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Abstract: The affiliation between vegetation phenology and seasonal climate (start and end times
of the growing season, or SOS and EOS) provides a basis for acquiring insight into the dynamic
response of terrestrial ecosystems to the effects of climate change. Although climate warming is
an important factor affecting the advancement or delay of plant phenology, understanding the
sensitivity of phenology to seasonal variation in climate factors (e.g., local air temperature, precip-
itation) is generally lacking under different climate backgrounds. In this study, we investigated
the interannual variability of grassland phenology and its spatial variation in temperate regions of
China based on satellite-derived products for the normalized difference vegetation index (NDVI)
and weather data acquired from 2001 to 2020. We found that due to differences in local climate
conditions, the effects of seasonal warming and precipitation on phenology were divergent or
even opposite during the 20 years. The sensitivities of the start of growing season (SOS) to both
spring temperature and last-winter precipitation was controlled by mean annual precipitation in
terms of spatial variation. The SOS in the semi-humid (200–400 mm) region was most sensitive
to spring temperature, advancing 5.24 days for each 1 ◦C rise in the average spring temperature
(p < 0.05), while it was most sensitive to last-winter precipitation in arid regions (<200 mm), with
SOS advancing up to 2.23 days for every 1 mm increase in the last-winter precipitation (p < 0.05).
The end of growing season (EOS) was sensitive to autumn temperature, being delayed 10.13 days
for each 1 ◦C rise in the average autumn temperature in regions with temperatures between
−10 ◦C and −5 ◦C (p < 0.05). The uncertainty in the determination of the EOS could conceivably
be greater than the determination of the SOS due to the dual effects of pre-autumn climate and
growth constraints induced by declining fall temperatures. The effect of atmospheric warming on
grassland phenology was lessened with increased atmospheric and soil aridity, suggesting that the
interaction of regional drought and climate warming is an important source for local-to-regional
differences and uncertainties in grass phenological response.

Keywords: climate change; grassland phenology; NDVI; temperate zone

1. Introduction

Plant phenology is sensitive to weather and climate variability [1], being regulated
by climatic factors affecting ecosystem functions and biological processes [2]. Over recent
decades, increasing evidences have shown that human activity-induced global warm-
ing has made the changes in vegetation phenology more uncertain [3–5]. Furthermore,
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due to extreme climate events and the complexity of regional climatic conditions, our
understanding of vegetation phenology is imprecise [3,6]. Therefore, understanding how
phenology responds to climate change is crucial to understanding how ecosystem structure
and function may evolve in the future.

The start (SOS) and end (EOS) of the growing season are key phenological indica-
tors that affect the structure and function of ecosystems. The advance or delay of SOS
and EOS can lead to asynchronous key seasonal interactions between species, affecting
the duration of interactions between species, crop production and pollination seasons,
and potentially causing serious consequences for wild populations and ecosystem func-
tions [7,8]. Phenological changes have always been a long-term concern for researchers.
With increasing attention to phenological events, researchers have gradually discovered
that the response of vegetation phenology to global warming varies considerably by region.
Some studies have reported that rising temperatures could cause the growth season in
cold regions to advance [9,10], while others have reported delays in the growing season in
warm regions [11,12]. Plants in regions with higher latitudes exhibit greater sensitivity to
alterations in temperature compared to those located at mid or low latitudes [13–16]. More-
over, SOS has different temperature requirements for different seasons. Vegetation needs
sufficient heat accumulation to break dormancy and start growing in warm seasons, while
sufficient cold accumulation is needed in cold seasons [17]. Some studies have reported
that EOS has significant regional variations in its sensitivity to seasonal mean temperature,
while precipitation affects the sensitivity of EOS to temperature [18,19]. Some others have
reported that the response of EOS to seasonal temperature and precipitation is different,
even opposite [5,12]. The reasons for this phenomenon are generally attributed to regional
differences in research and differences in climate sensitivity among different species. But
this is not enough to explain the understanding of long-term trends in phenology under the
background of climate change. Those controversies have raised substantial uncertainties in
predicting future changes in phenology [20]. Additionally, earlier research revealed a lag
effect in the relationship between phenology and seasonal climate [5,16]. Thus, due to the
delay in the impact of seasonal climate on plant phenology and the complexity of regional
climate, there is uncertainty in the study of regional vegetation phenology. The origins of
the differences in phenological trends in various places as well as how phenology responds
to climate change are still unclear. With ongoing climate fluctuations, our prediction of
future phenological change will exceed our existing knowledge. A more comprehensive
grasp of how climate shifts influence the timing of vegetation growth is urgently required
across diverse regions.

One of the most prevalent terrestrial biomes in the world is grassland [21,22]. In
addition, grasslands are more susceptible to climate change and anthropogenic distur-
bances [23], thus being more fragile. We conducted a study utilizing phenological data
extracted from MODIS-NDVI products to investigate the responses of temperate grassland
phenology (specifically SOS and EOS) to seasonal temperature and precipitation. Addition-
ally, we examined the sensitivity differences of phenology to seasonal climate in different
regions, to address pertinent issues related to climate change. In order to understand
the impacts of upcoming climatic changes on phenology, we looked at this data from a
temporal perspective. Our study had three primary objectives: (i) to identify trends in
grassland phenology in China from 2001 to 2020, (ii) to assess the relative impact of seasonal
precipitation and temperature on phenology, and (iii) to examine variations in phenology’s
response to seasonal climate under different regional climates.

