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Abstract: In order to clarify the long-term changes in mangroves in the Beibu Gulf of Guangxi and
the carbon storage changes after the invasion of Spartina alterniflora (S. alterniflora) in the Dandou
Sea area, the Continuous Change Detection and Classification (CCDC) algorithm combined with
feature indices was first used to track the changes. Subsequently, the random forest algorithm was
applied to classify each change segment, and then sampling was conducted based on the distribution
of S. alterniflora in different invasion years. The results showed that the Kappa coefficient of the
classification result of the latest change segment was 0.78. The rapid expansion of S. alterniflora,
aquaculture pond construction, and land reclamation activities have led to changes in mangroves,
causing a decrease in the area of the mangrove region. A total of 814.57 hectares of mangroves
has been converted into other land-cover types, with most pixels undergoing one to two changes,
and many of these changes were expected to continue until 2022. An analysis of the distribution
characteristics and influencing factors of soil organic carbon (SOC) and soil organic carbon storage
(SOCS) at different invasion stages revealed that SOC and SOCS were mainly influenced by soil
bulk density, soil moisture content, and electrical conductivity. It was found that S. alterniflora had
higher SOC content compared to the mudflats. With the increase in invasion years, S. alterniflora
continuously increased the SOC and SOCS content in coastal wetlands.

Keywords: CCDC algorithm; mangrove; change detection; soil organic carbon (SOC); spartina
alterniflora; Beibu Gulf of Guangxi

1. Introduction

As an important component of marine “blue carbon” ecosystems, mangroves are not
only one of the vegetation ecosystems with the highest carbon density globally [1]; they also
make significant contributions to maintaining biodiversity and purifying seawater [2], play-
ing a crucial role in mitigating global climate change by carbon sequestration [3]. Mangrove
changes are typically caused by rapid urbanization [4], the expansion of aquaculture [5],
and the invasion of alien species, making it crucial to detect mangrove changes rapidly and
accurately for their conservation. In addition, coastal wetland soil is an important carbon
pool of the earth, and its soil carbon sequestration capacity is dynamic. The soil carbon
pool is not only affected by native vegetation but is also threatened by the invasion of alien
species and the impact of global climate change [6]. Therefore, understanding the dynamic
response mechanism of soil organic carbon (SOC) under the invasion of S. alterniflora is of
great significance.
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Many studies have aimed to monitor the long-term changes in mangrove ecosystems,
primarily focusing on the identification of individual or synthesized images. In recent years,
mangrove monitoring has moved in the direction of utilizing all available observational
data. The Landsat satellite series, launched in 1972, has provided continuous observations
of remote sensing images over many years [7]. The long time series of Landsat images
means the vegetation growth trends can be tracked and monitored long-term ecosystem
changes. The Continuous Change Detection and Classification (CCDC) algorithm was
developed based on this, relying on pixel fitting to capture changes in land cover, reducing
the demand for cloud-free images and proving advantageous for monitoring mangrove
ecosystems [8]. Compared with other algorithms, the CCDC algorithm can more quickly
and efficiently detect multiple change processes and study “sudden changes” in land
features, and it has the potential to detect gradual disturbances such as biological invasions
or sudden disturbances such as storms and logging [9,10]. The CCDC algorithm could be
used to obtain information on mangrove damage and recovery in the Sundarbans region
after storms, which is important for monitoring annual mangrove loss and recovery [11].
Some researchers used the CCDC algorithm to track the loss and recovery of mangroves in
six natural reserves in the Guangdong–Hong Kong–Macao Greater Bay Area, proposing
a mangrove-protection evaluation system [12]. Due to the extensive data storage and
complexity of the algorithm, the emergence of remote sensing cloud platforms has provided
new research perspectives for addressing these challenges [13]. Google Earth Engine (GEE)
is a free and open cloud platform capable of processing geospatial big data [14]. The
implementation of the CCDC algorithm on GEE reduces the time consumed in processing
temporal stacks, providing new research ideas for monitoring mangrove changes.

S. alterniflora is a perennial herbaceous plant that was introduced to China’s coastal
areas around 1979 to promote sediment deposition, reduce wave erosion, and protect coastal
mudflats. Subsequently, S. alterniflora rapidly spread and proliferated along coastal regions,
quickly displacing indigenous vegetation due to its strong adaptability and competitiveness.
The strong adaptability, salt tolerance, and submergence tolerance of S. alterniflora have led
to its rapid growth and spread on coastal mudflats [15]. Its extensive expansion poses a
threat to the biodiversity of native vegetation ecosystems [16,17]. Extensive research has
been conducted to understand the impact of S. alterniflora invasion on soil carbon content
in coastal wetlands, indicating that S. alterniflora invasion increases soil carbon content
and consequently enhances soil organic carbon storage (SOCS) [18]. One of the main
reasons for this is the influence of S. alterniflora biomass input and salt-marsh deposition
rates associated with organic carbon accumulation in the soil [19,20]. Previous studies
have shown that soil physicochemical properties such as soil bulk density (BD), moisture
content (MC), and pH can affect surface SOC [21]. However, the response mechanism of
SOC distribution to S. alterniflora invasion is different and complex; thus, exploring the
driving mechanisms of SOC changes at different soil depths is essential to understanding
the impact of S. alterniflora invasion on SOC.

