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Abstract: The identification of influencing factors (IFs) of land surface temperature (LST) is crucial
for developing effective strategies to mitigate global warming and conducting other relevant studies.
However, most previous studies ignored the potential impact of interactions between IFs, which might
lead to biased conclusions. Generalized additivity models (GAMs) can provide more explanatory
results compared to traditional machine learning models. Therefore, this study employs GAMs to
investigate the impact of IFs and their interactions on LST, aiming to accurately detect significant
factors that drive the changes in LST. The results of this case study conducted in Nanjing, China,
showed that the GAMs incorporating the interactions between factors could improve the fitness
of LST and enhance the explanatory power of the model. The autumn model exhibited the most
significant improvement in performance, with an increase of 0.19 in adjusted-R2 and a 17.9% increase
in deviance explained. In the seasonal model without interaction, vegetation, impervious surface,
water body, precipitation, sunshine hours, and relative humidity showed significant effects on LST.
However, when considering the interaction, the previously observed significant influence of the
water body in spring and impervious surface in summer on LST became insignificant. In addition,
under the interaction of precipitation, relative humidity, and sunshine hours, as well as the cooling
effect of NDVI, there was no statistically significant upward trend in the seasonal mean LST during
2000–2020. Our study suggests that taking into account the interactions between IFs can identify the
driving factors that affect LST more accurately.

Keywords: land surface temperature (LST); generalized additive models (GAMs); influencing factors;
interaction; Nanjing

1. Introduction

As a crucial variable governing energy exchange between the atmosphere and land
surface, land surface temperature (LST) plays an important role in assessing climate change,
hydrological cycles, vegetation growth, and ecosystem dynamics. Due to its intricate
spatiotemporal characteristics, LST has emerged as a prominent research focus in the past
decades [1–4]. Given the profound impact of LST on agricultural productivity, industrial
operations, and societal well-being, it is of great importance to comprehend its spatiotem-
poral dynamics and analyze the underlying driving forces. This will not only facilitate a
more effective response to the diverse challenges posed by climate change but also can
serve as a crucial foundation for the government and relevant departments in formulating
scientific and precise strategies [5–7].

LST tends to be influenced by a multitude of driving factors. The influencing factors
(IFs) for a specific region can be broadly classified into four categories: land use and land
cover (LULC); ecological, environmental factor; socioeconomic factor; and topographic
factor [8–10]. LULC typically consists of impervious surfaces (IPS), vegetation cover, bare
soil, and water body (WB). Among them, IPS typically encompasses man-made ground
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objects that are impermeable to water, such as buildings, roads, squares, and parking lots,
as well as areas of land and urban development covered with artificial materials [11]. IPS
possesses the capability to absorb solar radiation and store thermal energy, potentially
resulting in an increase in LST [12,13]. As for vegetation cover and WB, previous research
has indicated that they possess a cooling effect on the land surface [14]. However, the
normalized differential vegetation index (NDVI), which serves as an indicator of vegetation
cover, does not necessarily exhibit a negative correlation with LST; instead, their relationship
may vary seasonally [15]. Additionally, the cooling effect of WB on LST is contingent upon
both the season and their area [15,16]. Bare soil, especially sandy soil with low water
content, has a low heat capacity. As a result, bare soil has minimal evaporation under the
sun radiation, resulting in a rapid increase in LST [10]. The reduction in bare soil area
within the same region corresponds to an increase in other LULC types. In addition, given
the small area of bare soil in Nanjing, this study did not consider it as a driver of LST.

The ecological environmental factors that affect LST mainly include precipitation
(PREP), relative humidity (RH), and sunshine hours (SSH) [17–19]. The impact of precipita-
tion on LST can be distinctly perceived in the real world, as demonstrated by numerous
studies [20–22]. However, the cooling impact of PREP on LST is scale-dependent due to its
regional differences. As a result, the impact of the PREP on the variation in LST is negligible
on a global scale [23]. Moreover, the research on PREP as a driver of LST variations remains
limited. As a crucial natural factor, the contribution of SSH plays a pivotal role in the
variations in LST, which directly represents the duration of solar radiation received by
the Earth’s surface [19]. Research has indicated that with every 1% increase in relative
humidity, there was an associated temperature decrease of approximately 0.15 ◦C [24].
However, few studies have incorporated RH as a contributing factor in investigating the
changes in LST.

The socioeconomic factor typically refers to human activities and industrial production
and can be quantified by population density (PD) and industrial added value (IAV) [25–27].
The increase in PD and IAV tends to be accompanied by elevated heat emissions, thereby
resulting in a rise in LST [28,29]. The topographic factors primarily encompass elevation,
slope, and aspect [30]. LST generally exhibits a decreasing trend as the elevation increases.
Considering the limited topographic relief in the study area, this study does not explore its
potential impact on LST.

In general, the variation in LST is influenced by multiple factors with distinct influ-
encing mechanisms and contributions across spatial scales, seasons, and regions [31–33].
However, most existing studies have primarily focused on examining the impact of a single
factor or a specific type of factor on the variation in LST [34–36]. Moreover, few studies
have taken into account the impact of solar radiation, precipitation, relative humidity, and
their interactions on LST; therefore, the conclusions obtained may be biased.

