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Abstract: The spatial–temporal distribution and evolution characteristics of carbon stock under the
influence of land use changes are crucial to the scientific management of environmental resources
and the optimization of land spatial layout. Taking the Xiamen–Zhangzhou–Quanzhou urban ag-
glomeration in the southeastern coastal region of China as an example, based on seven land use types
from 1990 to 2020, including cultivated land, woodland, and construction land, we quantitatively
investigate the spatial–temporal patterns of carbon stock development and the spatial correlation of
carbon stock distribution. Additionally, two scenarios for the development of urban and ecological
priorities in 2060 are established to investigate the effects of land use changes on carbon stock. The
results indicate that (1) the research area has formed a land use spatial pattern centered around
urban construction in the eastern bay area, with the western forest area and coastal forest belt serving
as ecological barriers. Carbon stock is influenced by land use type, and the distribution of total
carbon stock exhibits a spatial aggregation phenomenon characterized by “low in the southeast,
high in the north, and medium in the center”. (2) Distance of trunk and secondary roads, elevation,
slope, watershed borders, population size, and gross domestic product (GDP) factors are the main
drivers of the growth of land use types. The primary causes of the reduction in carbon stock are
the widespread conversion of cultivated land, woodland, and grassland into construction land, as
well as water and unused land. (3) In 2060, there will be a decrease of 41,712,443.35 Mg in the
urban priority development scenario compared to 2020, and a decrease of 29,577,580.48 Mg in the
ecological priority development scenario. The estimated carbon stock under the two scenarios varies
by 12,134,862.88 Mg. The average carbon storage of Zhangpu County, Quangang County, and Jimei
County is expected to rise by one level under the ecological protection scenario, indicating that the
vast forest area can become a potential area to maintain carbon stock. It is crucial to encourage the
coordinated development of peri-urban agroforestry and ecological barriers, as well as to establish a
harmonious spatial pattern of land use and carbon stock at the scale of urban agglomerations.

Keywords: carbon stock; land use change; multi-scenario simulation; development forecast; Xiamen–
Zhangzhou–Quanzhou urban agglomeration; spatial-temporal patterns

1. Introduction

China’s carbon reduction targets are based on a reduction in CO2 emissions, and the
total CO2 emissions in China are approximately 10,356.26461 Mt, with a 97.5% confidence
interval, suggesting a possible range of variation from a decrease of 3.43% to an increase of
3.45% [1]. At the UN General Assembly in September 2020, China declared that its CO2
emissions would peak by 2030 and that it would work toward achieving carbon neutrality
by 2060. For the goals of utilizing natural resources, controlling global warming, and
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scientifically managing carbon sources and sinks, carbon stocks serve as an important
indicator of the scope and magnitude of the primary production of ecosystems [2–5]. High
economic density makes coastal locations ideal for urban growth, and fast urbanization
has sped up changes in land use [6–8], which has an impact on the storage of carbon in
terrestrial ecosystems [9–12]. In this regard, examining how spatial and temporal patterns
of carbon storage develop in coastal urban clusters under the effect of land use change has
a positive impact on achieving the construction goal of high-quality development based on
ecological priorities, improving the carbon balance of terrestrial ecosystems in the study
area, maintaining the regional carbon cycle, mitigating climate change, and promoting a
high quality of life and sustainability [13].

Numerous studies discussing the connection between land use/land cover and carbon
stocks, as well as improving the ability of terrestrial ecosystems to sequester carbon, have
been conducted in recent years [14–16]. the integrated valuation of ecosystem services and
trade-offs (InVEST) model has been utilized in the majority of studies that assess carbon
stocks. The conditions for the interaction between land use/land cover and carbon stocks
are often complex. For instance, changes in land use in the Xinjiang Tianshan region and
the Chengde Meizi region have an impact on the distribution of carbon stocks [17,18],
while changes in the cover of land uses with similar characteristics in the Loess Plateau
region have a sizable impact on the spatial variation in carbon stocks [19], in the UK
National Park and Hainan Island, differences in carbon stocks result from different plant
species [20,21], and in the Guangdong–Hong Kong–Macao urban agglomeration and north
gulf of Guangxi, carbon stocks fluctuate as a result of wetland changes [22]. Meanwhile,
the driving factors leading to land use change can affect the distribution of carbon storage
by altering land types. For instance, climate factors can change the use of forest vegetation,
thus reducing the land carbon sequestration capacity [23]; land types are affected by the
policy of converting land for grain to land for forests, thereby increasing carbon storage [24];
and the transformation of land types to construction land brought about by urban economic
development has led to a decrease in carbon storage [25]. Since most studies on carbon
stocks related to land use change have focused on watersheds and inland cities, it is not
yet possible to determine the mechanism of influence of each land use type and land use
change factor on the spatial pattern of carbon stocks in urban coastal areas.

As for the study of land class transformation, the current numerical simulation meth-
ods can be divided into the comparative transformation method and the neighborhood
correlation method. The contrastive transformation method can extract input land use
data from two phases to predict the transformation probability of each category, which
can improve spatial analysis and simulation operations, but it has the drawback that as
the number of categories rises, the computational cost becomes very high. The software
on which the method is based primarily consists of cellular automata (CA) and artificial
neural network (ANN),such as logistic-CA models [26,27], ANN-CA models [28,29], and
multi-intelligent body models [30,31]. The neighborhood correlation approach calculates
the likelihood that each category will change, using land use data from a specific time
period and an algorithmic model based on spatial autocorrelation weighting coefficients.
Its drawback is that it fails to take into account the evolution of land use through time and
pays little attention to how various external factors affect changes in land use. It mostly
consists of software like the CLUE-S (Conversion of Land Use and its Effects at Small
regional extent) model [32,33], FLUS (Functional Land Use Simulation) model [34,35], and
SD-MOP (System Dynamics-Multi-Objective Programming) model [36,37].

In view of the widespread use of intelligent algorithms in predictive simulation
research, the PLUS (patch-generating land use simulation) model, which is based on
the integrated cellular automata (CA) model, the random forest model, and the Markov
chain model [38], is widely used. The model can account for the factors that influence
landscape evolution and land extent. The method has also drawn the attention of many
scientists and is frequently used in research areas like disaster-adaptive regulation [39],
construction timing strategies [40], the optimization of spatial patterns for productive,
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ecological, and living habitats [41,42], and habitat quality [43–45], because it can capture
the drivers of change across categories, model the process of land use area change, and
realize land use prediction scenarios in the context of multi-scenario decision making [46,47].
Currently, some researchers have coupled the InVEST model with the PLUS model, with
the main research content being the regional distribution of carbon stock potential in the
context of coastal planning and management [48,49] and the link between carbon stock
and spatial development patterns of urban clusters [50,51]. The differences in carbon stock
distribution between various development scenarios, including low-carbon development
scenarios [52], environmental and economic development scenarios [53], and natural
development, farmland conservation, and ecological priorities scenarios [54], have been
analyzed. Determining the effects of carbon stock development patterns under various
scenarios is the subject of a new study field for carbon stock prediction analysis. As these
studies call for distinct assessments based on the geographical patterns and development
policy traits of different regions, it is uncertain if these regional disparities can be applied
to spatial prediction studies of carbon stocks in each city.