This study aims to investigate changes in mangrove ecosystems along the coast of
Guangxi and to examine alterations in wetland soil following the invasion of S. alterniflora.
The main objectives are as follows: (1) to track changes in mangrove ecosystems along the
coast of Guangxi from 1990 to 2022; (2) to understand variations in surface and subsurface
soil SOC and SOCS in response to different invasion periods of S. alterniflora; and (3) to
explore the impact of soil physicochemical properties associated with different invasion
periods of S. alterniflora on SOC and SOCS.

2. Materials and Methods
2.1. Study Area

The Beibu Gulf of Guangxi (107◦57′ E~109◦48′ E, 21◦00′ N~22◦15′ N) is characterized by
a subtropical marine monsoon climate, with a marine area of approximately 128,000 square
kilometers and a coastline length of about 1628.59 km. Along the coast, there are mangrove
forests such as Avicennia marina, Aegiceras corniculatum, Kandelia obovate, and so on, primarily
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distributed in locations such as those near the Dandou Sea, the Nanliu River, and the Dafeng
River, making it one of the most important mangrove distribution areas in China. The study area
covers the region along the Guangxi coast, where mangroves have grown from 1990 to 2022.

The Landsat 5/7/8 (Landsat TM/ETM+/OLI) surface reflectance dataset was accessed
for the years 1990 to 2022 on the Google Earth Engine (GEE) cloud platform (LAND-
SAT/LT05/C02/T1_L2, LANDSAT/LE07/C02/T1_L2, LANDSAT/LC08/C02/T1_L2).
This dataset has undergone atmospheric correction using the surface reflectance code algo-
rithm, followed by cloud masking using the QA band (qa_pixel). The spectral differences
were demonstrated between the various sensors of the Landsat satellite series [22]. To
enhance coherence among image collections from different sensors for long-term analysis,
the ordinary least-squares method was employed to harmonize the spectral reflectance
of the TM and ETM+ sensors with that of the OLI sensor, thereby creating a consolidated
image collection for long-term analysis.

The mangrove growth range data for the Beibu Gulf of Guangxi were obtained from the
STDFT_Mangrove dataset [23]. This dataset integrates all available Landsat image collections,
calculates various classification feature values, and improves detection frequency by adding
phenological change indicators. Ultimately, a method based on spatiotemporal detection
frequency thresholds was proposed for mangrove identification using remote sensing, with an
overall classification accuracy exceeding 90% and Kappa coefficients exceeding 0.9. From this
dataset, the area where mangroves grew in the Beibu Gulf of Guangxi was proposed. After an
accuracy evaluation, we found that the overall accuracy was more than 90%. The distribution
of mangroves in the Beibu Gulf of Guangxi from 1990 to 2022 is shown in Figure 1. The dataset
can be reproduced with the following GEE script: https://code.earthengine.google.com/9e0
404a09772300b212dd35302ec937b (accessed on 2 August 2023) [23].
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Figure 1. The growth range of mangrove forest in the Beibu Gulf of Guangxi from 1990 to 2022
(a) Beilun River Estuary; (b) Maowei Sea; (c) Dafeng River and Nanliu River; (d) Dandou Sea;
(e–g) mangrove field photos.
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2.2. Continuous Change Detection and Classification Algorithm

The CCDC algorithm can capture surface changes caused by vegetation phenology
and urbanization-induced abrupt changes [8,24], making it advantageous for monitoring
long-term mangrove changes. The CCDC algorithm is mainly used to fit the characteristic
observations by using the harmonic-like fitting method (Equation (1)) on the spectral time
series, eliminating clouds and other occlusions.

ρ̂(i, x)OLS = α0,i + α1,ix+α2,icos( 2π
T x) + α3,isin( 2π

T x) + α4,icos( 2π
2T x) + α5,isin

( 2π
2T x

)
+

α6,icos( 2π
4T x) + α7,isin( 2π

4T x),
{

τ∗
k−1 ≤ x ≤ τ∗

k
} (1)

where x represents the time; i represents the i-th band in the image; T represents the total
number of days in one year; α represents the fitting parameter; τ∗

k represents the k-th
change; and ρ̂(i, x)OLS represents the fitting value.

If a pixel is observed to change in multiple consecutive images, it may be due to
changes in land-use types. If only one to two consecutive changes are observed, it is
considered a “possible change”; if a third consecutive change occurs, the pixel is labeled as
“change detected.” The time-series model used in the CCDC algorithm consists of three
components: seasonal, trend, and abrupt change (Equation (2)), recording intra-annual
and inter-annual changes and breakpoint information. If a land-cover pixel undergoes no
change, its CCDC fitting curve will consist of only one segment; if a change occurs once, the
CCDC algorithm will detect a breakpoint in the curve, dividing it into two segments, and
two change sections will be obtained. Each change segment has a start and end time, which
can be classified independently. The CCDC algorithm does not classify Landsat original
images but uses time-series model coefficients as input for land classification. After change
detection, each pixel has time-series models before and after the change. By classifying the
time-series model coefficients, different land-use types of different change segments within
the study period can be obtained.

ρ(ix) = a0,j + a1,icos
(

2πx
T

)
+ b1,isin

(
2πx

T

)
+ c1,jx (2)

where i represents the fitted value of the spectral index; x represents the day of the
year (1–365); T has a value of 365; a1,i and b1,i represent the seasonal change coefficients;
c1,j represents the annual change coefficient; and a0,j represents the error value of the fitting.