In terms of research methodology, the previous methods employed include statistical
analysis, ordinary least squares regression (OLSR), and machine learning methods, such as
neural network models and random forests [25,37,38]. However, statistical analysis and
OLSR are inadequate in capturing the nonlinear relationship between LST and IFs. Despite
its ability to capture the linear and nonlinear relationship between LST and IFs, machine
learning suffers from limited interpretability. In particular, most of the currently adopted
methods fail to adequately capture the interactions between two IFs on LST.

The Generalized Additive Models (GAMs) were developed by Hastie and Tibshirani in
1990 as an extension of the Generalized Linear Model, which could not only characterize the
complex nonlinear relationship between response variables and explanatory variables but
also could explain the importance of each explanatory variable and their interactions [39,40].
Due to their practical mechanisms and inherent effectiveness, GAMs have been widely
utilized in numerous research fields, including the studies of air quality, traffic accidents,
and medicine [40–47]. However, to the best of our knowledge, few previous studies have
applied GAMs to investigate the causes of the variations in LST.
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In view of the aforementioned analysis, this study employed IPS, WB, NDVI, PREP,
RH, SSH, PD, and IAV as explanatory variables to investigate the significant factors and
their interactions contributing to the changes in LST in Nanjing, China, using GAMs.
We aimed to reveal the spatiotemporal trend, the significant influencing factors, their
action mode (linear or nonlinear), action effect (warming or cooling), and the order of
importance for the LST in Nanjing using the multivariate GAMs model without interaction
and with interaction. Additionally, we assessed the performance improvement in the
multivariate GAMs model with interaction (MGAMI) compared to the multivariate GAMs
model without interaction (MGAM).

2. Study Area and Data
2.1. Study Area

The study area is Nanjing City, the capital of Jiangsu province, which is located on the
eastern coast of mainland China (as shown in Figure 1). Nanjing City (118◦22′–119◦14′ E;
31◦14′–32◦37′ N) exhibits a subtropical monsoon climate characterized by ample sunshine
and precipitation resources, as well as distinct seasonal variations. The region experiences
hot and humid summers, while winters are characterized by cold and aridity. The average
annual precipitation in Nanjing is approximately 1100 mm, while the average temperature
stands at around 15.4 ◦C. Nanjing, encompassing 11 districts, is one of the dynamic cities
in Eastern China characterized by its rapid economic growth and vitality. By taking the
administrative district as the fundamental unit, we investigated the spatiotemporal pattern
of LST in Nanjing and its underlying driving factors.
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Figure 1. Geographical location, land use, and land cover of the study area.

2.2. Data
2.2.1. Land Surface Temperature

The LST data were derived from the 1 km resolution of the monthly average tem-
perature dataset of China, which was provided by the National Tibetan Plateau Scientific
Data Center [48]. This dataset was generated in China using the Delta spatial downscaling
scheme based on the global 0.5◦ climate dataset published by the Climatic Research Unit
and the global high-resolution climate dataset published by WorldClim; the dataset was
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evaluated by 496 national weather stations across China, and the evaluation indicated that
the downscaled dataset was reliable [49].

2.2.2. Influencing Factors

Changes in LST are the result of complex interactions between natural processes and
human activities [50]. Referring to previous studies, we chose eight potential IFs that may
lead to the change in LST from three categories, namely, LULC, ecological, environmental
factor, and socioeconomic factor, as presented in Table 1.

(1) Land Use and Land Cover

The areas of IPS and WB were derived from the 30 m LULC data of China from 2000
to 2020 [51]. To enhance objectivity, this study adopted the area ratio of IPS and WB,
which was obtained by dividing the respective area by the total area of the corresponding
administrative region. As mentioned above, the impact of vegetation on LST may vary
under different growth states. Therefore, considering that vegetation can be characterized
by NDVI, we utilized MODIS NDVI data from the MOD13A3 global dataset released by
NASA instead of vegetation cover area, spanning from 2000 to 2020 and with a spatial
resolution of 1 km;

(2) Ecological Environmental Factor

The ecological environmental data utilized in this paper, including PREP, SSH, and
near-surface RH, were sourced from the daily dataset from China’s national surface weather
station data set, which has been recorded by more than 824 nationwide base and basic
weather stations since 1951. Based on daily data spanning from 2000 to 2020, a raster
data set with a spatial resolution of 1 km was generated using cubic spline interpolation.
Subsequently, monthly data for each district in Nanjing were obtained;

(3) Socioeconomic factor

The socioeconomic factors adopted in our study comprised PD and IAV. The popula-
tion data were obtained from the LandScan data set. We employed a population grid data
set with a spatial resolution of 1 km to estimate the annual population for each district in
Nanjing between 2000 and 2020. The PD was then obtained by dividing the population of
each district by the area of the corresponding district.

Table 1. The selected influencing factors.