2. Materials and Methods
2.1. Study Area

The study area is roughly between 30◦ N and 50◦ N in the temperate zone in China
(Figure 1), with annual mean temperature ranging from approximately −10 to 15 ◦C.
Based on annual precipitation levels, the study area is divided into three categories: arid
(<200 mm), semi-arid (200–400 mm), and semi-humid (400–800 mm) [24]. Seasons are
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distinctive in the area. Satellite measurements of the normalized difference vegetation
index (NDVI) from low to high latitudes are less affected by solar zenith angles [25–27].
The research area for this study was limited to grasslands, excluding arable land, water
bodies, man-made surfaces, and bare land. The area was determined by selecting pixels
that have been consistently classified as grassland over the past two decades [19].
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Figure 1. Research area and FLUXNET flux stations.

2.2. Data Sources and Pre-Processing

FLUXNET data were used as site data to verify the accuracy of extracting remote-
sensing phenological data based on the normalized difference vegetation index (NDVI).
The daily gross primary production (GPP) was obtained from FLUXNET datasets (https:
//fluxnet.fluxdata.org, accessed on 10 October 2022). The FLUXNET data website has
implemented rigorous quality control processes for GPP data, involving screening to
exclude periods of low turbulence and employing consistent methods to fill gaps in the
data [28,29]. Table 1 provides an inventory of the locations and corresponding years for the
GPP data collection.

Table 1. Vegetation types of FLUXNET sites in the study.

Site Name Available Time (Year) Latitude (◦ N) Longitude (◦ E) IGBP (Vegetation Type)

CN-Cha Chang Bai Shan 2003–2005 42.4025 128.0958 Mixed Forests
CN-Cng Chang Ling 2007–2010 44.5934 123.5092 Grasslands
CN-Dan Dang Xiong 2004–2005 30.4978 91.0664 Grasslands
CN-Du2 Duolun_Grassland 2008–2009 42.0467 116.2836 Grasslands

CN-Du3 Duolun Degraded
Meadow 2010 42.0551 116.2809 Grasslands

CN-Ha2 Haibei Shrubland 2003–2005 37.6086 101.3269 Permanent Wetlands
CN-HaM Haibei Alpine Tibet site 2002–2004 37.37 101.18 Grasslands
CN-Hgu Hong Yuan 2016–2017 32.8453 102.59 Grasslands

The 20-year (2001–2020) MOD13A2 NDVI product with a spatial resolution of 1000 m
and a temporal interval of 16 days was used to calculate the phenological metrics [30,31].
The MOD13A2 data are a widely used tool for dynamic monitoring of and research on
vegetation at different scales and fully considers the influence of high coverage, low viewing
angle, cloud shadow, aerosol, and other factors. The American National Aeronautics and

https://fluxnet.fluxdata.org
https://fluxnet.fluxdata.org


Land 2024, 13, 399 4 of 19

Space Administration provided the data (NASA) (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 10 September 2021).

The GlobeLand30 dataset (http://www.globeland30.org/home_en.html, accessed
on 15 November 2021) was used to extract the grassland. TM5, ETM+, and OLI multi-
spectral photos of the US Landsat satellite and multi-spectral images from the China
Environmental Disaster Reduction Satellite (HJ-1) were among the 30 m multi-spectral
images utilized in the production of the GlobeLand30 data [32]. This dataset was based
on satellite imagery and ground survey data, covering all land areas worldwide except
Antarctica, including 31 categories of land use/cover types such as forests, grasslands,
farmland, cities, etc.

The China Qinghai-Tibet Plateau Science Data Center provided the gridded monthly
temperature and precipitation data for the years 2001 to 2020. (https://data.tpdc.ac.cn/zh-
hans/search_index/, accessed on 5 August 2022). The Delta spatial downscaling method
was used in China to create this dataset, which has a spatial resolution of 1000 m [33–35].
The data came from the worldwide high-resolution climate dataset published by WorldClim
and the global 0.5◦ climate dataset published by CRU.

2.3. Methods
2.3.1. Vegetation Phenology Extraction

The methods for extracting phenological parameters based on the NDVI mainly
include the threshold method, median method, and maximum slope method. Generally,
the dynamic threshold method selects 20% and 50% [18,36], but there is no consensus on
the optimal remote-sensing phenological extraction method for specific regions. Therefore,
this study selected the dynamic threshold method (threshold 20%, threshold 50%) and
the maximum slope method to extract the phenological metrics (SOS, EOS) of temperate
grasslands in China.

The ground carbon flux phenology indicator data extracted from FLUXNET flux sites
in the study are utilized as ground truth values to validate the accuracy of remotely sensed
phenological data extracted from Chinese temperate grasslands using the first derivative
and dynamic threshold methods. The determination coefficient (R2) of the univariate
linear regression between the carbon flux phenology indicators at the flux sites and the
remotely sensed phenology is compared, aiming to select the most suitable remote sensing
phenology model within the study area.