Overall, there are three difficulties in analyzing the carbon stock estimate in coastal
urban agglomerations under the influence of land use change, as follows:

(1) How can the effects of various land uses on the development of carbon stock patterns
be taken into account, in order to then evaluate the spatial connection of carbon stocks
in coastal urban agglomerations?

(2) How can the influencing factors for the growth of each land use type contribute?
(3) How can the interaction between low-carbon ecological and economic development

be balanced and well-coordinated?

To address these challenges and provide planning strategies for terrestrial ecosystem
management in coastal urban agglomerations based on a carbon balance perspective, we
chose the Xiamen–Zhangzhou–Quanzhou urban agglomeration as the study area and first
quantitatively analyzed the spatial and temporal distribution of carbon stocks from 2000
to 2020 under the influence of land use change. Then, we analyzed the spatial correlation
of carbon stocks in the Xiamen–Zhangzhou–Quanzhou urban agglomeration. The two
scenarios for future planning decisions that match the priorities of urban development and
ecological development were then compared. The PLUS model was used to simulate the
pattern of land use in the study area in 2060 and provide predictions about the features
of carbon stock changes. The findings of this study contribute to meeting the dual carbon
objective by balancing regional synergistic development with environmental protection.
They also provide a scientific basis for the development of coastal city clusters.

2. Materials and Methods
2.1. Study Area

The study area is located in the southeastern coastal region of China, in the south-
eastern part of Fujian Province, near the Taiwan Strait coastal area, and includes the cities
and counties of Quanzhou City, Xiamen City, and Zhangzhou City (except Jinmen County,
which belongs to Quanzhou City), with an area of 25,314.39 km2 (Figure 1). By the end of
2022, the urban agglomeration of Xiamen, Zhangzhou, and Quanzhou had a population
of 19.2 million and an annual GDP of RMB 2336.35 billion [55],. The Xiamen–Zhangzhou–
Quanzhou urban agglomeration is the most vibrant and prosperous metropolitan area in
Fujian Province, covering 20.85% of its total area, producing 47.87% of the entire economic
output of the province, and housing 45.86% of its total population. The region is known
for its steep and hilly landscape, which is typically high in the north and low in the south.
With an average annual precipitation of 1477.1 mm, the subtropical maritime monsoon
climate that affects the south is moderate and humid all year long. The research area is
ideal for the growth of vegetation, 49.68% of which is forest, and is rich in water, light, and
heat resources. However, due to the region’s accelerated urbanization, which has resulted
in quick changes in land use, the study area now faces serious threats in terms of storing
carbon, managing climate change, and preserving the environment.
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2.2. Research Methods
2.2.1. A Carbon Stock Calculation Method using the InVEST Model

In order to construct carbon pool data based on land use types and calculate carbon
stocks for land uses in the study area over various time periods, the embedded carbon
module in the InVEST model assumes that carbon stocks in various soil types do not vary
linearly with time, without taking into account conditions like photosynthetic rates and the
presence of active soil organisms. The method of calculation involved dividing the carbon
stock into the carbon densities of aboveground biogenic carbon (Ci_above), belowground
biogenic carbon (Ci_below), soil carbon (Ci_soil), and dead organic carbon (Ci_dead), and then
using data on land use change and carbon pools to create a map of the spatial distribution
of carbon stock in the study area. Additionally, both land use and soil type are significant
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factors affecting carbon storage. They were categorized based on different classification
criteria to delineate spatial areas. A single land use type may correspond to multiple soil
types. In this study, the average value of multiple soils under a specific land use type
was taken.

The following equation was used to determine the carbon intensity for various land
use categories in a certain area:

Ctot = Cabove + Cbelow + Csoil + Cdead

where Ctot is a region’s average carbon density for all land use types; Cabove is the biomass
that grows above ground and contains the carbon stored in all living plant material; Cbelow
is the carbon density of belowground biomass; Csoil is the soil carbon stock, which refers to
carbon distributed in organic and mineral soils at a depth of 1 m; and Cdead is the carbon of
dead organic matter, including apoplastic matter and dead trees.

The following equation was used to determine the carbon stock for various land uses
in a certain area:

Ci_tot = (Ci_above + Ci_below + Ci_soil + Ci_dead) × Ai

where i is the i-th land use type; Ci_tot is the total carbon stock of the i-th land use type;
Ci_above, Ci_below, Ci_soil, and Ci_dead are the various types of carbon density of the i-th land
use type; and Ai is the area of the i-th land use.

2.2.2. A Grid-Based Approach to Spatial Correlation Analysis

In this study, a 5 km × 5 km fishnet grid built on the ArcGIS platform was spatially
connected, layered with carbon stock data derived from the InVEST model, and used
to generate carbon stock values at the grid level. The correlation between carbon stocks
and geographic space was then evaluated using Moran’s I index values, z-scores, and
p-values, utilizing the global spatial autocorrelation statistic based on grid position and
carbon stock features. Statistical significance was indicated when the z-score or p-value
was present. A smaller p-value indicated a higher likelihood that the data had aggregate
and discrete distributions; more clustering was observed when the z-score’s absolute value
was higher. The positive value of Moran’s I index denoted a tendency toward clustering,
while its negative value denoted a tendency toward dispersion. Based on this, the Anselin
local Moran’s I was used to analyze the local auto-correlation data. In other words, the
Local Indicators of Spatial Association (LISA) cluster map was created by analyzing spatial
outliers and using the cluster and outlier analysis methods to find spatial clusters of carbon
stock elements with high or low values. The Getis-Ord-Gi* index approach examined the
geographical distribution of carbon stock data and discovered statistically significant hot
and cold places. Hot spots were areas of aggregation with high values, whereas cold spots
were areas of aggregation with low values.