Category Influencing Factors Data Structures Units Time Scale

LULC
IPS Raster data % Annual
WB Raster data % Annual

NDVI Raster data - Monthly

Ecological
environmental factor

PREP Station data mm Monthly
SSH Station data hour Monthly
RH Station data % Monthly

Socioeconomic factor
PD Raster data person/km2 Annual
IAV District data billion RMB/km2 Annual

The IAV refers to the total industrial output minus the intermediate industrial inputs
and value-added tax, which is usually used to characterize industrial output. The IAV data
used in this study were derived from the China Regional Economic Statistical Yearbook and
China County Statistical Yearbook. To fill in the missing values in IAV data, an autoregressive
moving average model was used. Similarly, for the sake of objectivity, the IAV employed
was the industrial added value within one square kilometer.

The data structures, units, and time scales of the above variables are listed in Table 1.
It can be seen that the time scales of different impact factors vary. To integrate data from
different time scales into seasonal data, we considered spring as March to May, summer as
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June to August, autumn as September to November, and winter as December to February
of the following year. Since IPS, WB, PD, and IAV did not significantly differ between
seasons in the same year, the annual values of these variables are used in the seasonal
model. Additionally, for the variables with a monthly scale, including LST, NDVI, SSH,
PREP, and RH, the seasonal value was determined by taking the average of each month
within the corresponding season. Then, the number of each variable was 231 at the seasonal
scale after the aforementioned processing.

3. Methodology
3.1. Generalized Additive Models (GAMs)

The generalized additive model can be expressed as the following equation:

g(Y)= f 0 +
k

∑
i=1

fi(Xi) + εi (1)

where Y is the response variable; g(·) is the connection function; f0 is the constant intercept
term; Xi is the ith explanatory variable; fi(·) is a smoothing function for the ith explanatory
variable that represents the linear or nonlinear relationship between response variables
and explanatory variables, mainly including natural cubic spline smoothing function, local
regression smoothing function, and spline smoothing function; the natural cubic spline
smoothing function is employed in this study to effectively capture local variations in
the data and flexibly adapt to diverse data patterns; k is the total number of explanatory
variables, and εi is a random variable that obeys normal distribution.

When exploring the causal relationship between a single explanatory variable and
the response variable, the model includes only one explanatory variable, implying that
there exists a sole f (·) on the right-hand side of the model. When exploring the causal
relationship between multiple explanatory variables and response variables, multiple
explanatory variables are included at the same time; i.e., multiple f (·) functions are added
on the right side of the model.

In this study, the GAMs model was built using the mgcv package in R. The F-test
statistic, p-value, adjusted R-squared (adj-R2), and deviance explained (DE) given by
the GAMs were used to evaluate the significance of different explanatory variables on
LST and the fitted goodness of the model. Among them, the higher the F value, the
stronger the significance and explanatory power; a smaller p-value typically indicates
higher significance, and the closer adj-R2 is to 1, the more accurate the model is. The DE is
the proportion of the null deviance explained by the model [52]. Generally speaking, the
higher the DE, the greater the model-fitting effect and ability to explain it.

3.2. Mann–Kendall Trend Test

As a non-parametric method, the Mann–Kendall test (M-K test) is applicable to data
distributions of all types, including data with seasonal variations. It has been extensively
employed in the field of geoscience for identifying trends in time series data [11,37]. In this
study, the M-K test was employed to assess the presence of any significant trends in LST
from 2000 to 2020, with a significance level of 95% (p ≤ 0.05).

3.3. Correlation Analysis

In statistics, the Pearson correlation coefficient is widely used to measure the linear
correlation between two variables. In this study, we utilized the Pearson correlation
coefficient to characterize the linear correlation between two IFs. Pearson correlation
coefficient can be expressed as follows:
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R =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2
(2)

where X and Y represent the respective mean of variable X and Y; n is the variable count.
The value of R falls between −1 and 1, and the bigger the absolute value, the higher the
correlation between the two variables.

3.4. Akaike Information Criterion

The Akaike information criterion (AIC) [53] is a widely used method for assessing the
goodness of fit of statistical models, commonly employed in model scoring and selection.
In this study, AIC was employed to evaluate the goodness of fit for both the MGAMI model
and MGAM model, which can be computed using the following formula [54]:

AIC = 2k − 2ln(L) (3)

where k and L represent the number of parameters and the likelihood of the data in the
model, respectively; ln represents the natural logarithm function. In general, the model
with the lowest AIC is considered to be the best model [55].

3.5. Model Configurations

The IFs are embedded with correlations between each other; therefore, to quantify
the effect of their interactions on LST, we conducted experiments with two configurations.
One is multivariate GAMs without interactions, and the other is with interactions. Both
configurations were implemented at a seasonal scale.

Concurvity, which can be viewed as an extension of co-linearity, arises when some
smooth term in a model can be approximated by one or more of the other smooth terms
in the model. The test of concurvity among IFs must be conducted to choose modeling
factors [56]. A concurvity coefficient exceeding 0.8 indicates a high level of concurvity
within the smooth term, which can potentially result in unstable parameter estimates and
reduced interpretability of the model [57]. Therefore, in this study, the threshold value
for the concurvity coefficient was set at 0.8. Meanwhile, the variables that did not pass
the significance test were also excluded according to p-values. The final equations for the
MGAM are detailed in the results section.

