associated with MUSL, such as heavy evapotranspiration. By solely analyzing
the correlation between drought and climatic factors, there is a risk of underestimating
the impact of climate change on drought occurrence. Considering the aforementioned
shortcomings, this study considers temperature, precipitation, and evapotranspiration as
driving factors. It utilizes lag analysis to quantify the lag period of TVDI in relation to
climate factors, aiming to address the underestimation of the influence of climate change
on drought occurrence.

Therefore, the objectives for this research were to (1) quantify the extent of drought
with autocorrelation of TVDI series data and the effect of climatic factors (including evap-
otranspiration) on drought in MUSL; (2) analyze the features of the seasonal and annual
drought’s temporal and spatial spread, the TVDI’s variations trends between 20a and the
future for various kinds of land use, and the relationship between seasonal drought and
seasonal climatic parameters; and (3) explore the reasons for the greatest drought in the
spring, the predominance of dry to wet summers and the predominance of persistent
drying the whole year in the future, as well as the mechanisms by which TVDI is influenced
by climatic factors for multiple types of land use. These objectives aim to provide academic
support and a foundation for decision-making regarding the development of agriculture,
animal husbandry, and drought early warning systems in MUSL.

2. Study Area and Methods
2.1. Study Area

The MUSL (36◦49′~40◦11′ N, 106◦20′~111◦00′ E) (Figure 1) is a typical semi-arid early
agricultural and pastoral area in northern China. The area is seriously decertified and
ecologically fragile, situated amid the Ordos Plateau and the Loess Plateau at an elevation
of 1000–1600 m. This is mostly made up of grassland and desert in the northwest and
cropland and grassland in the southeast (Figure 2a). Situated on the periphery of the
East Asian summer monsoon, MUSL experiences a predominantly dry and semi-arid
continental climate. The mean temperature has risen from 5.9 ◦C in the northeast to 10.9 ◦C
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in the southwest during the previous 20 years (Figure 1f), with low temperatures and dry
conditions in the winter and high temperatures and rain in the summer. And the average
yearly precipitation is 275.5 mm (Figure 1e), diminishing from southeast to northwest, with
the most precipitation throughout the summer and early autumn, and the year seems to be
dry. The yearly evapotranspiration average is 94 mm (Figure 1g). Soil moisture content
drops by enormous scale afforestation as some of the MUSL’s soil moisture is lost via
transpiration and returns to the sky [24].
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2.2. Data Sources

Land surface temperature (LST) data and the NDVI data, provided by NASA as
part of the Modis data products, were taken from the 16d synthesized version of the
MOD13A3 product and the 8d synthesized version of the MOD11A2 product, respectively.
Pre-processing operations, including format conversion, splicing, projection, cropping,
etc., were performed on the HDF-type data through the MODIS Reprojection Tool (MRT).
The maximum value synthesis technique was employed to synthesize NDVI and LST data
into monthly values. Finally, the LST is corrected, and the correction formula is shown in
reference [25]. Evapotranspiration data (ET) were derived from the MOD16A2 product on
the NASA website.

Monthly data provided by the China Meteorological Data Center (http://www.resdc.
cn/User (accessed on 29 August 2023)) for the period 2001–2020 is the basis for the tem-
perature and precipitation data, and meteorological data for 30 stations in the research
region were acquired (Figure 1c). Using professional meteorological interpolation software
ANUSPLIN (ANUSPLIN VERSION 4.4, The Australian National University Fenner School
of Environment and Society, Canberra, Australia) for spatial interpolation, heat and precip-
itation data were interpolated from point scale to 1 km resolution raster data using a 90 m
STRM DEM (digital elevation model) as a covariate. The seasons were classified as follows:
winter (January, February, and December of this year), spring (March to May), summer
(June to August), and autumn (September to November).

The soil texture data are derived from the National Soil Survey and Soil Series of China
data. It employs adaptive depth function fitting, ensemble machine learning, and other
methods to generate 250 m resolution raster data for soil sand, clay, and silt content in the
0–30 cm layer. Textural categorization consists of five categories based on USDA classifi-
cation guidelines: sandy soil, loamy sandy, sandy loam, silty loam, and loam (Figure 1d).
Land use data with a 1 km resolution were obtained from the Resource and Environmental
Science and Data Centre (http://www.redc.cn/ (accessed on 15 July 2023)). The Intersect

http://www.resdc.cn/User
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http://www.redc.cn/
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tool was used to identify regions where land use types remained relatively unchanged
between 2000 and 2020 (Figure 2a), excluding water bodies. The data were reclassified
into seven categories: cropland, forestland, grassland, water bodies, built-up land, desert
land, and unused land, accounting for 14.61%, 2.37%, 58.71%, 0.56%, 19.25%, and 3.31%,
respectively (Figure 2b).