2.2.3. A Patch-Generating Land Use Simulation (PLUS)-Based Approach to
Sprawl Research

The PLUS (patch-generating land use simulation) model is a land use change simu-
lation model based on raster data. This method can mine the driving factors of land use
change, simulate the process of land use type patch change, and realize the feasibility of
land use prediction scenario under multi-scenario decisions. The land expansion analy-
sis strategy (LEAS) involves calculating the likelihood that each land type will develop,
extracting the percentage of land use change in the two time periods in which each land
type expands, identifying the drivers of land expansion using the random forest algorithm,
and evaluating the contribution of each driver. The CA model based on multi-class ran-
dom patch seeding (CARS) combines random seed generation and threshold reduction
mechanisms to simulate land use patch generation under different constraints.
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2.3. Data Source and Data Preprocessing
2.3.1. Land Use Data

A land use dataset was provided, with a spatial resolution of 30 m × 30 m [56]. The
classification method was as follows: the regional land use types were classified into
6 primary types (new codes will be added in the 2020 data update, due to marine and
terrestrial land reclamation involving the sea) and 25 secondary types, according to the
natural attributes of the land resources. The data were manually checked and the accuracy
was 88.95% [57]. In this study, the secondary categories of the original data were combined
to create six land use types for 2000, 2010, and 2015, and seven land use types for 2020. A
total of four periods of land use data were chosen for 2000, 2010, 2015, and 2020.

2.3.2. Carbon Pool Data

For the purposes of this study, carbon stocks were calculated to include aboveground
biogenic carbon, belowground biogenic carbon, soil organic carbon, and dead organic
carbon density. Aboveground biogenic carbon refers to the carbon content of all living
plants above ground; belowground biogenic carbon refers to the carbon content in the
living root system of plants; soil carbon content usually refers to the organic and inorganic
carbon distributed in organic and mineral soils; since soil inorganic carbon content is much
lower than soil organic carbon content and is difficult to determine, soil organic carbon
content was used for calculation in this study (Figure 2). Dead organic carbon is the amount
of carbon stored in dead trees. The carbon density data of each land use type were obtained
by referring to existing research results [58–62], and the final carbon density database in
the study area was constructed (Table 1).
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Table 1. Carbon density of different land use types.

Land Use Type Carbon Density (Mg/ha)
Cabove Cbelow Csoil Cdead Ctot

Cultivated land 11.80 4.34 106.87 2.20 125.21
Woodland 132.42 51.97 120.68 14.73 319.80
Grassland 6.31 4.84 111.81 3.48 126.44

Water 8.43 4.10 6.50 0 19.03
Construction land 1.37 0.31 1.42 0 3.10

Unused land 0.36 0.53 21.95 0 22.84
Sea 0 0 0 0 0

2.3.3. Data and Parameter Settings for the PLUS Model

Socioeconomic, public administration, climatic, and geographic–environmental factors
were taken into account as the drivers of land use change (Table 2), and datasets were
quality-controlled through manual review. In order to comply with the data processing
criteria of the simulation, sea was removed from the calculations and land use simulation
stages that incorporate the carbon stock in this study, because it was determined that the
marine carbon density of reclaimed land is zero.

Table 2. PLUS model land use driver data.

Type Data Meaning Source

Land use Land use data Land use classification Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (RESDC)

Constraints Water area Land use constraints Extraction of water from land use data for
overlay analysis

Socioeconomic

Population Degree of population aggregation Resource and Environment Science and Data
Center [64]

GDP Level of economic development Resource and Environment Science and Data
Center [65]

Distance to adjacent trunk
roads Land value

Open street map; calculated using Euclidean
distances

Distance to adjacent
secondary roads

Regional development
attractiveness

Distance to adjacent tertiary
roads Access convenience

Public Administration Distance to adjacent railways Inter-regional transportation
development level

National Catalogue Service for Geographic
Information; calculated using

Euclidean distances.

Distance to adjacent
highways

Logistics and distribution
potential

Distance to adjacent stations Land development possibility

Distance to government Administrative and public service
area development potential

Climatic

Average annual temperature Suitability of temperature China Meteorological Data Service Centre

Average annual precipitation Types of crop cultivation and risk
of rainwater flooding

The land component of the 5th generation of
European ReAnalysis (ERA5-Land) dataset

published by the EU and organizations such as
the European Centre for Medium-Range

Weather Forecasts

Geographic-
environmental Soil type Land base condition The dataset is provided by the National

Cryosphere Desert Data Center [66]

Elevation Availability of water resources Geospatial Data Cloud

Slope Soil erosion and construction
suitability

Calculated from Digital Elevation Model (DEM)
with the ArcGIS slope tool

Adjacent open waters Capacity to provide water for
living and production

National Catalogue Service For
Geographic Information



Land 2024, 13, 476 8 of 26

The analysis was based on two distinct development scenarios: a natural development
scenario, where environmental preservation and maintaining urban safety are the primary
goals, and an urban development scenario, where economic growth and enhancing quality
of life are the main goals. The following settings were made for the various parameters in
the LEAS and CARS modules.

For the land expansion analysis strategy (LEAS) module, the random forest regression
(RFC) parameter sampling rate was set to 0.01, and mTry was equal to the number of
drivers. For the land use change emergence simulation (CARS) module, future land use
demand was predicted using the Markov chain method. A default value of 3 was chosen for
the PLUS neighborhood effect, a mitigation coefficient of 0.5 was chosen for the declining
threshold of patch emergence, a diffusion coefficient of 0.1 was chosen, and a default
probability of random patch seeding of 0.0001. The transmission matrix and neighborhood
weights are as shown in Tables 3 and 4, respectively.

Table 3. Transmission matrix parameter settings. “0” indicates that conversion is not allowed, while
“1” indicates that conversion is permitted. The likelihood of conversion is derived from reference [38].

Land Use Type Cultivated
Land Woodland Grassland Water Construction

Land
Unused

Land

Cultivated land 1 1 1 1 1 1
Woodland 1 1 1 1 1 1
Grassland 1 1 1 1 1 1

Water 0 0 0 1 0 0
Construction

land 0 0 0 0 1 0

Unused land 1 1 1 1 1 1

Table 4. Neighborhood weight settings. The value range is from zero to one, with higher values
signifying greater influence from neighboring areas; it is calculated based on the proportion of each
land use type’s expansion area, relative to the total land expansion.

Land Use Type Cultivated
land Woodland Grassland Water Construction

land
Unused

land

Neighborhood
Weight 0.0911 0.1230 0.0899 0.0769 0.6162 0.0029

3. Results
3.1. Features of Land Use Change in the Xiamen–Zhangzhou–Quanzhou Urban Agglomeration

Regarding the changes in land use (Figure 3 and Table 5) between 2000 and 2020,
the proportions of cultivated land, woodland, and grassland in the Xiamen–Zhangzhou–
Quanzhou urban agglomeration decreased by 99,179.37 ha, 39,546.09 ha, and 14,075.19 ha,
respectively. The proportion of cultivated land decreased from 25.56% to 21.58%, the
proportion of woodland decreased from 51.25% to 49.56%, and the proportion of grassland
decreased from 16.17% to 15.58%. The proportion of building land increased by 5.81%, the
proportion of water areas rose by 0.43%, and the proportion of unused land increased by
0.02%, i.e., by 147,536.28 ha, 11,014.83 ha, and 476.73 ha, respectively. Construction land is
expressed as the spread of urban land as well as other construction land. The construction
of dams, ponds, and lakes increased the proportion of water, while the development
of wetlands increased the amount of undeveloped land. Currently, the proportion of
cultivated land is declining the fastest, while the amount of land used for development
is rising.
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Table 5. Proportion of land use.