For the multivariate GAMs with interaction, the correlation among variables can have
a significant impact on the accuracy of the model. The presence of concurvity between
two explanatory variables does not necessarily preclude the possibility of a statistically
significant correlation between them. The stronger the correlation between two variables,
the more likely their interaction is to be. In this study, we adopted the empirical value
suggested by references that problems with concurvity are likely to arise if the correlation
coefficient exceeds 0.5 [56]. Therefore, in order to better characterize the impact of the
interaction on LST, only variables with Pearson correlation coefficients greater than 0.5
were considered. Meanwhile, similar to the MGAM-based model, IFs with a concurvity
coefficient exceeding 0.8 and those that failed the significance test were also excluded
according to p-values. The final equations for multivariate GAMs with interaction are
detailed in the results section.

4. Results and Analysis
4.1. Spatiotemporal Characteristics of LST

The spatiotemporal characteristics of annual mean LST (AMLST) in Nanjing from
2000 to 2020 are depicted in Figure 2. It can be seen that the AMLST mainly ranged from
14 ◦C to 18 ◦C. The lowest LST of each year occurred in the Luhe district in the north of
Nanjing. The regions with higher AMLST were predominantly concentrated in Central
and Southern Nanjing, where the PD and IPS were the highest, whereas the vegetation
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cover was the lowest. The Gaochun District, situated in the southern region of Nanjing, is
predominantly an agricultural zone. Possibly attributed to the influence of relatively lower
vegetation coverage and long-standing agricultural activities [58], the Gaochun district
exhibited a comparatively higher AMLST in comparison to other regions within Nanjing.
In addition, the LST of each district from 2000 to 2020 exhibited fluctuations rather than
straight upward or downward trends. The most noticeable observation was that the LST in
Central Nanjing reached its peak in 2011. Since then, the LST has fluctuated several times,
showing an overall upward but not remarkable trend, and did not exceed the highest value
in 2011.
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Figure 2. Spatiotemporal variation characteristics of the annual mean land surface temperature at
1 km resolution in Nanjing from 2000 to 2020.

4.2. Temporal Trend Analysis of LST

The temporal trend analysis of AMLST and seasonal mean LST (SMLST) was con-
ducted by using the M-K test at the significance level of 95% (p ≤ 0.05). As depicted in
Figure 3a, the UF value [59,60] in 2007 exceeded the confidence line (±1.96) and was greater
than 0, indicating a significant rise in AMLST during that year. The UF values of other years
exhibited either positive or negative, and their absolute values were both lower than 1.96,
suggesting that there were insignificant upward or downward trends in the corresponding
AMLST during those years.
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The M-K test of SMLST indicated that the UF values exhibited multiple fluctuations in
both summer and winter, yet all remained lower than 1.96, suggesting that the variations
in SMLST during these seasons were not statistically significant. In addition, a notable
decrease was observed during spring 2003, while significant increases were observed
during autumn 2005 and 2006; however, no significant variation trends were observed for
other years. Overall, no statistically significant changes were observed in either AMLST
or SMLST.

4.3. Correlation between Influencing Factors

To provide variables for MGAMI modeling, the Pearson correlation coefficient was
calculated using Equation (2) in Origin software, version 9.8.0. The results presented in
Figure 4 revealed that RH, PREP, and SSH exhibited a significant correlation. Specifically, a
positive correlation between RH and PREP was observed, while a negative correlation was
found between SSH and both PREP and RH. The Pearson correlation coefficient between RH
and SSH exhibited the highest values during spring (−0.87) and winter (−0.78), indicating
a strong linear relationship between them; the lowest Pearson correlation coefficient was
observed in summer (−0.67), suggesting a moderate linear relationship. The correlation
between PREP and SSH exhibited a similar changing pattern. The correlation between
PREP and RH exhibited seasonal variations, with the highest Pearson correlation coefficient
observed in spring (0.77) and winter (0.78), while the lowest was found in summer (0.42).
The Pearson correlation coefficient between IPS and IAV in summer was 0.81, which was
positive and strong, and the correlation was significant.

It should be noted that all of the above correlations were significant at the significance
level of 99.9% (p ≤ 0.001). In addition, under the significance levels depicted in Figure 4,
several other variables also exhibited significant correlation, albeit with relatively low
correlation coefficients. The subsequent studies aimed to investigate the effect of the
interaction between IFs on LST, and only IFs with a Pearson correlation coefficient exceeding
0.5 were considered.
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4.4. Results of Multivariate GAMs (MGAM)

The concurvity coefficient can be measured by using the concurvity function in the
mgcv package. As mentioned in the Methodology section, the threshold value for the con-
curvity coefficient was set at 0.8. Meanwhile, the variables that did not pass the significance
test were also excluded from the modeling. We also conducted the multicollinearity test
using the Variance Inflation Factor, and the results showed that there was no multicollinear-
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ity among the remaining variables. Perhaps this is because concurvity can be seen as the
nonlinear form of collinearity. The final equations for each season were, thus, as follows:

GAMspring = s(NDVI) + s(SSH) + s(WB) + s(RH) + s(PREP) (4)

GAMsummer = s(NDVI) + s(SSH) + s(RH) + s(PREP) + s(IPS) (5)

GAMautumn = s(SSH, k = 20) + s(WB) + s(RH) + s(PREP, k = 17) + s(IPS) (6)

GAMwinter = s(NDVI) + s(SSH) + s(RH, k = 22) + s(PREP, k = 22) (7)

where s () is regular smooth terms, which can describe the linear and nonlinear rela-
tions between the independent variable and the dependent variable [52]; k is the count
of basic functions, which can be determined by examining the checking the results of
basis dimension.