2.3. Characteristic Index

The normalized difference vegetation index (NDVI) [25] is a remote sensing index
used to reflect the growth status of vegetation (Equation), and it can be used to distinguish
different land-cover types. S. alterniflora is an exotic invasive plant in the coastal zone of
Guangxi, which has encroached upon the habitat of mangroves. Due to the distinct growth
cycle of S. alterniflora, including growth and senescence periods [26], while mangroves are
evergreen vegetation, the NDVI time-series curves can clearly differentiate between the
two types of vegetation [27].

A new Mangrove Vegetation Index (MVI) was developed [28], which can effec-
tively identify mangroves (Equation (3)). Incorporating this index into the CCDC al-
gorithm as a band for detecting mangrove changes can improve the identification results of
the algorithm.

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(3)

MVI =
ρNIR − ρGreen

ρSWIR1 + ρGreen
(4)

where ρGreen, ρRed, ρNIR, and ρSWIR1 represent the reflectance values of Landsat images in
the green, red, near-infrared, and shortwave infrared bands, respectively.
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2.4. Random Forest

Random forest is a machine learning algorithm based on ensemble learning [29] that
can be used for land-cover classification [30] and inversion [31]. Each decision tree in a
random forest is a classifier, so the random forest adopts the idea of combining multiple
weak classifiers into a strong classifier, thereby improving the overall performance and
robustness of the model by integrating the results of multiple decision trees. In this study,
the input features used to train the classifier consist of the eight parameters obtained
from the temporal fitting results of the CCDC algorithm in the latest change segment
(Equation (1)). These features are applied to the images of other change segments to
achieve land-cover classification. In this study, when pixels identified as mangroves were
detected that underwent a change and were no longer identified as mangroves, but were
instead classified as S. alterniflora, ponds, or other land-cover types, mangroves underwent
a change.

For change segment images, the change time of each pixel was different. Therefore,
the land-cover samples in this area were selected with reference to the 2022 image, which
represents the “latest” land-cover classification. Since mangroves are affected by invasive
species and human activities, the changed pixels were divided into four categories in this
study: mangroves, S. alterniflora, ponds, and other land-cover types including mudflats,
impervious surfaces, etc. Moreover, 658 mangrove sample points, 300 S. alterniflora sample
points, 400 pond sample points, and 300 sample points of other land-cover types (including
mudflats, impervious surfaces, bare land, etc.) were visually interpreted. All the sample
points were quoted from the high-resolution Google Earth imagery in 2022 with a spatial
resolution of 2 m. A total of 1658 training samples were obtained as a training sample
dataset, which was used in random forest classification. In order to increase the heterogene-
ity of the sample points, typical land-cover sample points with S. alterniflora, stable ponds,
bare land and impervious surfaces growing in the northern part of the Beibu Gulf were
also selected and added to the analysis.

2.5. Sediment Sampling and Sample Treatment

Since S. alterniflora was first introduced to the Dandou Sea area and continued to
expand, this study selected S. alterniflora wetlands at different invasion ages in the Dandou
Sea and Tieshan Port areas, and sampling points were selected based on the results obtained
from Google Earth imagery, Landsat imagery data, and the CCDC algorithm results, as
shown in Figure 2.

Land 2024, 13, x FOR PEER REVIEW 6 of 20 
 

(including mudflats, impervious surfaces, bare land, etc.) were visually interpreted. All 
the sample points were quoted from the high-resolution Google Earth imagery in 2022 
with a spatial resolution of 2 m. A total of 1658 training samples were obtained as a train-
ing sample dataset, which was used in random forest classification. In order to increase 
the heterogeneity of the sample points, typical land-cover sample points with S. alterni-
flora, stable ponds, bare land and impervious surfaces growing in the northern part of the 
Beibu Gulf were also selected and added to the analysis. 

2.5. Sediment Sampling and Sample Treatment 
Since S. alterniflora was first introduced to the Dandou Sea area and continued to ex-

pand, this study selected S. alterniflora wetlands at different invasion ages in the Dandou 
Sea and Tieshan Port areas, and sampling points were selected based on the results ob-
tained from Google Earth imagery, Landsat imagery data, and the CCDC algorithm re-
sults, as shown in Figure 2. 

 
Figure 2. Locations of sampling areas (a) in the Mangrove wetlands and Mudflat; (b) in the S. al-
terniflora wetlands (SA means S. alterniflora, the number behind SA means the invasion ages). 

Field sampling was conducted in July 2023. The plots of SA3, SA6, SA8, SA12, and 
SA18–21 represent the area invaded by S. alterniflora for 3a, 6a, 8a, 12a, and 18–21a, respec-
tively. Five sampling plots of 0.25 m2 were established at each sampling point. In each 
plot, a five-point sampling method was employed in collecting soil columns from 0–60 cm 
with a soil sampler, including samples from 0–20 cm, 20–40 cm, and 40–60 cm. After re-
moving soil impurities, the samples were placed in sealed polyethylene bags and imme-
diately transported to the laboratory. Subsequently, the samples were dried in a cool and 
ventilated indoor area. When the soil moisture was reduced enough to put into the oven, 
the soil sample was dried to a constant weight and then analyzed for SOC, soil physical 
and chemical factors, and other indicators.  