Cultivated
Land Woodland Grassland Water Construction

Land
Unused

Land Sea

2000 25.56% 51.25% 16.17% 1.74% 5.19% 0.09% 0.00%
2010 22.48% 49.77% 15.65% 2.17% 9.71% 0.10% 0.13%
2015 22.18% 49.73% 15.62% 2.16% 10.19% 0.10% 0.03%
2020 21.58% 49.56% 15.58% 2.17% 11.01% 0.11% 0.00%

As for the spatial distribution of land use types (Figure 4), the obvious concentration
of construction land between 2000 and 2020 was in the central urban areas of Quanzhou,
Xiamen, and Zhangzhou, close to the Taiwan Strait, specifically in the Fengze District,
Xicheng District, Haicang District, Jimei District, Huli District, Siming District, Xiangcheng
District, and Longwen District, where the concentration of construction land was as follows:
Xiamen City > Quanzhou City > Zhangzhou City. Urban land has dramatically increased
in size in the Xiamen–Zhangzhou–Quanzhou region during the past 20 years as a result
of population growth, rapid industrial and commercial development, and urbanization.
The western coast of the Taiwan Strait is important for the development of the Xiamen–
Zhangzhou–Quanzhou urban agglomeration [67], so there is a high intensity of land use
there. Urban construction areas have a distinctive agglomeration pattern, with fragmentary
use of much of the original cultivated land. In Fujian Province, the western forest, which is
primarily made up of woodland and grassland, is crucial for delivering ecosystem services.
The Xiamen–Zhangzhou–Quanzhou urban agglomeration has developed a spatial land use
pattern, with the western woodland and forest along the seashore serving as the ecological
barrier and the eastern bay of Quanzhou City, Xiamen Island, and its surrounding areas
serving as the economic center.
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According to the matrix of land use conversion in Xiamen–Zhangzhou–Quanzhou
urban agglomeration from 2000 to 2020 (Table 6), a total of 123,010.29 ha of cultivated land
has been converted in the past 20 years, of which 79.50% has been converted to construction
land and 12.06% to woodland. A total of 71,931.78 ha of woodland has been converted, of
which 53.12% has been converted to construction land, 24.10% to grassland, and 19.44% to
cultivated land. In the past 20 years, 161,425.80 ha of construction land has been converted,
of which 60.58% has been converted to cultivated land, 23.67% to woodland, and 10.20%
to grassland. Construction land, cultivated land, and woodland are the main categories
of land with high conversion rates. The cultivated land area in the Xiamen–Zhangzhou–
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Quanzhou urban agglomeration fell by an average of 7706.72 ha per year between 2000
and 2010, while the construction land area expanded by an average of 11,419.57 ha per
year, exhibiting the fastest growth rate. Cultivated land has been the reserve resource
for the development plan of construction land in the central urban areas of the three
cities of Xiamen, Zhangzhou, and Quanzhou over the past 20 years. Woodland as a soil
resource with the requirements of conservation and cover index plays an important role in
maintaining the stability of the ecosystem and scenic environment in Xiamen, Zhangzhou,
and Quanzhou, both of which have been disturbed and destroyed to different degrees
by the urbanization process. Following the reform and opening up, Quanzhou started to
draw urban businesses from Jinjiang and Shishi, creating the “Quanzhou Model,” where
light industries were situated and private businesses took the lead. Since 2006, Quanzhou
has entered a period of transformation and development, in which industrial land and
urban land have increased, and the city has become one of the central cities of Fujian
Province. Since the expansion of Xiamen Special Economic Zone to the whole island in
1984, Xiamen has been striving to develop a modern port, a picturesque tourist city, and a
central city on the west coast of the Taiwan Strait. When the Xiamen Haicang Free Trade
Port Zone was founded in 2008, it created an all-encompassing, multi-level development
pattern, during which arable land was significantly reduced and urban building land was
significantly increased. Zhangzhou, which has remained a crucial location for ecological
conservation, has seen little change in both the distribution of land use and the size of its
central area since 2010. The Xiamen–Zhangzhou–Quanzhou urban agglomeration currently
has significant disparities in the intensity of land use development, and there is a problem
with unbalanced regional development, which is also influenced by the siphon effect of the
Pearl River Delta and Yangtze River Delta regions. The joint and synergistic development
of the three cities can be promoted to attract capital, technology, industry, and talent.

Table 6. Area transfer matrix for the Xiamen–Zhangzhou–Quanzhou urban agglomeration (ha).

2020
2000

Cultivated
Land Woodland Grassland Water Construction

Land
Unused

Land Sea Total Transfer
From

Cultivated
land 522,413.28 14,830.83 5186.16 5163.93 97,795.62 30.06 3.69 645,423.57 123,010.29

Woodland 13,980.78 1,222,437.60 17,334.99 2260.71 38,213.01 111.15 31.14 1,294,369.38 71,931.78
Grassland 5296.05 15,274.98 370,592.10 719.28 16,457.40 169.02 0.00 408,508.83 37,916.73

Water 906.57 648.72 235.53 32,641.29 8824.23 571.23 4.14 43,831.71 11,190.42
Construction

land 3650.85 1456.29 658.62 12,007.35 113,341.68 0.09 0.54 131,115.42 17,773.74

Unused
land 28.44 51.39 153.09 36.09 135.54 1852.65 0.00 2257.20 404.55

Total 546,275.97 1,254,699.81 394,160.49 52,828.65 274,767.48 2734.20 39.51 2,525,506.11 262,227.51
Transfer to 23,862.69 32,262.21 23,568.39 20,187.36 161,425.80 881.55 39.51 262,227.51

3.2. Analysis of the Evolution of Spatial and Temporal Patterns of Carbon Stocks in the
Xiamen–Zhangzhou–Quanzhou Urban Agglomeration