The modeling results based on MGAM are presented in Table 2. According to the
p-value results, the effect of each variable on LST was statistically significant. DEs of the
summer model (83.7%) and winter model (70.6%) were relatively high, followed by the
autumn model (67.0%) and spring model (59.2%). The variation pattern of adj-R2 was simi-
lar to that of DE, with the highest adj-R2 observed in the summer model (0.816), followed
by the winter model (0.672), autumn model (0.628), and spring model (0.537). The above
findings indicated that the summer model exhibited superior performance in describing
the variation in LST, while the spring model demonstrated relatively poorer performance.

Table 2. Results of the Multivariate GAMs without interaction.

Season IFs edf F p-Value DE adj-R2

Spring

SSH 5.368 9.838 <2.00 × 10−16 ***

59.2% 0.537
RH 5.782 7.110 <2.00 × 10−16 ***

PREP 5.796 3.976 5.41 × 10−16 ***
WB 5.430 3.115 4.98 × 10−3 **

NDVI 4.973 2.988 7.60 × 10−3 **

Summer

SSH 8.183 39.503 <2.00 × 10−16 ***

83.7% 0.816
RH 7.362 12.754 <2.00 × 10−16 ***

NDVI 2.230 8.927 5.58 × 10−5 ***
PREP 4.997 7.826 <2.00 × 10−16 ***

IPS 3.020 7.224 4.66 × 10−5 ***

Autumn

WB 1 28.054 9.83 × 10−7 ***

67.0% 0.628
IPS 1.001 18.648 2.47 × 10−5 ***

PREP 7.467 12.449 <2.00 × 10−16 ***
SSH 10.177 7.606 <2.00 × 10−16 ***
RH 5.937 7.314 <2.00 × 10−16 ***

Winter

SSH 6.603 34.266 <2.00 × 10−16 ***

70.6% 0.672
NDVI 1 26.427 7.71 × 10−7 ***

RH 7.720 19.662 <2.00 × 10−16 ***
PREP 8.518 6.981 <2.00 × 10−16 ***

Note: IFs, influencing factors; edf, effective degrees of freedom; F, F-test statistic; DE, Deviance explained; adj-R2,
adjusted R-squared; ** and *** indicate the significance level of 99.9% and 100%, respectively.

According to the value of effective degrees of freedom (edf) given by GAMs, the action
mode (linear or nonlinear) can be determined. An edf of 1 indicates that the effect of the
influence factor on LST is linear, and otherwise, it is nonlinear. Based on Table 2, it can
be inferred that the edf of NDVI in both spring and summer models was greater than 1,
indicating a nonlinear correlation between NDVI and LST. This nonlinear correlation can
also be observed in Figure 5a,b. In spring, the relationship between NDVI and LST was
found to be more complex, suggesting that vegetation did not have a simple warming or
cooling effect on LST. However, vegetation exerted a nonlinear cooling effect on LST in
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summer. In addition, as shown in Figure 5c, the relationship between NDVI and LST in
winter exhibited a negative linear correlation, indicating that vegetation had a significant
cooling effect on LST.

In a multivariate GAMs model, the estimated effects are used to represent the influence
of a single variable on the response variable. In this study, the estimated effects of IPS
on LST were found to be statistically significant in both the summer and autumn at a
significance level of 100%. In the summer model, the edf of IPS was 3.020, indicating
a nonlinear relationship between IPS and LST, as shown in Figure 5d. Conversely, in
the autumn model, the edf of IPS was close to 1, suggesting an approximately linear
relationship between IPS and LST, which was further confirmed in Figure 5e. Moreover,
the positive slope of the solid line indicated that IPS had a warming effect on LST.

The estimated effects of WB on LST were significant in both spring model and au-
tumn model at the significance level of 99.9% and 100%, respectively. Furthermore, as
depicted in Figure 5f,g, the influence of WB on LST was observed nonlinear in spring,
whereas it was linear in autumn. In addition, the WB exhibited a warming effect on LST
during autumn, while in spring, it functioned as a thermostat for LST by maintaining it at
approximately 16 ◦C.
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The importance and explanatory ability (IEA) of each explanatory variable to the
response variable can be quantified by GAMs through the value of the F-test statistic. As
illustrated in Table 2, the IEA of each explanatory variable varied with seasons. In spring,
the IEA of SSH was strongest, followed by RH, PREP, WB, and NDVI. Compared with other
seasonal models, the summer model had a larger DE and adj-R2 and possessed the best
ability to describe changes in LST. The order of decreasing IEA was SSH, RH, NDVI, PREP,
and IPS. The autumn model was better than the spring model at describing the change
pattern of LST. The factor with the highest IEA in the autumn model was WB, while RH
had the lowest IEA. In winter, SSH made the greatest contribution, followed by NDVI,
whereas RH and PREP made relatively minor contributions.