The content of SOC was determined using the potassium dichromate external heat-
ing oxidation method [32]. Easily oxidized organic carbon (EOC) was measured using the 
potassium permanganate method. Dissolved organic carbon (DOC) was determined by 
using the same method as SOC after the centrifugal filtration of the soil samples. In each 
experiment, three groups of parallel experiments were carried out to calculate the average 
value, the standard deviation, and so on. 

  

Figure 2. Locations of sampling areas (a) in the Mangrove wetlands and Mudflat; (b) in the S.
alterniflora wetlands (SA means S. alterniflora, the number behind SA means the invasion ages).



Land 2024, 13, 392 6 of 18

Field sampling was conducted in July 2023. The plots of SA3, SA6, SA8, SA12, and
SA18–21 represent the area invaded by S. alterniflora for 3a, 6a, 8a, 12a, and 18–21a, re-
spectively. Five sampling plots of 0.25 m2 were established at each sampling point. In
each plot, a five-point sampling method was employed in collecting soil columns from
0–60 cm with a soil sampler, including samples from 0–20 cm, 20–40 cm, and 40–60 cm.
After removing soil impurities, the samples were placed in sealed polyethylene bags and
immediately transported to the laboratory. Subsequently, the samples were dried in a
cool and ventilated indoor area. When the soil moisture was reduced enough to put into
the oven, the soil sample was dried to a constant weight and then analyzed for SOC, soil
physical and chemical factors, and other indicators.

The content of SOC was determined using the potassium dichromate external heating
oxidation method [32]. Easily oxidized organic carbon (EOC) was measured using the
potassium permanganate method. Dissolved organic carbon (DOC) was determined by
using the same method as SOC after the centrifugal filtration of the soil samples. In each
experiment, three groups of parallel experiments were carried out to calculate the average
value, the standard deviation, and so on.

2.6. Data Analysis

Moisture content (MC) is expressed as:

MC =
FW − DW

FW
× 100 (5)

where FW denotes the soil fresh weight and DW denotes the soil dry weight.
Soil bulk density (g/cm3) is expressed as:

BD = g × 100
v

× (100 +MC) (6)

where g denotes the fresh weight of ring knife soil (g) and v denotes the ring knife volume
(100 cm3).

SOCS (t/ha) is expressed as:

SOCS = ∑n
i Ci × Di × Ei × 0.1 (7)

where Ci denotes carbon mass fraction in i soil depth (g/kg); Di denotes the soil BD in i soil
depth (g/cm3); Ei denotes thickness of soil in i soil depth (cm); n denotes the number of
soil depth layers; and 0.1 denotes the coefficient of g/kg converted to t/ha.

3. Results
3.1. Change Segment Classification Results and Accuracy Evaluation

The results of the CCDC algorithm were presented in “change segments”. Due to the
varying times of change in different pixels within the “change segments”, it was difficult
to evaluate the accuracy of classification results year by year, as is typical in common
classification methods. From 1990 to 2022, the accuracy evaluation was conducted every
5 years. The accuracy evaluation of the corresponding year is shown in Table A1. The
result of 2022 was the closest to the actual situation, so the latest land-cover classification in
2022 was taken as an example for discussion. Validation sample points (300 for mangroves,
100 for S. alterniflora, 200 for ponds, and 100 for other land classes) were selected on the
Google Earth 2022 image to verify the final change segment, i.e., the latest land-cover
classification accuracy. The confusion matrix obtained is shown in Table 1, with an overall
accuracy (OA) of 85% and a Kappa coefficient of 0.78. Table A1 shows that the Kappa
coefficients of these years were 0.74–0.78, and the OA was 82.29–85%. This accuracy is the
best result that can be achieved at present.
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Table 1. Confusion matrix for CCDC algorithm classification results.

Type Mangrove S. alterniflora Pond Other Land-Cover Types

Mangrove 284 3 8 5
S. alterniflora 14 79 5 2

Pond 23 5 164 8
Other land-cover types 12 3 17 68

The classification results obtained by the CCDC algorithm represent the land-cover
classification results for each change segment. From 1990 to 2022, most land-cover types in
the study area had only one change segment, indicating no change, which was consistent
with the results of other scholars’ research. Table 2 summarizes the areas of different
change segments, showing that most of the land-cover types that experienced changes
went through one to two change segments.

Table 2. The statistics of different segments’ classification.

Segment 2 Segment 3 Segment 4 Segment 5 Segment 6

Mangrove (ha) 2944.44 752.85 105.91 15.62 3.79
S. alterniflora (ha) 133.43 21.57 2.22 0.43 /

Pond (ha) 940.75 221.05 43.24 10.71 2.92
Other land-cover types (ha) 514.57 222.35 62.25 14.44 5.96

The change pixels identified as mangroves consistently ranked first, with proportions
exceeding 50% in change segments 2, 3, and 4. This indicated that the relevant policies
enacted in Guangxi after 2000 had effectively protected the mangroves, and active measures
such as artificial restoration and natural recovery [33] had actively promoted the expansion
of mangrove forests. Additionally, in the second change segment, the proportion of pixels
converted to ponds ranked second (21%), suggesting that pond aquaculture activities
were prevalent in the coastal areas of Guangxi in the 1990s, until they reached saturation.
In subsequent change segments, the number of changing pixels decreased, indicating a
reduction in the encroachment of ponds on mangroves. Although S. alterniflora rapidly
expanded in the Dandou Sea and Nanliu River regions of Guangxi, squeezing into the
margins of the mangrove growth area, there were still significant areas unaffected by S.
alterniflora invasion. Therefore, the proportion of pixels identified as S. alterniflora was
the smallest.