(1) Dynamic threshold method

The MODIS-NDVI extraction of vegetation phenology excluded pixels having an
annual average NDVI of less than 0.1. The NDVI dataset was then filtered using the Timesat
program with the Savitzky–Golay filtering method. The time points that correspond to 20%
or 50% of the difference between the maximum and minimum NDVI values throughout a
year were designated as SOS and EOS using the dynamic threshold approach [18,36]. The
NDVI threshold was calculated as follows:

NDVIratio =
NDVI − NDVImin

NDVImax − NDVImin
(1)

where the NDVIratio is the fitted NDVI at a given day, and NDVImax and NDVImin are the
maximum and minimum NDVI each year.

(2) Calculating the maximum slope of a first-order derivative model

Using the Double Logistic (DL) function to reconstruct the original NDVI time series
curve, the calculation method for the DL function is as follows:

y(t) = a +
b

1 + e−c(t−d)
− b

e− f (t−g)
(2)

where y(t) is the NDVI value of t (day of year, DOY) on a certain day of the year.

https://ladsweb.modaps.eosdis.nasa.gov/
http://www.globeland30.org/home_en.html
https://data.tpdc.ac.cn/zh-hans/search_index/
https://data.tpdc.ac.cn/zh-hans/search_index/
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The maximum slope method defines the date corresponding to the point where the
fitting curve rises the fastest as the SOS, and the date corresponding to the point where
the fitting curve decreases the fastest as the EOS, that is, the dates corresponding to the
maximum and minimum values in the first derivative of the fitting curve are the SOS and
EOS, respectively.

2.3.2. Vegetation Phenology Extraction from FLUXNET Products

FLUXNET GPP data were employed to validate the accuracy of phenol extraction
based on the NDVI. For each pixel in the Fluxnet GPP datasets, a moving average filter was
applied to smooth the GPP curve. Subsequently, the 15% of the maximum daily GPP in the
smoothed GPP curve was identified as the dates for the SOS and EOS [8,10,35].

2.3.3. Statistical Analysis

Non-parametric Theil–Sen and Mann–Kendall trend analysis were used for the trend
and significance of phenological metrics (SOS and EOS) [37,38]. This trend analysis does
not need the normality of the data series and can lessen the influence of data outliers.
Positive and negative values in the results represent delay and advance, respectively. The
results can be used to analyze the phenology’s temporal and spatial patterns.

To understand how phenological changes were related to climate, two forms of
correlation analysis were employed to examine the relationship between phenology
and seasonal climate factors (specifically, average temperature and total precipitation).
Firstly, a basic multiple linear regression was executed to establish the link between
phenology and seasonal climate factors. Phenology (SOS or EOS) was used as the
dependent variable in multiple linear regression, and the seasonal climate variables
(temperature and precipitation) were used as the independent variables. The following
is the formula:

Y = a1X1 + a2X2 + . . . + anXn (3)

where an is the regression slopes, Xn is the independent variable, and Y is the dependent
variable. Regression slopes between the SOS of years (2001–2020) and corresponding spring
(March–May) precipitation, spring temperature, last-winter (December of the previous
year–February) precipitation, and last-winter temperature and between the EOS and corre-
sponding autumn (September–November) precipitation, autumn temperature, summer
(June–August) precipitation, and summer temperature [26]. To enhance the robustness
of the results, we use the variance inflation factor (VIF) to test the collinearity between
independent variables. The variance inflation factor (VIF) is a measure of the severity of
multicollinearity in multiple linear regression models. It represents the ratio of the variance
of the regression coefficient estimator to the variance when assuming non-linear correlation
between independent variables. Generally speaking, if the coefficient of variance inflation
is less than 10, it indicates that there is no collinearity problem between the independent
variables. The calculation formula is as follows:

VIF =
1

1 − R2
i

(4)

where R2
i is the multiple decision coefficient for the independent variable to perform

multiple regression on the other independent variables.
The association between phenology (SOS or EOS) and seasonal climate variables was

then investigated using partial correlation analysis, which removed the impact of other
variables and identified the correlation between two variables.

3. Results
3.1. Evaluation of Vegetation Phenology Extracted from Satellite and Site Data

The linear regression results for the flux start of the growing season (SOS) and remote
sensing SOS corresponding locations and years are shown in Figure 2. It was observed that
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the fitting performance of the remote sensing SOS extracted by models P1 (first derivative
model) and P3 (dynamic threshold 50%) was poor, with R2 values of 0.072 and 0.069,
respectively, much lower than the fitting results of the model P2 (dynamic threshold 20%)
SOS with flux SOS (R2 = 0.398). Additionally, the study revealed that the P2 model was
closer to the flux SOS values compared to the SOS values extracted by the P1 and P3 models.
Both the P2 and P3 models employed the same method (dynamic threshold method) but
with different thresholds. This indicates that the widely used 20% threshold in temperate
regions is also suitable for Chinese temperate grasslands, while the 50% threshold is
relatively high for Chinese temperate grasslands. Therefore, using the dynamic threshold
method (20%) for extracting the remote sensing SOS data in the study will yield more
reliable results.
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Figure 2. Comparison and validation of start of the growing season (SOS) extraction using different
phenology models based on FLUXNET flux stations and remote sensing NDVI data. The results of
pairwise linear fittings of phenological metrics fitted by different models (a–f).