The results presented in Table 2 demonstrated the significant and nonlinear influence
of SSH, RH, and PREP on LST in all four seasons. According to the correlation analysis
in Section 4.3, it was observed that RH exhibited a significant positive correlation with
PREP, while SSH displayed a significant negative correlation with both RH and PREP.
Consequently, their impact on LST could either mutually constrain or reinforce each
other, making it challenging to elucidate their respective influences on LST. For instance,
an increase in PREP does not necessarily imply a decrease in LST due to the complex
relationship among SSH, RH, and PREP.
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4.5. Results of Multivariate GAMs with Interaction (MGAMI)

Taking into account the concurvity, linear correlation, and significance, the following
equations were ultimately used to represent the relationship between LST and IFs for
each season:

GAMspring = s(NDVI) + ti(RH, PREP, k = 10) (8)

GAMsummer = s(NDVI) + ti(SSH, PREP, k = 8) + ti(SSH, RH, k = 9) (9)

GAMautumn = s(IPS) + s(WB) + ti(SSH, PREP, k = 8) + ti(RH, PREP, k = 6) (10)

GAMwinter = s(NDVI) + ti(SSH, PREP, k = 8) + ti(RH, PREP, k = 9) (11)

where s() is regular smooth terms; ti() represents tensor smooth functions designed to
model the interaction effects among two variables [52]; k is the number of basic functions.

The results from the modeling are presented in Table 3. According to the p-value
column, the estimated effects of IFs above on LST were found to be statistically significant
at the significance level of 99.9% or 100%.

Table 3. Results of the Multivariate GAMs with interaction.

Season IFs edf F p-Value DE adj-R2

Spring (RH, PREP) 26.706 7.272 <2.00 × 10−16 ***
61.5% 0.555NDVI 4.178 6.085 2.48 × 10−5 ***

Summer
(SSH, RH) 35.382 9.097 <2.00 × 10−16 ***

90.9% 0.879(SSH, PREP) 18.304 5.520 <2.00 × 10−16 ***
NDVI 3.037 4.478 2.20 × 10−3 **

Autumn

IPS 1 70.249 <2.00 × 10−16 ***

84.9% 0.816
WB 1 29.979 6.55 × 10−7 ***

(SSH, PREP) 28.230 14.472 <2.00 × 10−16 ***
(RH, PREP) 11.050 8.472 <2.00 × 10−16 ***

Winter
NDVI 1.623 19.050 <2.00 × 10−16 ***

86.0% 0.820(SSH, PREP) 19.960 16.610 <2.00 × 10−16 ***
(RH, PREP) 30.616 13.190 <2.00 × 10−16 ***

Note: IFs, ** and, *** indicate the significance level of 99.9% and 100%, respectively.

The smooth terms mentioned above are visualized in Figure 6. In multivariate GAMs
with interaction (MGAMI), the relationship between NDVI and LST exhibited a nonlinear
trend. Figure 6a demonstrated that the impact of NDVI on LST was influenced by the
variation in vegetation cover during spring, displaying a pattern of warming–cooling–
warming. During the summer season, NDVI exhibited a positive correlation with LST
when its values were below 0.32; conversely, NDVI with higher values had a cooling effect
on the land surface. Throughout the entire winter (Figure 6c), NDVI consistently acted as a
cooling agent.

As shown in Table 3 and Figure 6e, the edf of IPS in autumn was 1, and the slope of
the solid line was greater than 0, indicating that IPS had a significant warming effect on
the land surface, which was similar to that observed in autumn model without interaction
terms. In autumn (Figure 6d), the warming effect of WB on LST exhibited a significant
linear trend, which was consistent with the findings from GAMs without interaction terms
(Figure 5g). Moreover, the Pearson correlation coefficients between LST and both WB and
IPS were positive at 0.2, indicating a significant positive relationship at the 99% significance
level, which could partially explain the correctness of the results.
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Figure 6. The estimated effects (ESTE) of the explanatory variables on LST with 95% confidence
bands: (a) The ESTE of NDVI in spring; (b) The ESTE of NDVI in summer; (c) The ESTE of NDVI
in winter; (d) The ESTE of WB in autumn; (e) The ESTE of IPS in autumn. The shade represents
the confidence interval, while the solid line represents the smooth fitting curve. The numbers in
parentheses on the ordinate indicate the estimated degrees of freedom.