2.3. Methods

Utilizing meteorological and remote sensing data in conjunction with techniques like
Sen + MK trend analysis and lag analysis, we examine the spatiotemporal change features
and response mechanism of TVDI driving factors. Figure 3 displays the technical flowchart.
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2.3.1. TVDI

Sandholt et al. [19] discovered that the eigenspace among TS and NDVI had a series of
soil moisture contours and that the slopes between the two were negatively correlated with
the crop moisture index. This depends on the study of triangular distribution characteristics
of scatter graphs of NDVI and Ts [26,27]. In order to represent the severity of the drought,
TVDI was created utilizing this common connection. Below is the formula:

TVDI = (PS − PSmin)/(PSmax − PSmin) (1)
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where PSmin is the smallest surface temperature at the equivalent NDVI value for the wet
side, PSmax is the greatest surface temperature at the equivalent NDVI value for the dry
side, and PS is the recorded surface temperature in each pixel. Formula relating to wet and
dry sides are obtained by linearly fitting all image elements with the same NDVI values
and corresponding LST maxima and minima:

PSmax = d1 + g1 × NDVI
PSmin = d2 + g2 × NDVI

(2)

where λ indicates the TVDI change tendency, Ym, Yn is the corresponding TVDI value for
m, n year, m, n indicates the duration order, and median is a median function. TVDI exhibits
a growing trend when λ > 0 and a falling trend otherwise and is used in conjunction with
Mann–Kendall to assess the trend’s significance; the significance level α is taken as 0.05 and
0.01, respectively. Table 1 displays the trend’s precise division.

Table 1. Division for drought change trend altering MUSL.

λ F Trending Traits

λ > 0
2.58 < F Highly significant drying

1.96 < F ≤ 2.58 Significant drying
F ≤ 1.96 Slightly drying

λ = 0 F No change

λ < 0
2.58 < F Highly significant wetting

1.96 < F ≤ 2.58 Significant wetting
F ≤ 1.96 Slightly wetting

For TVDI, drought grade classification adheres to [28] classification requirements for
TVDI, which are provided in Table 2.

Table 2. TVDI drought classification.

TVDI 0∼0.46 0.46∼0.57 0.57∼0.76 0.76∼0.86 0.86∼1

Drought
grade Drought free Mild drought Moderate

drought
Severe

drought
Extreme
drought

2.3.2. TVDI Trend Evaluation of Change

This Sen slope approach was employed to examine the twenty-year trend for TVDI
variations in MUSL. The Mann-Kendall test was used to further evaluate the relevance of
the Sen trend evaluation results. The formula for computing Sen is [29,30]:

λ = median
(

Yn − Ym

n − m

)
, ∀n > m (3)

where λ indicates the TVDI change tendency, Ym, Yn is the corresponding TVDI value for
m, n year, m, n indicates the duration order, and median is a median function. TVDI exhibits
a growing trend when λ > 0 and a falling trend otherwise and is used in conjunction with
Mann–Kendall to assess the trend’s significance; the significance level α is taken as 0.05,
0.01, respectively. Table 1 displays the trend’s precise division.

2.3.3. Hurst Exponent

Predicting future trends of drought in MUSL utilizing the Hurstexponent. A quan-
titative measure of time-series data over time, the autocorrelation that is useful for fore-
casting potential patterns is the Hurst exponent [31]. The Hurst value range is [0, 1], where
Hurst = 0.5 means there is no process, as it is white noise; in this study, there are no pixels
with Hurst = 0.5 in four seasons and the whole year round. Therefore, in order to draw
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a clear boundary between white noise and non-white noise, based on the actual distribution
characteristics of the data, statistical fluctuations, and measurement errors, 0.5 is used as
the center, expanded to 0.01 on both sides, respectively, making the prediction results more
reliable and intuitive; 0 < Hurst < 0.5 suggests that the TVDI has an ant continuity series,
meaning the projected pattern is the opposite from the past; and 0.5 < Hurst < 1 indicates
that the later years pattern corresponds in past results.