The classification results of change segments in the Dandou Sea region are shown in
Figure 3. Most change pixels only underwent one to two changes, with the fifth and sixth
change segments having fewer change pixels, accounting for only 0.35%. In the Dandou
Sea region, the area of mangrove changes was relatively small, with pixels identified as
mangroves undergoing one to two changes, accounting for 53.82% and 26.45%, respectively.
This was mainly due to the establishment of the Shankou Mangrove National Nature Re-
serve in 1990 in China, which provided a favorable protection environment for mangroves.
According to literature records, S. alterniflora was introduced to the Dandou Sea area in
1979, initially to provide favorable conditions for the seaward expansion of mangroves by
utilizing its sediment-retention ability. However, after 2005 [34], S. alterniflora expanded to
the edge of the mangroves and began to compete with mangroves for living space. Pixels
identified as S. alterniflora in the second change segment mainly concentrated on the edge
of the protected area mangroves, covering an area of 22.57 hectares. The encroachment of
aquaculture ponds on mangroves mostly occurred on the landward side of the mangrove
reserve, with scattered change pixels, and did not appear in subsequent change segments,
indicating irreversible changes to mangroves caused by the expansion of aquaculture ponds.
Additionally, the most significant human activity impact in the Dandou Sea area was the
construction of the Shatian Port, which caused some mangroves to disappear and become
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impervious surfaces. The black box indicated that the part of the Shatian Port was enlarged
in Figure 3.

1 
 

 
  
Figure 3. Land-use classification results for each change segment in the Dandou Sea area (1990–2022)
and images of the changes in Shatian Port construction, (a) Landsat image of Shatian Port in 1990;
(b) Landsat image of Shatian Port in 2010; (c) Landsat image of Shatian Port in 2013; (d) Google Earth
image of Shatian Port in 2022.

The Nanliu River region was relatively vast and susceptible to natural factors (Figure 4).
Before 2005, only small patches of mangroves grew, with mudflats being the main land-
cover type in the study area. Therefore, most land-use classifications in the first change
segment were categorized as other land types. Over time, in the second change segment,
the area identified as mangroves reached 1077.8 hectares, indicating that under the impetus
of national policies, the area of mangroves continued to increase due to natural growth
and artificial planting trends [35], showing a trend of growth from land to sea. Due to the
favorable temperature and abundant growth space in the Nanliu River region, S. alterni-
flora began to rapidly spread and grow on the mudflats until it began to compete with
mangroves for living space. Areas identified as S. alterniflora in the second change seg-
ment were approximately 39.06 hectares, with fewer subsequent change pixels, indicating
that S. alterniflora growth had approached saturation. Although human activities had a
relatively minor impact on mangroves in the Nanliu River region, before the enactment
of laws protecting mangroves in China, there were cases of mangrove deforestation and
the construction of ponds. The area selected in the image remained mangroves in 1991;
however, in 1993, due to the promotion of the aquaculture industry, mangroves were
artificially deforested, and ponds covering an area of approximately 46.47 hectares were
constructed, consistent with the situation identified as ponds in the second change segment.
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Most pixels did not undergo subsequent changes thereafter, consistent with the results
obtained from the imagery, indicating that the damage caused by artificial pond excavation
and aquaculture activities to mangroves was permanent and irreversible. The black box
indicated that part of the area in Figure 4 were enlarged. Figures A1–A3 of Appendix A
contained further data regarding other areas.
 

2 

 
  
Figure 4. Land-use classification results for each change segment in the Nanliu River area (1990–2022).

3.2. Mangrove Change Duration

In the results, some pixels exhibited change durations exceeding 30 years, reaching
31 and even 32 years. Because the CCDC algorithm extracts change features directly from
the NDVI and MVI time-series curves. It initialized fitting of change trends with values
from a certain period, resulting in a certain time interval. The change outcomes of different
change segments were considered to be genuine. However, due to the direct extraction of
change segments from the time series, it led to instances where the duration of mangrove
change exceeded 31 or even 32 years. For example, a mangrove change might have occurred
in a certain month of 1990, and the final calculation would label this period as 32 years.

From 1990 to 2022, the area of mangrove change in the northern part of the Beibu
Gulf of Guangxi amounted to 814.57 hectares. There was a significant variation in the area
covered by mangrove change over different durations, as depicted in Figure 5, showing
a “high at both ends” trend. The largest area of mangrove change occurred in 1992,
reaching 125.53 hectares, followed by a trend of decreasing and increasing change areas over
subsequent years. The largest area, with a duration of 3 years, accounted for 65.37 hectares,
followed by 2-year change areas covering 63.36 hectares. Additionally, the area with
a change duration of 31 years reached 55.15 hectares. In summary, mangrove changes
primarily occurred as short-term changes (1–4 years) or as permanent transitions.
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3.3. SOC and SOCS Content of S. alterniflora with Different Invasion Years

As shown in Figure 6, the SOC content of S. alterniflora was higher than that of the
mudflat for all years, and the SOC content of each soil layer increases with the duration of S.
alterniflora invasion. Even after 18–21 years, the soil SOC content had not reached saturation.
The SOC content in the 20–40 cm soil layer was always lower than that in the other two
soil layers, and it was slightly higher than that in the deep soil after 12 years of invasion.
The SOC content of the 40–60 cm soil layer accumulated noticeably with increasing years.
Since the invasion of S. alterniflora 8 years ago, the SOC content had been comparable to
that of the mangrove wetland, and the SOC content of the deep soil exceeded that of the
mangrove wetland.