The estimated effects of the interactive terms are illustrated in Figure 7. As shown in
the figure, the X and Y axes represent two variables with significant interaction, respectively.
The Z-axis represents the estimated LST corresponding to the interaction between the
variables. The arrow indicates the direction in which the value increases. Due to the
significant variations in SSH, RH, and PREP across different seasons, the influence pattern
of the interactions between the same two IFs exhibited seasonal disparities. For example,
the impact of the interaction between RH and PREP varied between spring, autumn,
and winter models. In addition, the significant IFs varied across seasons. In spring, the
changes in LST were primarily influenced by the interaction between RH and PREP, in
addition to the impact of NDVI. The significantly interactive factors observed during the
summer period encompassed SSH-PREP and SSH-RH. The significantly interactive factors
in autumn and winter remained consistent, encompassing both SSH-PREP and RH-PREP. It
was worth noting that the influence of the interaction in the four seasons was all nonlinear.
Additionally, it seemed easier to understand the variation pattern of LST after considering
the effect of the interaction terms. For instance, Figure 7a illustrates that in the spring model,
when PREP was almost at its minimum, and RH was almost at 62.94%, the estimated LST
corresponding to the interaction between RH and PREP almost reached its lowest point. In
the autumn model, Figure 7e demonstrates that when both PREP and RH reached their
maximum values, the estimated LST of the interaction between RH and PREP almost also
reached its minimum value. The reason may be that high precipitation can lead to an
increase in relative humidity, which often results in the formation of clouds [61]. Clouds
have the ability to reflect and scatter solar radiation, thereby reducing the amount of solar
radiation reaching the ground and consequently lowering LST. Similarly, Figure 7g showed
that in the winter model, when PREP reached its minimum, and RH reached its maximum,
the interaction between RH and PREP resulted in the smallest estimated LST. For a similar
reason, high relative humidity eventually reduces the amount of solar radiation reaching
the surface, resulting in lower surface temperatures. Additionally, the interaction between
SSH and PREP exhibited a similar impact on LST in the autumn model (Figure 7f) and the
winter model (Figure 7d), except for the summer model presented in Figure 7b.



Land 2024, 13, 465 13 of 17

Land 2024, 13, 465 13 of 18 
 

estimated LST. For a similar reason, high relative humidity eventually reduces the amount 

of solar radiation reaching the surface, resulting in lower surface temperatures. Addition-

ally, the interaction between SSH and PREP exhibited a similar impact on LST in the au-

tumn model (Figure 7f) and the winter model (Figure 7d), except for the summer model 

presented in Figure 7b. 

 

Figure 7. The effect of interactions (EOI) of explanatory variables on LST: (a) The EOI of RH and 

PREP in spring; (b) The EOI of SSH and PREP in summer; (c) The EOI of SSH and RH in summer; 

(d) The EOI of SSH and PREP in autumn; (e) The EOI of RH and PREP in autumn; (f) The EOI of 

SSH and PREP in winter; (g) The EOI of RH and PREP in winter. The colors represent the predicted 

LST values, with green indicating lower values and red indicating higher values. 

5. Discussion 

Accurately revealing the driving factors of LST is helpful for scientifically formulat-

ing measures to address climate warming [3,62]. In this study, eight potential influencing 

factors were used as explanatory variables to elucidate the mechanism of the changes in 

LST. Correlation analysis revealed significant correlations between IPS and IAV, IPS and 

NDVI, SSH and PREP, as well as RH and PREP. However, the majority of existing studies 

tended to overlook the impact of interactions between IFs on the changes in LST, which 

could damage the modeling accuracy and lead to potentially biased conclusions. There-

fore, in order to accurately identify the influencing factors of LST based on the advantages 

of GAMs and consider correlation, concurvity, and significance comprehensively, we ul-

timately established four models to reveal the causes of LST changes at a seasonal scale. 

The modeling results indicated that the variables IAV, PD, the interaction between IPS and 

IAV, as well as the interaction between IPS and NDVI did not exert a statistically signifi-

cant influence on LST. 

The model accuracy is found to be enhanced by taking into account the interaction 

between IFs, as evidenced by our experimental findings. The comparison of Tables 2 and 

3 reveals that DE and adj-R2 of different MGAMI-based seasonal models have been in-

creased to some extent, indicating that the models based on MGAMI could better describe 

the changes in LST. As depicted in Figure 8, the autumn model exhibited the most signif-

icant improvement, with an increase of 17.9% and 0.19 for DE and adj-R2, respectively. 

Followed by the winter model, DE and adj-R2 improved by 15.4% and 0.15. The spring 

model showed the least improvement, with DE and adj-R2 increasing by 2.3% and 0.02, 

respectively. Furthermore, the root mean square error (RMSE) and mean absolute error 

(MAE) of the difference between LST and the fitted value have also been improved to 

varying degrees. The improvement was most significant in winter, followed by autumn, 

Figure 7. The effect of interactions (EOI) of explanatory variables on LST: (a) The EOI of RH and
PREP in spring; (b) The EOI of SSH and PREP in summer; (c) The EOI of SSH and RH in summer;
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5. Discussion

Accurately revealing the driving factors of LST is helpful for scientifically formulating
measures to address climate warming [3,62]. In this study, eight potential influencing
factors were used as explanatory variables to elucidate the mechanism of the changes in
LST. Correlation analysis revealed significant correlations between IPS and IAV, IPS and
NDVI, SSH and PREP, as well as RH and PREP. However, the majority of existing studies
tended to overlook the impact of interactions between IFs on the changes in LST, which
could damage the modeling accuracy and lead to potentially biased conclusions. Therefore,
in order to accurately identify the influencing factors of LST based on the advantages
of GAMs and consider correlation, concurvity, and significance comprehensively, we
ultimately established four models to reveal the causes of LST changes at a seasonal scale.
The modeling results indicated that the variables IAV, PD, the interaction between IPS and
IAV, as well as the interaction between IPS and NDVI did not exert a statistically significant
influence on LST.