2.3.4. Partial Correlation Analysis and Lag Analysis

A partially correlated analysis and lag study examined the consequence of seasonal
precipitation and temperature with ET for TVDI at different scales and TVDI’s lag time on
the three variables. The partially correlating coefficient equation is [32].

rab.cd =
rab.c − rad.crbd.c√

(1 − r2
ad.c)(1 − r2

bd.c)
(4)

where a is TVDI; b is precipitation; c is temperature; d is ET; rab.c represents the partial
coherence coefficient that controls temperature TVDI with precipitation; rad.c is with ET;
rbd.c is precipitation; and rab.cd is ET and temperature. Using analogies, the test of association
was used to determine the partially correlated coefficient significance.

First, the partially correlated coefficients during TVDI with temperature, precipitation,
and ET are computed for the current month, one month ahead, two months ahead, and
six months ahead. Next, a maximum number of the corresponding image pixels’ partial
correlation at various scales is synthesized; an absolute number is taken to obtain the
greatest partial correlation coefficients and their corresponding lag times. These are the
fundamental steps of the lag analysis. Below is the expression [33]:

S = max{|R0, R1, R2, . . . . . ., Rn−1, Rn|} (5)

The greatest partial correlation value is S, and its lag time is n. The partial correlation
values of TVDI are R0, R1, R2, . . .. . ., Rn−1, and Rn for the current month, 1 month forward,
2 months forward, and n months forward, respectively. When R = Rn, the lag time is
n months. In this study, the seasonal division scale is based on 3 months; that is, the seasonal
scale only calculates the partial correlation coefficient forwarded to 2 months, and the whole
year scale calculates the partial correlation coefficient to 6 months forward.

3. Results
3.1. Drought Shifts through MUSL: Temporal and Spatial Features

Computing the temporal and geographical features for TVDI from MUSL during
the previous 20 years using the mean value approach (Figure 4). With a constant rate of
increase of 0.009/a, the TVDI for the entire year exhibits a notable rising trend. The mild
and moderate drought conditions are represented by the TVDI, centered in the range of
0.53 to 0.70. Moreover, the ways that distinct seasons alter things are distinct: the highest
amount of drought occurs in the spring, with the average value basically concentrated
between 0.54 and 0.80. In 2010, the TVDI value was significantly lower than other years,
with a TVDI value of 0.54. In 2016, the TVDI was significantly higher than in other years
and reached the maximum value of 0.80, which is a severe drought year. Winter is the
season with the smallest degree of drought and the largest fluctuation, with TVDI values
ranging from 0.38 to 0.66, and its abrupt change point occurred in 2012 and 2016 when it
shifted from drought-free to mild drought to moderate drought. The rate of increase of
TVDI in summer was the smallest in all seasons (growth rate = 0.006/a, R2 = 0.539), mainly
distributed in Ejin Horo Banner, Shenmu County, Jingbian County, and southern Dingbian
County, showing discontinuities in 2005 and 2013. Conversely, the greatest rate of increase
in TVDI (growth rate = 0.013/a, R2 = 0.697) was observed in winter, primarily across the
western portion of the Otog Banner and Otog Front Banner. Overall, 2015 was a year of
abrupt change in TVDI.
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Figure 5 depicts the geographic distribution of drought classes throughout MUSL
between 2001 and 2020. The west-to-east saw a slow improvement in the drought. In the
northwest of Otog Banner and Otog Front Banner in Inner Mongolia, severe and inter-
mittent droughts first appeared in 2015 and 2016, respectively. These droughts thereafter
displayed an increasing tendency, with Otog Front Banner indicating the most noticeable
rise. In 2019, the severe drought and extreme drought areas reached the largest areas,
accounting for 18.3% and 0.1%, respectively. The locations with the least amount of drought
between 2001 and 2014 were the eastern half of the county, the southeast portion of Yulin
County, the north-central region of Wushen Banner, and Ejin Horo Banner. From Figure 6,
the mean annual TVDI in MUSL is 0.6, indicating moderate drought (71.9%), with most of
it in Yanchi, Dingbian, and the Ordos Plateau throughout the middle and west sections.
Drought-free and mild drought are also the main types of droughts in the MUSL, which are
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primarily found in Shaanxi and certain areas of Inner Mongolia, with the Ordos Plateau
in the middle and western region of the MUSL, Yanchi County in Ningxia, and Dingbian
County in Shaanxi accounting for 71.9% of the area experiencing moderate drought.
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3.2. Trend Analysis of TVDI Changes in MUSL