The InVEST model was used to determine the spatial distribution of carbon reserves at
four time points (Figure 5). Considerable changes have occurred in the spatial and temporal
patterns of carbon stocks in Fujian Province over the past 20 years. In 2000, urbanization
was still in the early stages. The low-carbon-storage areas were sparsely distributed along
the Taiwan Strait, the high-carbon-storage areas were widely dispersed in the western por-
tion of the study area, and the medium-carbon-storage spaces were more concentrated in
the low-carbon-storage agglomerations and dispersed in the high-carbon-storage areas. The
mix of medium- and low-carbon-storage areas increased between 2000 and 2010, and the
development pattern of low-carbon-storage concentration areas took shape in the districts
of Fengze and Licheng in Quanzhou City, Huli and Siming in Xiamen City, and Long-
wen and Xiangcheng in Zhangzhou City. The total carbon stocks were 1,124,330.839 Mg,
332,923.184 Mg, 210,378.9939 Mg, 755,029.667 Mg, 1,369,942.187 Mg, and 4,388,893.549 Mg,
respectively, which were below the average carbon stock of 18,770,424.09 Mg for the urban
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agglomeration. The three-city hinterland space of Dehua County and Jinjiang City in
Quanzhou City, Jimei District and Haicang District in Xiamen City, and Changtai County in
Zhangzhou City began to become low-carbon-storage spaces from 2010 to 2020. However,
compared to a decade earlier, the expansion of low-carbon-storage space slowed down,
due to the transition from high-speed to high-quality developments in urban construction,
and the decrease in total carbon stock shifted from 22,194,053.42 Mg to 3,972,839.45 Mg,
representing a reduction of 82.10% year-on-year. The western and southern parts of the
study area became high-carbon-storage supply areas, with Dehua County, Anxi County,
Hua’an County, Nanjing County, Pinghe County, Yunxiao County, and Zhao’an County
accounting for 59.33% of the total carbon stock of the 28 districts and counties in the urban
agglomeration. In the whole Xiamen–Zhangzhou–Quanzhou urban agglomeration, the
pattern of carbon storage over the past 20 years has shown an evolution of “low in the south-
east, high in the north, and medium in the middle”. Taking each municipal administrative
region as the object of study, the low-carbon-storage area in Quanzhou City gradually
forms a triangular spatial distribution pattern with the endpoints of “Fengze, Licheng
District–Jinjiang City–Shishi City”, and the high-carbon-storage area is more densely dis-
tributed in the northern part of the city. The low-carbon-storage area in Xiamen is centered
on Xiamen Island and spreads outward, followed by the medium-carbon-storage area
and high-carbon-storage area, showing obvious characteristics of circle distribution; the
low-carbon-storage area in Zhangzhou City extends into the central area of Zhangzhou City
in a wedge shape along the Jiulong River, and the aggregated patches of the high-carbon-
storage area and medium-carbon-storage area are mostly distributed in the southern part
of the city.

The total carbon stocks in the study area were 54,773.58 Mg in 2000 and 52,156.90 Mg
in 2020, according to the development of the pattern of carbon stocks in the Xiamen–
Zhangzhou–Quanzhou urban agglomeration (Table 7). The carbon stocks in each period,
from the largest to the smallest, were woodland > cultivated land > grassland > water
> construction land > unused land. Although the area and carbon stocks of forest land,
cultivated land, and grassland have decreased, they are still the most important carbon
store in the Xiamen–Zhangzhou–Quanzhou urban agglomeration, with both land use types
accounting for more than 99% of the total carbon storage in each period. The largest of
these is the amount of carbon stored in woodland, which increased from 75.58% to 76.94%
in 2020. The amount of carbon stored in cropland decreased year-by-year from 14.76% to
13.12% in 20 years. The amount of carbon stored in grassland decreased by 1,779,666.96 Mg
overall but increased by 0.13% in the study area. Forest ecosystems contribute significantly
to the increase in terrestrial carbon sinks [68], while the Xiamen–Zhangzhou–Quanzhou
region experienced a rapid decline in ecological resources due to urban expansion between
2000 and 2010. The research area’s ability to sequester carbon has been compromised by
the change in land use type brought on by ecological degradation, which has a detrimental
effect on the regional environment’s overall carbon stock. This is because the degradation
of cultivated land, woodland, and grassland tends to slow down after 2010 [69], which is
due to the massive encroachment during the previous urbanization period. Overall, the
loss in carbon stocks of ecosystems in the study area is mostly due to an increase in built-up
areas, which have a limited capacity to sequester carbon, and a decrease in cultivated land,
woodland, and grassland, which have a high capacity to do so.
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Table 7. Evolution of carbon stock in land use in the Xiamen–Zhangzhou–Quanzhou urban agglom-
eration, 2000–2020.

Period
Land Use Type

2000 2010 2015 2020

Carbon Stock/Mg
Percentage/%

Cultivated land 80,828,337.02
14.76

71,178,744.21
13.54

70,222,217.45
13.40

68,410,088.19
13.12

Woodland 413,958,518.04
75.58

402,456,107.75
76.58

402,113,371.67
76.71

401,311,677.80
76.94

Grassland 51,653,789.05
9.43

50,047,740.65
9.52

49,940,021.36
9.53

49,874,122.09
9.56

Water 836,897.10
0.15

1,042,499.87
0.20

1,037,014.09
0.20

1,046,509.30
0.20

Construction land 406,744.87
0.07

760,751.49
0.14

798,917.57
0.15

864,107.31
0.17

Unused land 51,560.61
0.01

55,949.32
0.01

55,324.42
0.01

62,449.13
0.01

Total 547,735,846.70
100.00

525,541,793.28
100.00

524,166,866.56
100.00

521,568,953.83
100.00
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3.3. Spatial Correlation of Carbon Stocks in the Xiamen–Zhangzhou–Quanzhou Urban
Agglomeration

The global spatial autocorrelation analysis of carbon stock in the Xiamen–Zhangzhou–
Quanzhou urban agglomeration (Figure 6a) shows that the Moran’s I index value is 0.5445,
with a z-score of 3.7143 and a p-value of 0.0002, indicating that carbon stock in the Xiamen–
Zhangzhou–Quanzhou urban agglomeration represents a spatial clustering phenomenon.
The LISA cluster map shows (Figure 6b) that Fengze County of Quanzhou City, Jinjiang City,
Shishi City, Huian County, and the whole Xiamen City are low–low cluster carbon stock
agglomeration areas, indicating that these county-level administrative regions have low
carbon stocks and show a spatial pattern of agglomeration distribution. Yongchun County
of Quanzhou City belongs to the high–high cluster carbon stock agglomeration area, while
Nan’an City of Quanzhou City and Longhai City of Zhangzhou City are high-carbon-stock
areas surrounded by low-carbon-stock areas. The Getis-Ord Gi* hotspot analysis shows
that there is little difference in the regional extent of cold hotspots for carbon stocks between
2000 and 2020, and that statistically significant cold hotspots and hotspots each have cluster
characteristics (Figure 7). Hotspot areas are regions with high–high cluster carbon stocks
and strong spatial correlation, primarily in the north of Quanzhou city, the northwest of
Xiamen city, and the west of Zhangzhou city. These regions are mainly concentrated in
places with rich forest cover, such as Jiuxianshan Forest Recreation Base in Dehua County,
Anxi County, Foershan Forest Park, Hua’an National Forest Park, Nanjing Tulou Forest
Park, and Jiulongjiang Summit Valley Forest Recreation Base in Pinghe County, with 99%
confidence as carbon stock hotspots. The key development regions of the three cities along
the Taiwan Strait are the eastern bay area of Quanzhou City, Xiamen Island and its environs,
and the southeastern port area of Zhangzhou City, where the cold spots in carbon stocks
are found. The hot spots in the study area are characterized by a western ecological barrier
complemented by the coastal forest, while the cold spots are characterized by clustering
along the river mouth and bay.
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3.4. Carbon Stock Projections for Land Use in the Xiamen–Zhangzhou–Quanzhou Urban
Agglomeration under Different Development Scenarios