The linear regression results for the flux end of the growing season (EOS) and remote
sensing EOS corresponding locations and years are depicted in Figure 3. It was observed
that the fitting performance of the remote sensing EOS extracted by models P1 and P3 was
poor, with R2 values of 0.212 and 0.138, respectively, much lower than the fitting results
of the model P2 EOS with the flux EOS (R2 = 0.422). Additionally, the study revealed that
the P1 and P3 models were relatively closer to the flux EOS values compared to the P2
model. Despite the numerically larger EOS values extracted by the P2 model, the higher R2

value in the linear regression indicates the widespread applicability of the 20% threshold in
Chinese temperate grasslands. The numerical difference does not affect the overall trend
and variation of phenology, so the study adopted the dynamic threshold method (20%) for
extracting remote sensing EOS data.



Land 2024, 13, 399 7 of 19

Land 2024, 13, x FOR PEER REVIEW 7 of 21 
 

 
Figure 3. Comparison and validation of end of the growing season (EOS) extraction using different 
phenological models based on FLUXNET flux stations and remote sensing NDVI data. The results 
of pairwise linear fittings of phenological metrics fitted by different models (a–f). 

3.2. The Spatiotemporal Changes in Vegetation Phenology 
The spatial pattern of multi-year (2001–2020) averages of phenological metrics (SOS, 

EOS) of temperate grassland in China are depicted in Figure 4. More than 89.5% of the 
pixels of the SOS occurred between early April (day 100) and early May (day 160) (Figure 
4a). More than 91.3% of the pixels of the EOS occurred between early October (day 285) 
and early November (day 310) (Figure 4d). At the regional scale, as the mean annual 
temperature increases by 1 °C, the SOS advances by 2.2 days (Figure 4b) and the EOS is 
delayed by 1.7 days (Figure 4c), and as the mean annual precipitation increases by 100 
mm, the SOS advances by 1.4 days (Figure 4c). 

Over the past 20 years, 60.5% of the pixels of the SOS showed advance and 39.5% 
showed delay. Among the EOS, 39.8% of the pixels show advance, and 60.2% of the pixels 
show delay (Figure 5). Although most pixels showed early SOS and delayed EOS between 
2001 and 2020, the study found that over 89% of regions did not show significant long-
term trends in SOS and EOS (p > 0.05) (Figure 5). 

300

320

340

360

Pearson's r=0.67136
N

D
V

I 0
.2

-E
O

S 
(P

2)
R2=0.42182

273

294

315

336

Pearson's r=0.4259

N
D

V
I 0

.5
-E

O
S 

(P
3)

R2=0.13831
Pearson's r=0.62111

R2=0.35346

289 306 323 340

270

300

330

360
(f)(e)

(d)

(c)

(b)

Pearson's r=0.50109Fi
rs

t d
er

iv
at

iv
e-

EO
S 

(P
1)

FLUXNET-EOS

R2=0.21167

(a)

294 315 336 357
Pearson's r=0.80669

NDVI 0.2-EOS (P2)

R2=0.63236

273 294 315 336
Pearson's r=0.65752

NDVI 0.5-EOS (P3)

R2=0.40245

Figure 3. Comparison and validation of end of the growing season (EOS) extraction using different
phenological models based on FLUXNET flux stations and remote sensing NDVI data. The results of
pairwise linear fittings of phenological metrics fitted by different models (a–f).

3.2. The Spatiotemporal Changes in Vegetation Phenology

The spatial pattern of multi-year (2001–2020) averages of phenological metrics (SOS,
EOS) of temperate grassland in China are depicted in Figure 4. More than 89.5% of
the pixels of the SOS occurred between early April (day 100) and early May (day 160)
(Figure 4a). More than 91.3% of the pixels of the EOS occurred between early October
(day 285) and early November (day 310) (Figure 4d). At the regional scale, as the mean
annual temperature increases by 1 ◦C, the SOS advances by 2.2 days (Figure 4b) and the
EOS is delayed by 1.7 days (Figure 4c), and as the mean annual precipitation increases by
100 mm, the SOS advances by 1.4 days (Figure 4c).

Over the past 20 years, 60.5% of the pixels of the SOS showed advance and 39.5% showed
delay. Among the EOS, 39.8% of the pixels show advance, and 60.2% of the pixels show
delay (Figure 5). Although most pixels showed early SOS and delayed EOS between 2001
and 2020, the study found that over 89% of regions did not show significant long-term
trends in SOS and EOS (p > 0.05) (Figure 5).
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Figure 4. Spatial distributions of NDVI-derived phenological metrics (SOS and EOS). The SOS (a) and
EOS (d) are the start of the growing season and the end of the growing season, respectively. Data in the
figure are the mean annual values over years 2001–2020. The histograms are the frequency distribution
of the phenological metrics in Julian days. The scatter plot represents over 2000 randomly sampled
phenological metric (SOS and EOS) data points in space, and each data point is the mean annual
value over years 2001–2020. Phenological metrics of the pixels as a function of both corresponding
temperatures (b,e) and precipitation (c,f). Lines are fitted ones.
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Figure 5. Spatial distribution of the trends of phenological metrics (SOS and EOS) over years
2001–2020 and their frequencies. Panel (a,b) were for the start of the growing season (SOS) and end
of the growing season (EOS), respectively.