Figure 7 shows that highly significant drying dominated in spring, summer, and winter
(Z average = 2.95) and throughout the whole year (Z = 3.47). In spring, 67.3% of the highly
significant drying zones are located in Yanchi County, Hengshan County, Otog Banner,
and Otog Front Banner, increasing to 83.9% for the whole year. Slight drying in summer
increased by 21.6%, mainly in the transformation of Wushen Banner and the northeastern
and southern parts of MUSL. In autumn (Z = 1.99), 38.5% of the pixels were dominated by
a significant drying trend, with 4.4% showing moist varieties in Yanchi County’s southern
region. Throughout the whole year, the change trend types of the six land types were
dominated by highly significant drying—in descending order, unused land (93%), desert
land (91%), grassland (85.7%), forestland (81.7%), building land (75.7%), and cropland
(70.4%). The number of significantly dry pixels in spring was essentially the same across
different land types, with percentages exceeding 20%. Summer was dominated by highly
significant drying except for cropland, and the statistics for pixels showing slight drying
in summer and autumn were broadly similar except for building land. The proportion of
pixels in slightly dry areas of building land in autumn was 48.7%, significantly higher than
other types. The distribution of pixel types in winter was more similar to that of the whole
year, with over 99.7% of all types experiencing dry conditions (p < 0.05).
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3.3. Analysis of Future Continuing Trends in TVDI in MUSL

As shown in Figure 8, the Hurst exponent of the four seasons and the whole year
in the MUSL ranged from 0.16 (summer) to 0.92 (winter). The averages for summer, fall,
and winter were 0.45, 0.57, and 0.56, respectively, indicating that summer was mainly
characterized by anti-persistence, while autumn and winter exhibited positive persistence.
TVDI time series in spring and throughout the year appear close to white noise, suggesting
that temporal and geographical changes in drought during spring and the entire year are
largely random. The lowest value (0.36 in summer) and the highest value (0.73 in autumn
and the whole year) of the Hurst exponent are both located in Yanchi County. This can
be attributed to the area’s location within the agro-pastoral ecotone, where increased
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agricultural irrigation during summer, coupled with high temperatures leading to height-
ened vegetation evapotranspiration and inadequate precipitation, results in decreased soil
moisture content and deteriorating vegetation development, thus exhibiting poor drought
persistence. Conversely, the warm and humid climate in autumn facilitates vegetation
recovery, leading to sustainable drought persistence. The Hurst exponent values for each
land use type are concentrated above 0.51 in autumn and winter. Autumn and winter
exhibit a significantly higher number of pixels with favorable relationships compared
to spring and summer, with the proportion of pixels displaying negative relationships
in autumn being less than 20%, significantly lower than the other three seasons and the
entire year. The percentage of pixels for all land types with a Hurst exponent greater than
0.6 shows a pattern of increase, decrease, and subsequent increase from summer to winter,
peaking in fall, indicating a progression from a small to a large percentage of strong positive,
persistent pixels: autumn > winter > spring > summer. Forest grassland and unused land
exhibit reverse persistence throughout the year, spring, and summer, while the proportion
of pixels with Hurst exponent greater than 0.6 for cropland and building land in the entire
year exceeds 36%.
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To establish its inter-annual and seasonal change trend distribution of future drought
in MUSL, the Hurst exponent is combined with a slope spatial change pattern mapping
(Figure 9a). Annual and seasonal TVDI in MUSL are expected to mostly transition from dry
to wet conditions and continual drying, with drought alleviation concentrated in central
Ordos and Shenmu City. The springtime transition zone, primarily occurring in the middle
of Otog Banner, Otog Front Banner, along with the surrounding counties of Dingbian
and Jingbian, constitutes 54.39% of the whole; regional drought is projected to improve
by 72.13% in summer, with fall and winter showing similar trends except for persistent
wetting in the southeast for Yanchi District and the southern portion of Dingbian District.
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3.4. Response of Drought to Changes in Temperature, Precipitation, and ET