The extent to which various factors contribute to the growth of each land use type can
be evaluated using the PLUS model. The findings demonstrate that the distance to trunk
roads is the most important potential factor influencing land use change on cultivated
land; slope, population size, and GDP factors are the main drivers of land use change
on woodland; elevation and slope are the main drivers on grassland; and watersheds are
hardly influenced by factors other than themselves. Watershed borders, the distribution of
trafficable roads, and slope affect the amount of construction land; the distance of secondary
roads and elevation are potential change agents for unused land (Figure 8). The land use
distribution in 2020 was predicted (Figure 9b) and contrasted with the actual land use
situation (Figure 9a). The validation indicates that the Kappa coefficient is 0.7868, the
FoM (Figure of Merit) value is 0.1297, and the overall accuracy is 0.8572. The accuracy
assessment results are feasible, which suggests that the driving factors selected based on
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the PLUS model in this study are applicable for simulating and predicting future land use
changes in the Xiamen–Zhangzhou–Quanzhou urban agglomeration.
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Using the year 2000 as the base period and the year 2020 as the current period for the
land use of the Xiamen–Zhangzhou–Quanzhou urban agglomeration, two development
scenarios for the year 2060 are identified, namely, giving priority to the preservation of
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the natural environment and satisfactory urban development. The results show that by
2060, under both scenarios, cropland, woodland, and grassland continue to decrease, and
aquatic and built-up areas continue to increase, with cropland and grassland decreasing by
136,311.66 ha and 27,104.94 ha, respectively, and construction land increasing by 190,053.81
ha (Table 8). Under the urban development priority scenario, woodland decreases by
70,607.61 ha, water area increases by 40,139.46 ha, and unused land increases by 419.49 ha;
under the ecological development priority scenario, woodland decreases by 30,250.53 ha,
water area increases by 657.99 ha, and unused land decreases by 456.12 ha. A comparison
of land use types between the two development scenarios shows that in the urban priority
development scenario, more woodland is converted to water and unused land, and the
area of hard-to-use land, such as sand, gobi, and bare rocky terrain, increases, while
reservoirs and ponds are built to ensure the quality of urban life. In the ecological priority
development scenario, further slowing down the degradation of forest land from the
perspective of increasing vegetation coverage, developing the landscape pattern, and
enhancing species diversity improve the ecological resilience of the research area (Figure 10).

Table 8. Structure of land use and carbon stocks in 2060 (Area: ha; carbon stock: Mg).

Land Use
Type Type 2020

2060 (Urban
Priority

Development
Scenario)

Amount of
Change

2060 (Ecological
Priority

Development
Scenario)

Amount of
Change

Cultivated
land

Area 546,362.82 410,051.16 −136,311.66 410,051.16 −136,311.66
Carbon stocks 68,410,088.69 51,342,505.74 −17,067,582.95 51,342,505.74 −17,067,582.95

Woodland
Area 1,254,883.23 1,184,275.62 −70,607.61 1,224,632.70 −30,250.53

Carbon stocks 401,311,656.95 378,731,343.28 −22,580,313.68 391,637,537.46 −9,674,119.49

Grassland
Area 394,448.94 367,344.00 −27,104.94 367,344.00 −27,104.94

Carbon stocks 49,874,123.97 46,446,975.36 −3,427,148.61 46,446,975.36 −3,427,148.61

Water
Area 54,992.61 95,132.07 40,139.46 55,650.60 657.99

Carbon stocks 1,046,509.37 1,810,363.29 763,853.92 1,059,030.92 12,521.55

Construction
land

Area 278,744.31 468,798.12 190,053.81 468,798.12 190,053.81
Carbon stocks 864,107.36 1,453,274.17 589,166.81 1,453,274.17 589,166.81

Unused land
Area 2734.20 3153.69 419.49 2278.08 −456.12

Carbon stocks 62,449.13 72,030.28 9581.15 52,031.35 −10,417.78

Sea
Area 43.11 0.00 −43.11 0.00 −43.11

Carbon stocks 0.00 0.00 0.00 0.00 0.00

Total
Area 2,532,209.22 2,528,754.66 −3454.56 2,528,754.66 −3454.56

Carbon stocks 521,568,935.48 479,856,492.12 −41,712,443.35 491,991,355.00 −29,577,580.48