3.3. Sensitivity of Phenology to Seasonal Climate from 2001 to 2020 and Regional Differences

The multivariate regression analysis of phenological metrics vs. seasonal climate by
pixel from 2001 to 2020 is shown in Figure 6, and the sensitivity of phenological metrics to
seasonal climate changes with mean annual temperature and precipitation is represented by
a scatter plot (Figures 7 and 8). The variance inflation factor (VIF) between the independent
variables of seasonal climate is all less than 10, indicating that there is no collinearity
between the independent variables (Figures S1–S3). The sensitivity of the SOS to spring
temperature and last-winter precipitation varied spatially and linearly with the increase in
mean annual precipitation (p < 0.05) (Figure 8b,c), rather than mean annual temperature
(Figure 7a–d). Furthermore, the sensitivity of the EOS to summer and autumn climate was
influenced by both mean annual temperature and precipitation (Figure 7e,f and Figure 8e,f).
The last-winter precipitation had a greater impact on the SOS than spring precipitation
did (Figure 9a), with the largest contribution of −2.23 d/mm in regions with precipitation
ranging from 0 to 200 mm. Autumn temperature impacted the EOS most, with the highest
contribution of 10.13 d/◦C in regions with temperatures ranging from −10 to −5 ◦C
(Figure 9b).
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Figure 6. Spatial distribution of the regression slopes between SOS (start of growing season) and
corresponding spring precipitation (a), spring temperature (b), last-winter precipitation (c), and
last-winter temperature (d) over years 2001–2020 and between EOS (end of growing season) and
corresponding autumn precipitation (e), autumn temperature (f), summer precipitation (g), and
summer temperature (h) over years 2001–2020.
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Figure 7. The scatter plot represents over 500 randomly sampled multiple regression slope data
points in space, each of which represents the slope of phenological indicators and seasonal climate
multiple regression, and all have passed significance tests (p < 0.05). Solid lines are fitted ones.
The regression slope is from the linear regression between SOS (start of the growing season) and
corresponding spring precipitation (a), spring temperature (b), last-winter precipitation (c), and
last-winter temperature (d) over years 2001–2020 and between EOS (end of the growing season)
and corresponding autumn precipitation (e), autumn temperature (f), summer precipitation (g), and
summer temperature (h) over years 2001–2020.
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Figure 8. The scatter plot represents over 500 randomly sampled multiple regression slope data
points in space, each of which represents the slope of phenological indicators and seasonal climate
multiple regression, and all have passed significance tests (p < 0.05). Solid lines are fitted ones.
The regression slope is from the linear regression between SOS (start of the growing season) and
corresponding spring precipitation (a), spring temperature (b), last-winter precipitation (c), and
last-winter temperature (d) over years 2001–2020 and between EOS (end of the growing season)
and corresponding autumn precipitation (e), autumn temperature (f), summer precipitation (g), and
summer temperature (h) over years 2001–2020.
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Figure 9. Comparisons in regression slopes of phenological metrics (SOS and EOS) against climatic
factors between different temperature zones (a,b) and between different precipitation zones (c,d).
The SOS and EOS are the start of the growing season and the end of the growing season, respectively.
Panel (a,c) are the regression slopes of EOS for years 2001–2020 against corresponding precipitations
in both summer and autumn, and regression slopes of SOS against precipitation in both spring and
last winter. Panels (b,d) are for the regression slopes of SOS against temperature in both spring and
last winter and for the regression slopes of EOS against temperature in both summer and autumn.
Data are mean values of pixels in the specific zone.
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3.4. Partial Correlation Analysis to Determine the Area Division of Relative Importance

Through partial correlation analysis of phenology and seasonal climate from 2001 to
2020 pixel by pixel. We discovered that the response of phenology to seasonal climate varied
spatially (Figure 10), with the strongest partial correlation coefficient between last-winter
precipitation and the SOS (Figure 10i). Last-winter precipitation had a negative impact on
SOS for a larger number of pixels (68.6%) (Figure 10c,i). Similarly, the autumn temperature
had a positive impact on the EOS for a larger number of pixels (66.1%) (Figure 10f,j). We
created a controlling-factor map based on the greatest partial correlation coefficient between
phenology and seasonal climatic variables (temperature and precipitation) to determine
the regions where changes in phenology were mostly controlled by either temperature or
precipitation (Figure 11). In more than 30% of the pixels analyzed, the analysis revealed
that spring temperature was the main cause of interannual change in the SOS (Figure 11a),
which was more prevalent in Inner Mongolia’s center and eastern regions. In contrast,
summer precipitation was the primary controlling factor for interannual variation in the
EOS in more than 30% of the pixels examined, with these areas mainly located in the
Hulunbuir (Figure 11b).
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Figure 10. Spatial distribution of partial correlation coefficients between SOS over years 2001–2020
and both corresponding precipitation (a) and temperature (b) in spring, between SOS of years
2001–2020 and both corresponding precipitation (c) and temperature (d) in last winter, between EOS
of years 2001–2020 and both corresponding precipitation (e) and temperature (f) in autumn, and
between EOS of years 2001–2020 and both corresponding precipitation (g) and temperature (h) in
summer. The blue font (−) and orange font (+) represent the percentage of negatively and positively
correlated pixels in the total pixels, respectively. The histograms (i) indicate the average value of all
pixels in the graph (a–d), and the histogram (j) indicates the average value of all pixels in the graph
(e–h), Error bars indicate the standard deviation among pixels.
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Figure 11. Spatial distribution of major climate controls on phenological metrics (SOS (a) and EOS (b)).
It is based on the maximum partial correlation coefficient between phenological metrics and seasonal
climate variables over years 2001–2020. The seasonal climatic variables include spring precipitation,
spring temperature, later-winter precipitation, and later-winter temperature. Note: the variable is
considered as the controlling factor of the pixel SOS or EOS if the maximum partial correlation
coefficient is significant and higher than those with other variables.