Figure 10 illustrates the insignificant negative correlation between TVDI and pre-
cipitation across the whole year, accounting for 63.4%, primarily observed in southern
Shaanxi with higher altitudes and southeastern Yanchi County. The non-significant positive
correlations with temperature and ET were 86.4% and 58%, respectively, with the absolute
values of the average partial coefficients ranging from largest to smallest as follows: ET,
0.43; temperature, 0.15; and precipitation, 0.11. In spring, TVDI and temperature exhib-
ited slightly higher mean partial correlation values (r1 = −0.33, r2 = 0.39, r3 = 0.37) than
precipitation and ET. Shenmu County, Yanchi County, and northern Dingbian County
accounted for 24.6% of the significant positive correlation. In summer and autumn, TVDI
mostly showed non-significant negative correlations with precipitation and non-significant
positive correlations with temperature and evapotranspiration. The relative values of pre-
cipitation and TVDI in autumn ranged between −0.74 and −0.84, with a high average
partial coefficient (−0.28). In winter, the mean partial correlation values between TVDI
and ET were larger than those of precipitation and temperature. The correlations ranged
from negative to positive to negative from west to east, with non-significant positive cor-
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relations pre-dominating, while some areas of Wushen Banner showed highly significant
positive correlations.
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Figure 10. Spatial distribution of correlation coefficients and significance of TVDI with precipitation
(a–d), temperature (b–e), and ET (c–f) bias in different seasons of MUSL (2001–2020).

Figures 11 and 12 depict the partial correlation values between spring precipitation
and TVDI for the six land use types, primarily ranging from −0.44 to −0.18, with over
80% exhibiting an insignificant negative correlation. Forestland exhibited a slightly more
significant negative correlation than the other five types. In summer, compared to spring,
the partial correlation coefficients were considerably lower and more dispersed, indicating
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that TVDI responded more strongly to precipitation in spring than in summer. The pattern
of partial correlation values in fall mirrored that of summer, except for forestland, which
showed roughly an 18% significant negative correlation with building land. Winter sea-
sons were characterized by predominantly non-significant negative correlations, with
partial correlation coefficients for grassland, desert land, and unused land closer to those of
summer, while all others were lower than the other three seasons. Non-significant negative
correlation pre-dominated throughout the whole year, except for building land and unused
land. Spring TVDI exhibited the strongest partial correlation values with temperature
among the six categories, while summer desert land showed greater partial correlation
values than the other five types. Correlation coefficients of different types in autumn were
concentrated above 0.01, with more stable fluctuations than in summer. In winter, the
correlation between different land types across seasons except grassland was minimal, with
the lowest value of 0.02 observed for the correlation coefficient between grassland and
temperature over the course of the year, indicating that grassland in winter and the whole
year is not sensitive to temperature. Partial correlation coefficients between TVDI and ET
for all land types except desert land in autumn exhibited a decrease followed by an increase
throughout all seasons and the whole year, with trough and peak positions in autumn and
the whole year, respectively. The whole year averaged higher correlation coefficients across
various land types than the four seasons, with less variability observed among the same
land use types. TVDI and ET exhibited an insignificant positive association in both seasons
and the whole year.
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perature, and ET in diverse types of land use and seasons in MUSL. Each legend represents, from
left to right, the statistics of significant pixels between TVDI and precipitation, temperature, and
evapotranspiration.