Since the invasion of S. alterniflora, the total SOCS of S. alterniflora at five different
invasion periods were significantly higher than those of the mudflat, with the increase in
carbon storage increasing with the invasion period. The highest increase was observed
at 18–21 years, reaching approximately 6.05 times higher than the mudflat (Figure 7).
After 6 years of S. alterniflora invasion, the content of SOCS in the 40–60 cm soil layer was
higher than mangrove wetland, while the surface soil content remained lower than in the
mangrove wetland. However, after 8 years of S. alterniflora invasion, the SOCS content of
the 0–20 cm and 20–40 cm soil layers had reached parity with the mangrove wetland. After
12 years of invasion, there was a noticeable accumulation trend of SOCS in the soil layer
of 20–40 cm. The highest SOCS at 40–60 cm was observed after 18–21 years of invasion,
followed by the surface soil of the same invasion period.
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Figure 6. The distribution characteristics of soil organic carbon content from S. alterniflora with
different invasion years, mangrove and mudflat.
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Figure 7. The distribution characteristics of soil organic carbon storage from S. alterniflora with
different invasion years, mangrove and mudflat.
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3.4. The Correlation between Soil Physical and Chemical Factors and SOC, SOCS in
S. alterniflora Wetland

The statistical results of soil physicochemical properties for S. alterniflora, mangrove,
and mudflat are presented in Table 3, while Table 4 shows the correlation between soil
physicochemical properties after S. alterniflora invasion and SOC, as well as SOCS. The SOC
of S. alterniflora was significantly positively correlated with electrical conductivity (EC),
MC, SOCS, EOC, POC, and DOC, with the highest correlation with POC and SOCS, of
0.975 and 0.963, respectively. SOC was significantly negatively correlated with BD. SOCS
was significantly positively correlated with EC, SOC, EOC, POC, and DOC, with the highest
correlation with SOC and POC, of 0.963 and 0.962, respectively. SOCS was significantly
negatively correlated with BD.

Table 3. Statistical results (mean ± standard deviation) of soil physical and chemical properties of S.
alterniflora with different invasion ages and soil depths.

Type Invasive
Ages (a)

Sediment
Depth
(cm)

BD
(g/cm3)

MC
(%) pH EC

(µs/cm)
EOC

(g/kg)
POC

(g/kg)
DOC
(g/kg)

S. alterniflora

3a
0–20 cm 1.45 ± 0.16 32.92 ± 10.88 7.06 ± 0.42 2.96 ± 0.71 0.57 ± 0.83 3.98 ± 1.47 0.2 ± 0.17
20–40 cm 1.48 ± 0.11 29.86 ± 10.27 6.95 ± 1.2 2.72 ± 0.49 0.52 ± 0.2 2.51 ± 0.65 0.1 ± 0.06
40–60 cm 1.4 ± 0.04 38.16 ± 5.03 5.99 ± 0.11 2.09 ± 0.08 0.63 ± 0.07 3.18 ± 0.34 0.19 ± 0.04

6a
0–20 cm 1.16 ± 0.19 47.01 ± 17.71 5 ± 2.06 3.34 ± 0.16 1.04 ± 1.38 3.15 ± 2.49 0.19 ± 0.22
20–40 cm 1.46 ± 0.23 32.23 ± 5.35 4.23 ± 0.18 3.25 ± 0.12 1.17 ± 0.44 5.18 ± 0.35 0.11 ± 0.03
40–60 cm 1.5 ± 0.18 28.67 ± 0.44 4.11 ± 0.16 3.29 ± 0.47 1.59 ± 1.26 5.32 ± 0.01 0.1 ± 0

8a
0–20 cm 1.34 ± 0.14 25.68 ± 3.06 6.69 ± 0.33 3.05 ± 0.56 1.98 ± 1.24 7.77 ± 1.4 0.13 ± 0.02
20–40 cm 1.43 ± 0.22 22.47 ± 0.64 6.91 ± 0.08 3.12 ± 0.15 1.36 ± 0.64 6.97 ± 0.9 0.11 ± 0.01
40–60 cm 1.12 ± 0.1 37.67 ± 0.26 7.01 ± 0.08 3.42 ± 0.45 1.09 ± 0.35 9.36 ± 0.26 0.14 ± 0.04

12a
0–20 cm 1.29 ± 0.03 37.22 ± 2.63 5.66 ± 0.25 2.94 ± 0.22 1.55 ± 1.08 9.69 ± 0.08 0.23 ± 0.21
20–40 cm 1.27 ± 0.1 37.74 ± 15.03 4.31 ± 0.76 3.49 ± 0.03 3.3 ± 0.05 10.06 ± 1.54 0.29 ± 0.29
40–60 cm 1.33 ± 0.14 36.23 ± 12.88 5.04 ± 0.35 4.47 ± 0.91 2.36 ± 0.32 10.23 ± 3.68 0.18 ± 0.12