4. Discussion
4.1. Spatial Heterogeneity of Phenology Trend

In this study, large spatial variability in phenology was found in temperate grassland
in China (Figure 4). The SOS in temperate regions of China mainly occur between the 100th
and 160th days, which is consistent with the SOS observed in China from 2001 to 2014 [39].
The SOS in the Loess Plateau and the eastern part of the Qinghai-Tibet Plateau occurs
later. We speculate that this delay may be attributed to the geographical location of the
Loess Plateau, situated in the northwest inland of China and influenced by the northwest
monsoon, resulting in less precipitation and a drier climate. In the Qinghai-Tibet Plateau,
the SOS of grasslands around the Gangdise Mountains occurs between the 170th and
180th day. Early EOS is predominantly observed in the northeast and northwest regions
of temperate grasslands, whereas alpine grasslands exhibit earlier EOS dates compared
to other grasslands. Conversely, late EOS is mainly distributed in the central and eastern
regions of Inner Mongolia [40].

We found that higher temperature regions had earlier start and later end dates for
the growing season (Figure 4b,c), and earlier SOS in relatively humid regions (Figure 4c).
The phenological metrics trends were heterogeneous in both direction and magnitude
at the regional scale across the study period (Figure 5), suggesting that plant phenology
under different hydrothermal regions responded diversely to changes in a unit change
in temperature and precipitation. The SOS advance and EOS delay have been found in
previous studies [41–43]. However, with the extension of the research cycle, the SOS shows
a slow development trend. For example, Jeong et al.’s study on temperate regions of the
Northern Hemisphere showed that during the 1982–1999 study period, the progress rate of
the SOS was 0.29 days per year, but then the progress of the SOS slowed down, slowing
down at a rate of 0.02–1 days per year in the later stages (2000–2008) [43]. In addition, Zhao
et al. revealed that from 1982 to 2013, the average SOS in Northeast China did not show a
significant upward trend (0.04 days per year) [44]. Some studies believe that the spatial
heterogeneity of phenological trends was caused by the different responses of vegetation in
the biological community to the climate in different seasons [45]. Over the past 20 years,
60.5% of the pixels in the SOS showed advance and 39.5% showed delay. Among the
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EOS, 39.8% of the pixels show advance, and 60.2% of the pixels show delay (Figure 5).
Although most pixels showed early SOS and delayed EOS between 2001 and 2020, the
study found that over 89% of regions did not show significant long-term trends in the SOS
and EOS (Figure 5). This is consistent with previous research results, and there was no
significant trend in phenology in some study areas. For example, the warming of forests in
the Northeastern United States did not have a significant impact on phenology [46]. In the
study of the global scale, Central Asia and the Qinghai-Tibet Plateau, SOS, and EOS trends
were not significant [18,47,48]. Additionally, Central–West Asian grasslands showed a
forward shift in all SOS pixels, whereas no such notable trend was seen for North American
grasslands or East Asian grasslands [49]. There are studies suggesting that phenology reacts
differently or even in the opposite way to various seasonal climates [16,22,50]. Through
studying the interannual trends of monthly climate, we found that from 2001 to 2020, the
trends of temperature and precipitation were not significant, and even the trends were
opposite in different months (Figure S4a,b). The interactive effects of seasonal climate
on phenology are caused by climate change, which slows down the long-term trend of
phenology. Some studies also suggest that the uncertainty of this phenological trend is
often attributed to the different phenological changes of different vegetation types, and the
complexity of regional climate leads to differences in the response of vegetation phenology
to climate [51]. Previous studies have found that differences in the response of different
species phenology to climate change can lead to unsynchronized ecological interactions,
thereby threatening ecosystem functions [39,52]. In other words, key seasonal interactions
between species can become unsynchronized over time, affecting the duration of inter
species interactions, crop production, and pollination seasons, potentially resulting in
serious consequences for wild populations and ecosystem functions [36]. Therefore, the
uncertainty of long-term phenological trends and the increase in interannual variability
will inevitably lead to the exacerbation of this serious consequence.