According to the carbon stock structure table (Table 8), under the urban priority devel-
opment scenario, carbon stocks are reduced by a total of 41,712,443.35 Mg compared to 2020,
with woodland showing the largest reduction of 22,580,313.68 Mg, or an average annual
reduction of 564,507.84 Mg. Cultivated land is next, with a reduction of 17,067,582.95 Mg
over 40 years, or an average annual reduction of 426,689.57 Mg. Under the ecological
priority scenario, carbon stocks are reduced by a total of 29,577,580.48 Mg. Cultivated
land experiences the highest reduction in carbon stocks, with an average yearly decline
of 426,689.57 Mg. Woodland experiences the second-largest reduction of 9,674,119.49 Mg,
with an average annual decrease of 241,852.99 Mg. Due to an increase in lower carbon-stock
land being used for construction, a decrease in higher carbon-stock cultivated land and
woodland, and a reduction to provide ecological services, the total carbon stock declines at
different rates under both development scenarios, compared to 2020. When comparing the
two scenarios (Figure 11), it can be seen that the urban development priority scenario’s low-
carbon-stock areas are concentrated in Quanzhou City’s eastern bay area, Xiamen Island
and its surrounding areas, and Zhangzhou City’s bay area with Xiangcheng, Longwen,
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Longhai, and Zhangpu counties, while there are almost no high-carbon-stock areas from
Quanzhou Port southward to the coast of Zhangzhou Port. Under the ecological develop-
ment priority scenario, Zhangpu, Hua’an, Yunxiao, and Dehua counties in Zhangzhou City
preserve their original pattern of high carbon concentrations and are less impacted by the
fragmentation of low-carbon-stock areas caused by urban expansion.
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The average carbon stock of each county-level administrative region was divided
into lowest carbon-stock areas, low-carbon-stock areas, medium-carbon-stock areas, high-
carbon-stock areas, and highest carbon-stock areas, using the natural breakpoint method.
This allows us to visualize the spatial and temporal evolution of the average carbon stock
in the Xiamen–Zhangzhou–Quanzhou urban agglomeration from 2000 to 2060. The results
indicate that, with the exception of Quanzhou Quangang district, which was upgraded
from a low-carbon-storage region to a medium-carbon-storage area, the average carbon
storage rank of administrative districts did not significantly change between 2000 and
2015. Jinjiang and Shishi cities in Quanzhou went from having the lowest carbon storage to
having low carbon storage by 2020. The average carbon stock ranking is the same for all
county-level administrative regions in 2060 under both the urban development priority
scenario and the ecological development priority scenario, with the exception of Zhangpu
County, Quangang County, and Jimei County, which rise by one level of average carbon
stocks under the ecological protection scenario, indicating that these counties’ extensive
forest areas become a potential area for maintaining carbon stock. The average carbon stock
in Siming County in Xiamen City decreases, changing it from a low-carbon-storage area
to a lowest storage area in 2060, compared to 2020. Jinjiang and Shishi cities in Quanzhou
City change from low-carbon-storage areas to lowest storage areas, and Quangang County
in Quanzhou City changes from a medium-carbon-storage area to a low-carbon-storage
area. Dehua, Yongchun, Hua’an, and Nanjing counties in the northwest of the urban
agglomeration consistently maintained their position in the highest carbon storage zone
across the four periods, which is a crucial ecological safety barrier for preserving ecosystem
structure, functions, and processes. As a result of being in the lowest carbon storage zone,
Huli County in Xiamen and Fengze County in Quanzhou experienced the greatest carbon
loss (Figure 12).
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4. Discussion
4.1. Interpretation of Research

Based on the land use data and carbon pool data from 2000 to 2020, we dynamically
analyzed the features of land use change and the evolution of spatial and temporal distri-
bution pattern of carbon stock in the Xiamen–Zhangzhou–Quanzhou urban agglomeration.
We also took into account the spatial correlation between land use structure and carbon
stock, and we categorized the distribution areas with high and low carbon stock concentra-
tions. In order to predict the carbon stocks under the priority natural and priority urban
growth directions, the land use simulation data from 2060 were then coupled with socioe-
conomic, public administration, climatic, and geographic–environmental data, and, finally,
the Xiamen–Zhangzhou–Quanzhou urban agglomeration’s historical series of changes in
carbon stocks were zoned. The research findings can provide recommendations on land
use and ecological restoration for policy, industry, and public administration sectors, which
will contribute to the achievement of China’s carbon neutrality and carbon peak goals by
2060 (Figure 13).
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In this study, the proportions of arable land, forest land, and grassland in the Xiamen–
Zhangzhou–Quanzhou urban agglomeration all showed a declining trend. Concurrently,
the proportion of construction land significantly increased, while the proportions of water
bodies and unused land slightly rose. The growth in construction land was primarily
reflected in the expansion of urban land and other types of construction land. The increase
in the proportion of water bodies was mainly attributed to the expansion of reservoirs,
ponds, and lakes. The rise in unused land was predominantly characterized by the growth
in the area of swamplands. Construction land exhibited a notable agglomeration in the
central urban areas of Quanzhou, Xiamen, and Zhangzhou, which are close to the Taiwan
Strait. Among them, Xiamen had the highest degree of agglomeration of construction
land, followed by Quanzhou and Zhangzhou. This phenomenon is underpinned by the
rapid development of commerce and industry, as well as population mobility, driven by
the Xiamen Economic Zone; these are factors that have collectively propelled the dramatic
expansion of urban land in the Xiamen–Zhangzhou–Quanzhou region over the past two
decades. The eastern coastal area along the Taiwan Strait is a key development zone for the
urban agglomeration, where land use development intensity is high, and urban construction
land shows a clear pattern of agglomeration, leading to the significant encroachment and
fragmentation of the original arable land. In contrast, the western forest region, dominated
by forest land and grassland, is an important area for the provision of ecosystem services
in Fujian Province. The Xiamen–Zhangzhou–Quanzhou urban agglomeration has formed
a unique spatial pattern of land use, with the eastern coastal bay area of Quanzhou, the
Xiamen Island and its surrounding areas, and the eastern urban area of Zhangzhou as
the economic centers, and the western forest region and coastal forest belt serving as
ecological barriers. The formation of this pattern is of significant importance for the
sustainable development of the region and also poses new challenges for land use planning
and management.

Despite the reduction in the areas of cultivated land, woodland, and grassland, these
land use types continue to be the primary carbon sinks within the urban agglomera-
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tion, aligning with the conclusions of other researchers [70–72]. The Xiamen–Zhangzhou–
Quanzhou urban agglomeration experienced a rapid depletion of ecological resources
and environment due to the swift expansion of urban scale between 2000 and 2010. Al-
though the rate of ecological consumption slowed down after the introduction of ecological
civilization construction policies, cultivated land, woodland, and grassland still suffered
significant encroachment during the urbanization process. The degradation of the ecologi-
cal environment and the resulting changes in land use types have weakened the carbon
sequestration capacity of the study area and had a negative impact on the overall regional
carbon storage. The increase in construction land area and the decrease in cultivated land,
woodland, and grassland are the main reasons for the reduction in the ecosystem carbon
storage of the study area, consistent with the findings of Zhao et al. [73]. This discovery em-
phasizes the importance of protecting and rationally managing land resources during the
urbanization process to ensure the stability of regional carbon storage and the sustainability
of ecosystem services.

Additionally, traffic roads were found to be the most significant factor affecting changes
in arable land, while changes in forest land were mainly influenced by slope, population
size, and GDP. Changes in grassland were more affected by elevation and slope. The
changes in water bodies were hardly influenced by other factors, and the expansion of
construction land was affected by the boundaries of water bodies, the distribution of
traffic roads, and slope. Changes in unused land were mainly caused by the distribution
of secondary roads and elevation factors. This is different from Zhou’s conclusion [74],
where, despite being areas with ecological protection zones, regional development and
topographic conditions were the main driving factors for the expansion or reduction of
various land use types. This might be related to the urban development strategy of the
study area, where some cities develop by relying on well-developed transportation, while
others grow centered around population aggregation areas. The commonality, however, is
that urban construction and human activities limit the development of ecological space.