The model accuracy is found to be enhanced by taking into account the interaction
between IFs, as evidenced by our experimental findings. The comparison of Tables 2 and 3
reveals that DE and adj-R2 of different MGAMI-based seasonal models have been increased
to some extent, indicating that the models based on MGAMI could better describe the
changes in LST. As depicted in Figure 8, the autumn model exhibited the most significant
improvement, with an increase of 17.9% and 0.19 for DE and adj-R2, respectively. Followed
by the winter model, DE and adj-R2 improved by 15.4% and 0.15. The spring model showed
the least improvement, with DE and adj-R2 increasing by 2.3% and 0.02, respectively.
Furthermore, the root mean square error (RMSE) and mean absolute error (MAE) of the
difference between LST and the fitted value have also been improved to varying degrees.
The improvement was most significant in winter, followed by autumn, summer, and spring.
Compared with MGAM, RMSE, and MAE of MGAMI decreased by 0.173 ◦C and 0.150 ◦C,
respectively, in winter and decreased by 0.012 ◦C and 0.018 ◦C, respectively, in spring.
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To further evaluate the model’s performance, we calculated the AIC of MGAM and
MGAMI models for each season, and the results are presented in Table 4.

Table 4. AIC results of seasonal models.

Model Spring Summer Autumn Winter

MGAM 319.004 −19.932 136.047 443.268
MGAMI 308.597 −80.793 −17.888 327.653

As shown in Table 4, the AIC of the MGAMI seasonal model both decreased to varying
degrees compared to the MGAM seasonal model, with the largest decrease observed in
the autumn model, followed by winter, summer, and spring models. The improvement
pattern observed was similar to that shown in Figure 8. The comparison results of AIC
further confirmed that considering the interaction between variables can improve the
goodness of fit.

Furthermore, MGAMI could produce more accurate modeling results by considering
the interaction between IFs. In the MGAM-based summer model, IPS showed a slight
cooling effect on the surface, which may not be consistent with reality. By comparing
Tables 2 and 3, it could be seen that when considering the interactions between IFs in the
summer model, the cooling impact of IPS on LST became insignificant. On the contrary, as
shown in Figure 6e, IPS exhibited a significant warming effect on the land surface in the
autumn model based on MGAMI, which was more consistent with the findings reported
in the literature [12,63]. It was also found that the significant effect of WB disappeared
in the spring model based on MGAM when considering the influence of interactions
between IFs. As depicted in Figure 6d, WB had a significant warming effect on the land
surface in the autumn model based on MGAMI, which was consistent with the conclusion
presented in previous studies [15]. Both SHH, RH, and PREP and the interactions between
them exhibited significant and nonlinear effects on LST. The importance of the interaction
between SHH, RH, and PREP varied seasonally, which might be associated with seasonal
fluctuations in sunshine hours, relative humidity, precipitation, and NDVI.

Also, the models based on MGAM and MGAMI yielded some similar conclusions.
Similar to the conclusion of Meng et al. [15], the influence of NDVI on LST exhibited
seasonal differences. During spring, the relationship between NDVI and LST displayed
nonlinearly in response to vegetation growth, resulting in both warming and cooling effects
on LST. Conversely, vegetation primarily exerted a cooling effect on LST during summer
and winter.

6. Conclusions

The variation in LST is the result of multiple factors functioning together. Various
IFs exhibit seasonal and spatial differences in their impacts on LST. In this study, we
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employed the Generalized Additive Model to explore the impacts of the IFs and their
interactions on the variation in LST in Nanjing spanning from 2000 to 2020. To further
explore the interactions between IFs and LST, we complemented the experiments with two
configurations of GAMs, i.e., considering and not considering the interactions between IFs.

Results showed that the spatial difference in annual mean land surface temperature
in Nanjing was evident, with higher temperatures observed in the central and southern
regions compared to the northern areas. Overall, there was no significant upward trend in
season mean land surface temperature.

With GAMs, the significance, action mode, action effect, and the order of importance
of IFs on LST can be easily identified. According to the results of MGAMI, vegetation
primarily played a cooling role in LST, while impervious surfaces contributed to warming
LST. Most importantly, at the 100% significance level, the interaction among SSH, RH, and
PREP had a significant impact on LST. It was also worth noting that certain IFs underwent
a transition from significant to non-significant impact after considering the interaction of
IFs. The goodness of fit and interpretability of the model could be significantly enhanced
by MGAMI compared to MGAM.

In view of these results, this study suggests the following proposals. In order to more
accurately reveal the factors influencing LST and predict future LST, it is suggested that a
single factor is not enough, but the interactions are more important for a comprehensive
understanding of the LST. With rapid urbanization, the impervious surface is increasing
rapidly, which poses a threat to the environment and climate. Therefore, policymakers
should combine the research results to develop reasonable, sustainable development mea-
sures to deal with the problem of climate warming. For instance, the relevant departments
should strategically organize the implementation of afforestation to enhance the urban
vegetation coverage, thereby harnessing the cooling effect of vegetation to counterbalance
the rise in LST resulting from impervious surfaces.
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