3.5. Lag Analysis of Temperature, Precipitation, and ET in Annual Drought and Different Seasons

Figure 13a,c reveal that summer precipitation and TVDI exhibited the highest mean
partial correlation value (0.13), with higher values observed in the northeast and central
sections compared to the northwest and south, particularly at higher altitudes in Otog
Banner and the southern half of Shanxi. Temperature and TVDI displayed the largest mean
partial correlation value in winter (0.25), with 30% of the research region exhibiting values
above 0.3, primarily in the northeast. The correlation between ET and TVDI had the highest
annual mean partial correlation value (0.48), with strong spatial patterns observed in the
middle and northern regions, while the south showed a lower correlation. The region
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with the highest partial correlation value between 0.4 and 0.6 encompassed 79% of the
area. As indicated in Figure 13d,f, the greatest effect of precipitation was observed in
spring (0.3 months), with the minimum effect in autumn. The greatest effect of temperature
occurred in autumn (1.2 months), while the minimum occurred at emergence. For ET,
the greatest effect was in summer (0.3 months), with the minimum in spring, suggesting
that TVDI in spring is more sensitive to precipitation but responds slowly to temperature
(1.8 months) and ET (2 months). The standard deviation of TVDI lag time for temperature
(0.8) and ET (1.1) was greater in autumn than in spring (0.4). The average lag times of TVDI
to the three factors on an annual scale were 2.37 (with a standard deviation of 2.04 months),
2.97 (with a standard deviation of 0.37 months), and 2.58 (with a standard deviation of
0.75 months), respectively, indicating that the lagged response of TVDI to precipitation is
more complex. About 42% of the regions showed no observed lag of TVDI to precipitation,
while 50% of the regions exhibited a 4-month lag. Only 0.2% of regions had no lag in TVDI
for temperature, with 93% showing a 3-month lag. In response to ET, 41% and 53% of
regional TVDI exhibited 2-month and 3-month lags, respectively. The 6-month lag region
was primarily located in the southern portion of Jingbian County, accounting for about 2%
of the entire area, with sporadic distribution in its northern section.
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The greatest biased correlation values (between 0.16 and 0.51) of ET with various land
use categories are much bigger than those of temperature and precipitation (Figure 14a). ET
has the strongest impact on desert land in the spring and the whole year, while the weakest
impact is on cropland. Figure 14b indicates that several land utilization patterns exhibit
shorter seasonal lag times to precipitation in summer and fall, with average lag times
ranging between 0.1 and 0.9 months. Forestland has the fastest response to temperature
in spring, and various land use types are more sensitive to ET in the rest of the seasons,
with the average lag time ranging between 0.1 and 1.2 months; all land use types were
slowest responsive to temperature in summer and winter, while spring and autumn have
the weakest sensitivity to ET and precipitation, respectively. On annual scale, cropland,
forestland, building land, and desert land responded fastest to precipitation, and grassland
and unused land responded fastest to ET; the response time to precipitation in descending
order was desert land (2.7 months), building land (2.3 months), forestland (1.7 months),
and cropland (1 month), indicating that cropland was the fastest to respond to precipitation,
while desert land was the slowest; the response time to ET in descending order was
grassland (2.5 months) and unused land (2.4 months), and then unused land had the fastest
response time to ET. With the exception of abandoned land, which has an average lag time
of three months (0.18 SD) to temperature, other land use types have the largest lag times.
For every type of land, the temperature response time was longer than ET.
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4. Discussion

By studying the trend of drought change in MUSL from 2001 to 2020, it was found
that the western part was mainly dominated by an increasing trend (mainly distributed
in Otog Front Banner), and the eastern part of the TVDI was dominated by a decreasing
rate. These findings were consistent with the findings of [22] yet differed from those of
Lian et al. [10]. On the one hand, it is difficult to determine the precise level of drought at
broad scales or in areas with few meteorological stations due to the difficulty of calculating
the SPEI index for studying droughts using data from a limited number of meteorological
stations. On the other hand, this is due to the utilization of various drought assessment
parameters as a foundation for classifying the identical metric into drought grades, the
duration length of the investigation, and division boundaries. These factors can lead to
contradictory conclusions.
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Over the previous 20 years, a highly significant drying trend has dominated the MUSL
TVDI. However, in the next time frame, the severity of the drought in Shenmu City, Shaanxi
province, and central Ordos diminished, especially in summer, when 72.13% of the area
will change from dry to wet. This occurrence will mostly be owing to the MUSL program
that converted farms back to forests while grasslands and the warmer and wetter climate
have increased vegetation cover to alleviate drought [34]. Moreover, the climate of the
continually drying zone through the southern portion of MUSL is mostly cropland, with
high altitudes and specific salts in the parent material of the soil, all of which have a severe
negative influence on a boost of plants [35], and 58.7% of the plants in MUSL “turned green”
as a result of the rise in CO2, which led to an increase in NPP, an increase in ET [36], a
decrease in soil moisture, and an intensification of drought [37]. The most severe droughts
occur in the spring, when temperatures rise quickly, and precipitation levels drop as a result
of shifting monsoon patterns [38,39] and the notable rise in the number of days with high
temperatures [40]; further, the investigation’s results demonstrate an excellent relationship
between the multi-year TVDI allocation features and the geographic distribution of annual
mean precipitation; Moreover, El Niño–Southern Oscillation (ENSO) and drought are
closely linked [41], and the El Niño phenomenon is thought to possess a bigger influence
on dryness throughout MUSL. [10]. Vegetation restoration from 2001 to 2010 increased ET
by 51 mm in MUSL [42], which can then cause the soil to dry up and prevent vegetation
development, particularly in grasslands, resulting in a longer-lasting drought.