Furthermore, under both the nature conservation priority and urban development
priority scenarios, the areas of arable land, forest land, and grassland will continue to
decrease, while the areas of water bodies and construction land will persist in increasing. A
comparison of the two development scenarios reveals that, under the urban development
priority scenario, a greater amount of forest land will be converted into water bodies and
unused land. Additionally, the area of land that is difficult to utilize will increase during the
process of constructing water conservancy facilities such as reservoirs and ponds. In con-
trast, under the ecological development priority scenario, there will be a greater emphasis
on slowing the degradation of forest land, enhancing the ecological resilience of the study
area by increasing vegetation cover, improving landscape patterns, and increasing species
diversity. These findings are of significant importance for formulating future land use
planning and policies for the Xiamen–Zhangzhou–Quanzhou urban agglomeration, partic-
ularly in providing valuable references for balancing urban development and ecological
conservation.

4.2. Contributions and Limitations

Based on data on land use change and carbon intensity over the previous 20 years,
the PLUS and InVEST models were used in this study to simulate changes in land use and
carbon stock over the next 40 years. We also analyzed the spatial correlation between the
distribution of high and low carbon stock values, offering a reference method for simulating
land use and carbon stock distribution under various scenarios. We offered a way to
simulate how land use and carbon stocks are distributed under various scenarios, which
benefits regional carbon cycle research, reduces climate change, and promotes sustainable
regional development. The accuracy test results were plausible and the simulation results
were largely compatible with the observed land use pattern, suggesting that the PLUS
model was more accurate at predicting future land use changes in the Xiamen–Zhangzhou–
Quanzhou urban agglomeration.
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In this study, land use over the next 40 years was predicted using 15 development
indicators related to urban quality improvement and environmental protection; however,
actual development is influenced by additional factors such as laws and policies, unforeseen
disasters, and climate change. Additionally, the carbon pool of the InVEST model created
in this work only pertains to primary land types due to restrictions on data access, and
the carbon intensity of each land use type is assumed to remain constant over time. The
carbon density of different secondary land use patterns varies somewhat in reality and
is influenced by seasonal turnover, biotic stock, and ground vegetation type, and soils
with higher biomass have greater potential for carbon storage. It is worth mentioning
that the impact of temporal factors on the carbon density of land use deserves attention.
Establishing a model that tracks the changes in carbon density over time can facilitate more
accurate predictions of carbon stocks. Future research can increase the accuracy of land use
estimates and carbon stock simulation results by taking into account more growth scenarios
and development indicators and by using field measurements and modeling techniques.

4.3. Proposals for Future Development

Since 2000, as urbanization has accelerated, the region’s spatial pattern of land use has
undergone significant changes, as the growth of built-up regions has been accompanied by
a danger to natural resources. The major causes of the drop in ecosystem carbon stocks
in the study area are the rise in land used for building, which has a limited capacity to
store carbon, and the decrease in cultivated land, woodland, and grassland, which have a
high capacity to store carbon. Planning decisions that optimize land use patterns, establish
synergies between urban and rural development, and balance environmental preservation
and economic development are therefore excellent ways to increase regional carbon stocks.

It is necessary to optimize the spatial arrangement of urban functions to take into
account high ecological efficiency, high production efficiency, and high quality of life, to
create urban green spaces with the capacity to sequester carbon and protect functions, and
to promote the ecological barriers of agriculture and forestry in the surrounding areas. In
addition, it is necessary to return ecologically significant and important cultivated land that
cannot be used for agriculture to the woodlands, in order to preserve regional ecology and
food security and to gradually convert former “non-agricultural” and “non-food” land back
to cultivated land, in order to convert it into high-standard agricultural land that complies
with the demands of the new era. It is also necessary to promote low-carbon development
in urban areas and expand land uses that have a stronger impact on carbon storage, such as
cultivated land, woodland, and grassland, to improve the carbon absorption and regulation
capacity of ecosystems.

5. Conclusions

We constructed a referenceable calculation method to test and predict the impact of
land use changes on the spatial and temporal distribution patterns of carbon stocks, and
subsequently drew the following conclusions.

(1) Taking the Xiamen–Zhangzhou–Quanzhou urban agglomeration as an example, we
studied land use from 2000 to 2020 under two scenarios in which the area of cultivated
land, woodland, and grassland continues to decrease, and the area of watershed and
construction land continues to increase until 2060. Under the urban development
priority scenario, more woodland is converted to water and unused land, while
reservoirs and ponds are built to provide quality urban living, and the area of hard-to-
use land, such as sandy and bare rock areas, increases. An ecological development
scenario with greater mitigation of forest degradation should be prioritized to improve
the ecological resilience of the study area, in terms of increasing vegetation cover,
improving landscape patterns, and increasing species diversity. Cultivated land,
woodland, and grassland areas are heavily used in the process of urbanization, and
the change in land use type in the process of ecological degradation negatively affects
the overall carbon stock of the regional environment.
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(2) The study found that the distance to trunk roads was the most important potential
driver of land use change in cultivated land; land use change in forests was mainly in-
fluenced by slope, population size, and GDP factors; and land use change in grassland
was more influenced by elevation and slope. The analysis of the spatial heterogeneity
of carbon stock changes under different scenarios showed that a massive conversion
of woodland to building land and of watershed and unused land were the main
drivers of carbon stock decline; under the ecological priority scenario, the conversion
of cropland, woodland, and grassland to building land was the main driver of carbon
stock decline.

(3) The spatial correlation analysis of carbon stocks in the Xiamen–Zhangzhou–Quanzhou
urban agglomeration shows that the hot spots are mainly located in the northern part
of Quanzhou City, the northwestern part of Xiamen City, and the western part of
Zhangzhou City. The cold spots of carbon storage are concentrated in the eastern bay
of Quanzhou City, Xiamen Island and its surroundings, and the southeastern port area
of Zhangzhou City, which are the main development areas of the three cities. Overall,
the hot spot areas of the study area have a predominantly westerly ecological barrier
complemented by the seashore forest, while the cold spot areas are concentrated along
the estuary and bay.

(4) A comparison of the carbon stock patterns of the two scenarios for the Xiamen–
Zhangzhou–Quanzhou urban agglomeration in 2060 shows that, under the urban
development priority scenario, the difference between the predicted carbon storage
values is 12,134,862.88 Mg. The low-carbon-stock areas are concentrated in the east-
ern bay of Quanzhou city, Xiamen Island and its surroundings, and the middle of
Zhangzhou city; in the ecological development priority scenario, Zhangpu County,
Hua’an County, Yunxiao County, and Dehua County are the concentrated areas with
high carbon storage value. Dehua, Yongchun, Hua’an, and Nanjing counties are
important ecological safety barriers for maintaining ecosystem functions in the region;
Huli and Fengze counties have significant carbon losses; and Zhangpu county is a
potential area for maintaining carbon storage in the urban agglomeration in the future.
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