18–21a
0–20 cm 1.22 ± 0.01 48.5 ± 4.46 6.5 ± 0.22 3.47 ± 0.5 1.61 ± 0.74 10.27 ± 0.94 0.28 ± 0.02
20–40 cm 1.05 ± 0.21 71.38 ± 5.02 6.31 ± 0.21 3.73 ± 0.37 2.89 ± 0.63 11.46 ± 3.52 0.1 ± 0.01
40–60 cm 1.08 ± 0.22 72.22 ± 3.67 5.58 ± 1.11 3.97 ± 0.21 2.82 ± 0.97 12.04 ± 1.13 0.36 ± 0.14

Mangrove /
0–20 cm 1.26 ± 0.13 42.16 ± 9.26 6.32 ± 0.55 3.04 ± 0.48 2.13 ± 1 7.76 ± 1.26 0.21 ± 0.21
20–40 cm 1.31 ± 0.2 37.19 ± 12.2 5.33 ± 2.1 2.61 ± 1.1 1.48 ± 0.89 5.26 ± 2.41 0.41 ± 0.72
40–60 cm 1.16 ± 0.18 48.04 ± 2.57 6.27 ± 0.19 2.58 ± 0.04 1.6 ± 0.09 3.71 ± 1.06 0.07 ± 0.03

Mudflat /
0–20 cm 1.49 ± 0.11 26.97 ± 8.58 6.55 ± 0.62 2.99 ± 0.83 0.33 ± 0.34 1.92 ± 0.66 0.08 ± 0.02
20–40 cm 1.56 ± 0.16 26.71 ± 4.31 7.01 ± 0.79 3.26 ± 0.42 1.08 ± 0.62 3.39 ± 2.45 0.16 ± 0.09
40–60 cm 1.35 ± 0.02 31.63 ± 0.63 6.61 ± 0.21 3.33 ± 0.41 0.14 ± 0.08 1.14 ± 0.45 0.04 ± 0.03

Table 4. The correlation matrix between SOC, SOCS and soil physical and chemical properties of
S. alterniflora.

BD MC pH EC SOC SOCS EOC POC DOC

BD 1
MC −0.834 ** 1
pH 0.043 −0.117 1
EC −0.334 0.353 −0.254 1

SOC −0.684 ** 0.601 ** −0.295 0.608 ** 1
SOCS −0.499 * 0.408 −0.328 0.557 ** 0.963 ** 1
EOC −0.552 ** 0.558 ** −0.412 0.539* 0.883 ** 0.868 ** 1
POC −0.609 ** 0.546 * −0.187 0.609 ** 0.975 ** 0.962 ** 0.837 ** 1
DOC −0.304 0.357 −0.278 0.090 0.470* 0.460 * 0.434* 0.459 * 1

** p < 0.01; * p < 0.05

4. Discussion
4.1. Change Detection of Mangrove by Using CCDC

Before 2000, China’s mangrove loss rate had reached 62% [36], with an area reduction
of over 20,000 hectares. Common disturbances to mangroves included conversion to
aquaculture ponds, bare land, and urban surfaces, or invasion by alien species. Over
the past thirty years, urbanization and industrialization trends in the coastal areas of the
Beibu Gulf of Guangxi have accelerated, intensifying the exploitation and utilization of
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the ocean. The number of land reclamation projects for port terminals, industrial bases,
and other purposes significantly increased. Before national mangrove-protection policies
were enacted, these projects caused irreversible losses to mangroves. As the world’s largest
aquaculture country, China’s coastal aquaculture development has led to significant loss
and fragmentation of mangrove habitats on the landward side [5,37]. Additionally, the
rapid expansion of the alien species S. alterniflora on the mudflats of the northern Gulf of
Guangxi encroached on the edges of mangroves, competing for living space and causing
partial mangrove losses.

The CCDC algorithm has good results in change detection, which shows that it can
provide some simple solutions for quantifying high-dynamic-change areas [11]. Using
land-cover transition matrices to study the process and patterns of land-type changes is a
common strategy. However, this approach only provides information about changes in land-
cover types without specific details about when mangroves have changed. For example, in
the Dandou Sea area, the Shankou Mangrove National Nature Reserve was established in
1990, providing a favorable protection environment for mangroves. The construction of
the Shatian Port has resulted in a decrease in the area of mangroves. Through the CCDC
algorithm, it was possible to quickly determine the year in which the mangrove pixels
underwent changes, to obtain the required information.

The limitation of this study lies in the lack of an independent dataset for validation.
The occlusion of clouds and fog, the stripe problem of Landsat 7 satellite sensors, and tidal
inundation have a certain impact on long-term observation. Other scholars have similar
accuracy with this study, and the Kappa coefficient is 0.70–0.78 [38,39]. However, it cannot
be denied that the CCDC algorithm is fully automated and can quickly provide temporal
information on mangrove changes. This study observed the changes in mangroves in
the Beibu Gulf of Guangxi using the CCDC algorithm, providing a fundamental method
for other researchers interested in studying mangrove changes. To improve the spatial
resolution of mangroves or other land-cover observations, image fusion techniques can
be used to increase the spatial resolution of Landsat series images to 10 m. For example,
Sentinel-2 series images can be fused to improve resolution. Furthermore, if the striping
issue of the Landsat 7 sensor can be rectified, it will further enhance the accuracy of
mangroves or other land-cover change observations.

4.2. Effects of S. alterniflora Invasion on SOC and SOCS

Compared to studies by other researchers, the SOC content in S. alterniflora wetlands
in this study was significantly higher than that in Yancheng City and the Yellow River
Delta [40,41] but lower than that in the Minjiang River Estuary [42]. In similar invasion
periods, the SOC content in the 0–20 cm soil layer was close to that in Yingpan Port, Beihai
City, while the content in the two soil layers of 20–40 cm and 40–60 cm was higher than
those in Yingpan Port [43].