Having pointed out that dryness affects plants with a time lag [43], globally, drought
usually has a lag time of one month for 88.37% of grasslands [44]. Currently, grassland
makes up 58.71% of the MUSL due to vegetation restoration; however, on the investigated
dimension, vegetation reacts to climate variability 1–2 months later than it does in adjacent
regions [45]. Thus, while drought has an indirect lag effect on climate, does drought also
have a direct lag effect on the weather elements? Therefore, to seek ways to enhance our
comprehension of climate variability and the dynamics of drought feedback, this paper
explores, in detail, the lagged relationship of TVDI on precipitation, temperature, and ET
for different land use types at different scales. The results of this paper show that annual
scale TVDI responds more quickly to precipitation than ET and temperature because the
effects of temperature and ET on drought need to accumulate over a period of time to
have a large impact on the current drought. Exploring the differences in the lag time of
drought to climate elements for various land uses, this has to do with how various kinds of
land usage are distributed and what makes them unique, such as soil type [46,47]. There
is a significant increase in precipitation with elevation of the terrain on precipitation [48].
Grassland, building land, cropland, forestland, unused land, and desert land are distributed
from high to low elevations. Grassland has a low sensitivity to precipitation, which may
be due to the fact that drought sensitivity to precipitation decreases significantly when
reaching a certain elevation range. Different soil textures have different sensitivities to
precipitation and ET. For example, the difference in soil texture leads to different sensitivity
to rainfall and evapotranspiration. For example, soils with high sediment concentration
have lower water storage capacity and higher surface evaporation rate, while soils with
high clay content have lower surface evaporation due to their stronger water retention [49].
The soil on the underlying surface of MUSL is mainly composed of sand grains, and the
content is 50–90% [50]; there is a large proportion of loamy soil on building land, forestland,
and cropland, and a sizable fraction of sand grains on underused and arid terrain, that are
essentially in line with the investigation’s findings.

5. Conclusions

(1) From 2001 to 2020, TVDI (mean value 0.6) was greater for its west and smaller for
its east. Drought severity varies by season, with the order being spring > summer >
autumn > winter. Summer had the lowest growth rate (0.006/a, R2 = 0.539), while
winter exhibited the highest (0.013/a, R2 = 0.697).
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(2) A significant drying trend dominated in autumn (Z = 1.99), and a highly significant
drying trend prevailed in the remaining three seasons (Z average = 2.95) and the
whole year (Z = 3.47). The minimum value (0.36 in summer) and maximum value
(0.36 in autumn and the whole year) of the Hurst index are located in Yanchi County,
and the future drought mitigation area is expected to be in central Ordos and Shenmu
City. Spring and summer are mainly dry to wet, whereas autumn and winter are
mainly continuous dry.

(3) The TVDI of the whole year and the four seasons (−0.07) was mainly negatively
correlated with precipitation. During spring, summer, and fall, TVDI exhibited a
favorable correlation with temperature and ET, while in winter, it had an inverse
relationship with temperature (−0.06) and a positive correlation with ET (0.18). TVDI
was predominantly non-significantly negatively correlated with precipitation for all
land use types in all seasons. Land use type and temperature were predominantly
non-significantly positively correlated in spring, summer, autumn, and throughout
the whole year. Different land types and ET were predominantly non-significantly
positively correlated in all four seasons and throughout the whole year.

(4) On the seasonal scale, spring TVDI was most sensitive to precipitation (0.3 months)
and slow to respond to temperature (1.8 months) and ET (2 months). The standard
deviation of the lag time of TVDI for temperature (0.8) and ET (1.1) was greater
in autumn than in spring (0.4). Annually, precipitation was the most contributing
element of cropland, forestland, building land, and desert land (2.6 months); ET has
the strongest impact on grassland and unused land; desert land has the weakest
sensitivity to temperature (3 months).
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