4.2. The Sensitivity of SOS to Seasonal Climate Was Regulated by Regional Climate from
2001 to 2020

The warm temperatures in spring will accelerate the accumulation of heat, promoting
the resumption of active growth [53]. Previous studies have indicated that the increase in
winter temperatures may result in insufficient cold accumulated temperature requirements
for vegetation, weakening the process of breaking dormancy and consequently leading
to a later start of the growing season (SOS) [54]. Earlier research in the Qinghai-Tibet
Plateau region suggested that, despite the advancement of the growing season due to
warm springs, the warm conditions in winter could cause a delay in the spring phase [36].
However, this study observed that a warm winter could also lead to an earlier spring
phase, and these disparate results may be attributed to regional conditions or species
differences. The lag effects of seasonal climate on the phenological responses of different
vegetation vary, and the extent of cold requirement differs [26]. While climate warming
tends to advance the SOS, the interactive effects of seasonal climate on phenology introduce
uncertainties in the long-term trend of the SOS. Prolonged warming may reinforce these
impacts, potentially weakening or even reversing the long-term trend of the SOS [55]. Plants
in humid regions of China and plants in regions with higher mean annual temperatures
may be more sensitive to temperature [25,56]. These outcomes support our findings that
between 2001 and 2020, the SOS was more responsive to spring temperature in humid
regions (Figures 8b and 9d). In addition, our research results reveal that the sensitivity of
the SOS to spring temperature varies linearly from positive to negative with the increase
in annual average precipitation (p < 0.05) (Figure 8b), indicating that an increase in spring
temperature in relatively humid areas is more conducive to early SOS, while an increase
in spring temperature in relatively arid areas leads to delayed SOS [25]. Previous studies
have also found that temperature sensitivity is higher in humid areas of China [14,15], and
the positive correlation in arid areas may be related to the impact of spring water stress
on plant growth. Limited water potential can inhibit plant growth and photosynthetic
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activity, while the increase in spring temperature leads to rapid evaporation of water in arid
areas [57]. Strengthening water stress leads to decreased vegetation activity and delayed
phenology [57]. Therefore, an increase in pre-season precipitation can alleviate water stress
and lead to earlier spring phenology. In addition, the precipitation in the winter of the
previous year was negatively correlated with the SOS, and the increase in precipitation in
the winter of the previous year led to an advance in the SOS (Figure 10c). Compared with
semi-humid and semi-arid regions, the SOS in arid regions is more sensitive to precipitation
in the last winter (Figure 8c). Previous studies have also found that in typical grasslands
and desert grasslands in Inner Mongolia, the rapid decrease in available water delayed
the occurrence of the SOS, while seasonal drought significantly suppressed the SOS in
grasslands [58], especially in typical grasslands [59]. In the Hulunbuir Plateau region,
there is a significant negative correlation between the SOS and total spring precipitation,
indicating that spring precipitation controls vegetation growth, especially in semi-arid
areas [57]. Our research indicates that temperature and precipitation both contributed to
the SOS of temperate grasslands in China [60,61], but the sensitivity of the SOS to spring
temperature and last-winter precipitation during 2001–2020 was mainly controlled by mean
annual precipitation rather than temperature (Figure 8b,c).

4.3. The Sensitivity of EOS to Seasonal Climate Was Regulated by Regional Climate from
2001 to 2020

Autumn temperatures showed a consistent controlling function in regulating EOS
variations from 2001 to 2020 for the majority of pixels (Figures 9b and 10j), which was
consistent with previous research. Increasing autumn temperatures reduced frost risk
and delayed the EOS due to insufficient cold accumulation [59]. Interestingly, increasing
summer temperatures advanced the EOS during the study period (Figure 9b,d). Previous
studies have suggested that the increase in summer temperature and physiological activity
may promote early autumn senescence through various possible mechanisms, including
developmental and nutritional limitations, seasonal accumulation of water stress, and
radiation induced leaf senescence [49,62]. On the contrary, the rapid decrease in autumn
temperature will directly lead to early autumn aging [10]. However, our study showed the
opposite, that increasing summer precipitation also advanced the EOS (Figures 8g and 9a,c),
and the sensitivity was stronger in warmer areas (Figure 7g). One possible reason for
this is the differences in regional climate and study subjects, leading to variations in the
response of the EOS to summer temperatures [63]. Another possible explanation is that high
summer temperatures in relatively humid areas can enhance vegetation growth by affecting
vegetation carboxylation and enhancing vegetation photosynthesis, completing the entire
growing season in advance [64]. Previous studies on deciduous trees in Europe have
shown a negative feedback between growth season productivity and autumn phenology,
with increased productivity leading to earlier aging [65]. Early season warming leads to
early leaf growth and accelerated tissue maturation in spring, often leading to earlier EOS
dates [66]. Similarly, it has been found through experimental and long-term observational
studies that the improvement in productivity during spring and summer due to the increase
in carbon dioxide, temperature, or light levels can lead to premature leaf aging [65]. We
also observed similar phenomena in our study results, such as summer temperature and
precipitation having a more negative correlation with the EOS (Figure 10j). In addition,
the sensitivity of the EOS to summer precipitation was more sensitive in warm regions
(Figure 7g), and the sensitivity to summer temperature was more sensitive in relatively
humid regions (Figures 8h and 9d). This has also been found in previous studies, which
suggest that the increase in the EOS observed during temperature rise and growth before
the summer solstice may be related to the availability of soil resources throughout the
growing season [67]. The optimal growth conditions in spring (high temperature and
sufficient precipitation) may deplete the nitrogen availability of trees, leading to early
spring and early leaf senescence [68]. Therefore, for areas with good water and thermal
conditions, the reduction in soil moisture in autumn due to summer warming is not the
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main reason for advancing autumn phenology. The growth limitation of plants is an
important biological factor for advancing autumn phenology [19]. In addition, with the
increase in atmospheric CO2 concentration, the C:N ratio of leaves increases, leading to
microbial immobilization and reduced nitrogen accessibility, which may also be important
reasons for early leaf senescence [69]. The sensitivity of the EOS to seasonal climate showed
a linear relationship from 2001 to 2020 with mean annual precipitation and temperature
changes (Figures 7e–h and 8e–h). These results also suggested that autumn phenology was
influenced by both the early growth of plants and environmental factors, making it more
susceptible to disturbances caused by climate. The improved model for plant development
and growth under climate change needs to incorporate the composite effects of seasonal
warming on phenology.