The invasion of S. alterniflora alters the carbon cycling processes in coastal wetland
soils [6]. In this study, the SOCS in S. alterniflora-invaded areas reached 6.05 times that of
the mudflat after 18–21 years, while the SOCS content in mangrove areas was 4.11 times
that of the mudflat, indicating the strong carbon sequestration capacity of S. alterniflora.
The total SOCS storage showed an accumulation effect with increasing invasion years,
similar to results from Yingpan Port in Beihai [43] and the Yellow River Delta [41]. The
results of this study indicate that the SOCS content increased with increasing invasion
years, maintaining an upward trend—similar to findings from other researchers [44]. The
time required for SOCS to accumulate to saturation varies in different regions. Since SOCS
showed a continuous increasing trend in this study, although it reached its highest value in
18–21 years, saturation was still not achieved.

Surface soil SOC accumulation is primarily associated with the invasion duration of S.
alterniflora and is susceptible to human activities, whereas deep-soil SOC is less influenced
by external disturbances and can better reflect the accumulation characteristics of SOC with
S. alterniflora invasion duration [45]. In this study, during the early stages of invasion, SOCS
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initially decreased and then increased with increasing soil depth. After 12 years of invasion,
SOCS in 20–40 cm soil layer was higher than that in 0–20 cm soil layer. After 18–21 years of
invasion, the SOCS in the 40–60 cm soil layer exceeded that of the surface soil. The root
distribution of S.alterniflora can reach the depth of 100 cm of soil, which provides a source
of SOC for deep soil. In addition, with the increase of soil depth, the oxygen content in
deep soil decreased, which reduced the decomposition of SOC by aerobic microorganisms
and promoted the fixation and storage of carbon.

Soil physicochemical factors can impact SOCS. Influenced by tides, the MC of coastal
wetland soil is typically higher than general soil. In this study, the MC of wetland soil
increased with the duration of S. alterniflora invasion. The deep-soil moisture content of
invasion 18–21a increased significantly. High MC inhibits the activity of aerobic microor-
ganisms, reducing the consumption of SOC and promoting its accumulation [46,47]. BD
represents soil compaction and is also one of the parameters used in SOCS calculation.
When BD is low, it indicates that the soil structure is loose with good permeability, which is
conducive to the decomposition and deposition of organic matter, thereby affecting SOC
content [48]. In this study, the BD of the 20–40 cm and 40–60 cm soil layers at 18–21a of
invasion was low, while the moisture content was high, and the SOC content was higher
compared to other invasion durations, indicating that soil physicochemical factors have an
influence on SOC content.

The invasion of S. alterniflora has increased both SOC and SOCS in wetland soils.
Compared with other studies, it is found that the carbon sequestration capacity of S.
alterniflora is still lower than that of mature mangroves [49]. This could be attributed to the
higher productivity of mature mangroves. In this study, the SOCS values of mangroves were
lower than that of S. alterniflora with long invasion years, possibly because the sampling
points for mangroves were chosen at the boundary between S. alterniflora and mangroves,
rather than in mature mangrove areas. Therefore, efforts should be made to strengthen
the protection of mangroves and enhance the control measures against S. alterniflora in the
Beibu Gulf of Guangxi.

5. Conclusions

The present study employed the CCDC algorithm combined with random forest
segmentation classification to track the changes in mangroves in the Beibu Gulf of Guangxi
from 1990 to 2022. The results indicated that a total of 814.57 hectares of mangroves were
converted to other land-cover types, primarily undergoing one to two changes, with the
majority persisting until 2022. During this period, S. alterniflora in the Dandou Sea and
Nanliu River regions rapidly spread to the edges of mangroves on the mudflats, encroaching
on the living space of mangroves. Additionally, the unbridled expansion of aquaculture
ponds, coastal urbanization and land reclamation projects, and port construction activities
have had irreversible and permanent impacts on mangroves on the landward side. By
using a spatial approach instead of a temporal one on the classified results, the changes of
wetland SOC and SOCS in different invasion periods of S. alterniflora were studied. SOC
and SOCS increased with the duration of S. alterniflora invasion and have not yet reached
saturation, indicating that the invasion of S. alterniflora can enhance the carbon content of
wetland soils. In our results, some soil physicochemical factors, such as BD and MC, were
identified as driving factors affecting SOC and SOCS in S. alterniflora wetlands.
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Appendix A

Land-use classification results for each change segment in Maowei Sea, Dafeng River,
and Beilun River Estuary (1990–2022) can be found in Figures A1–A3. The black boxes
indicate that parts of the area in the figures are enlarged.
 

5 

 
  Figure A1. Land-use classification results for each change segment in Maowei Sea region (1990–2022).
 

6 

 
  
Figure A2. Land-use classification results for each change segment in Dafeng River area (1990–2022).

https://code.earthengine.google.com/9e0404a09772300b212dd35302ec937b
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Figure A3. Land-use classification results for each change segment in Beilun River Estuary
(1990–2022).

Table A1. The accuracy of CCDC segments.

Year Kappa OA (%)

1995 0.74 82.29
2000 0.75 82.86
2005 0.76 83.71
2009 0.78 84.76
2015 0.77 84.14
2022 0.78 85.00
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