4.4. Uncertainty and Outlook

The MODIS-NDVI data have been widely used for phenological monitoring. we
employed multiple datasets (FLUXNET-GPP, and MODIS-NDVI) for cross-validation and
to obtain a better evaluation of vegetation phenological dynamics. Our results show that
phenological metrics exhibit a good fit in linear regression analysis; although the results
have consistency between phenological information extracted using the MODIS-NDVI
and other datasets, they also have some flaws (Figures 2 and 3). Seasonal temperature
and precipitation are important controlling factors of vegetation phenology. Nevertheless,
the properties of the topography and the soil, as well as radiation, have an impact on the
spatiotemporal patterns of phenology. Due to the difficulty of accounting for all these
factors in large-scale remote sensing applications, a more comprehensive understanding
of vegetation phenology shifts requires further investigation, particularly against the
background of global climate change. Leveraging the advantages of wide-ranging remote
sensing data, long time series, and numerous samples (pixels), we have explained the
response of phenology to seasonal temperature and precipitation and its relationship with
regional climate, thereby providing novel insights into predicting phenological changes
in different regions resulting from climate warming. The NDVI is influenced by light
reflection, while SIF (Sun-Induced Fluorescence) is derived from the fluorescence emission
of vegetation itself, making it more sensitive to non-photosynthetic changes and providing
more accurate vegetation phenological information. SIF has a greater sensitivity and
dynamic range than the NDVI, and can capture small changes in vegetation physiological
status and a wider dynamic range. For example, recent research on using SIF remote sensing
for phenological monitoring may improve the monitoring of grassland photosynthetic
phenols [70–72].

5. Conclusions

In this study, we investigated the impact and sensitivity of seasonal climate on phenol-
ogy (SOS and EOS) in the temperate grasslands of China from 2001 to 2020. Our results
indicated that based on trend analysis of vegetation phenology on a pixel-by-pixel basis,
more than 89% of pixels had no significant trend from 2001 to 2020. The sensitivity of
the SOS to late-winter precipitation and spring temperatures throughout the study period
showed a linear variation with the rise in mean annual precipitation rather than shifting in
response to the increase in mean annual temperature. Last-winter precipitation increases
promoted an advance in the SOS and had a greater impact on the SOS than spring precipita-
tion did, with the SOS advancing up to 2.23 days for every 1 mm increase in the last-winter
precipitation. The EOS was sensitive to autumn temperature, being delayed 10.13 days for
every 1 ◦C increase in autumn temperature in regions with temperatures between −10 ◦C
and −5 ◦C. Compared to the SOS, the EOS may be influenced by both early plant growth
and environmental factors, making its response to future climate change more uncertain.
The increasing last-winter precipitation led to an advance in the SOS, and increasing in
autumn temperatures led to a delay in the EOS in most areas of the temperate grassland in
China during the study period. Our research has significant ramifications for anticipating
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regional phenology shifts in climate change with rising temperatures and unpredictable
precipitation. In addition, our study offers new perspectives on how phenology affects
climate sensitivity in the context of future climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13030399/s1, Figure S1: The variance inflation factors (VIF)
of spring temperature (a), spring precipitation (b), temperature of the last winter (c), and precipitation
of the last winter (d) with respect to the other three variables respectively; Figure S2: The variance
inflation factors (VIF) of autumn temperature (a), autumn precipitation (b), summer temperature
(c), and summer precipitation (d) with respect to the other three variables respectively; Figure S3:
The pixel statistics of the variance inflation factors (VIF) for raster data, with the x-axis representing
autumn rainfall (Au-pre), autumn temperature (Au-temp), spring rainfall (Sp-pre), spring tempera-
ture (Sp-temp), summer rainfall (Su-pre), summer temperature (Su-temp), previous year’s winter
rainfall (Win-pre), and previous year’s winter temperature (Win-temp) in sequence; Figure S4: The
interannual changes in monthly mean temperature (a) and mean precipitation (b) in temperate zone
of China. Line chart show the annual monthly climate attributes, the numbers in orange font and
blue font indicate the slope of linear regression fitting and the coefficient of variation (cv) from 2001
to 2020, respectively.
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