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Abstract: Terrestrial water storage (TWS) is pivotal in understanding environmental dynamics,
climate change, and human impacts. Despite the utility of land surface models, uncertainties persist
in their parameterization schemes. This study employs GRACE (Gravity Recovery and Climate
Experiment) satellite data to optimize the runoff parameterization scheme within the Common Land
Model by a data assimilation and parameter optimization method. The optimization algorithm sets
an adjustment factor that varies with time and space for runoff simulation and updates it along with
the running of the land surface model. The evaluation reveals that there are improved correlation
coefficients and reduced root mean square errors compared to GRACE observations. Independent
assessments by using in situ river discharge observations demonstrate enhanced model performance,
particularly in mountainous regions such as western North America. This study underscores the
efficacy of integrating GRACE data to improve land surface model parameterization, offering more
accurate predictions of TWS changes.
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1. Introduction

Terrestrial water storage (TWS) is a key variable in the earth system [1]. It has two-way
feedback with climate change [1,2], and variations in TWS strongly impact carbon sinks
through the interactions between water and carbon cycles [3].

Land surface models can simulate the state of TWS and its variability due to changes
in precipitation, evapotranspiration, soil water movement, and runoff [4,5]. Among these
fluxes, runoff reflects the comprehensive effects of climate, topography, and land surface
characteristics at different spatial and temporal scales, exhibiting strong heterogeneity [6,7].
Runoff fluxes play an important role in hydrological cycles and, thus, in the earth system.
On the one hand, runoff simulation is influenced by TWS and the groundwater table [8].
On the other hand, improvements in runoff simulation can affect other components of the
water cycle through water balance [9,10].

In land surface models, there are primarily two approaches for simulating runoff:
parameterization schemes and an explicit incorporation of lateral flow dynamics [11]. Ex-
plicitly considering lateral flow enhances the accuracy of water cycle simulations [9,10].
However, this method necessitates data and parameterization schemes at the hillslope
scale, which are currently limited [6]. As a result, simplistic parameterization schemes
remain prevalent in most land surface simulations, particularly in global or climate mod-
els. However, these oversimplified schemes often introduce significant uncertainties in
runoff estimation.

Combining observational data with land surface models holds promise for enhancing
the estimates of TWS, runoff, and simulations of water cycle processes [12]. Most land sur-
face models lack descriptions of deeper groundwater and do not account for changes in lake
and river water storage, necessitating calibration or validation with observational data [13].
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Furthermore, Gravity Recovery and Climate Experiment (GRACE) satellite datasets are
extensively utilized for monitoring TWS changes [14–18], assessing and evaluating land sur-
face models [19–22], and performing data assimilation and parameter calibration [23–29].
GRACE satellite observations capture TWS changes and can effectively constrain water
cycle dynamics within land surface models [5]. Conversely, simulation outputs from land
surface models enable the disentanglement of TWS components observed by GRACE.
Additionally, discrepancies between TWS components simulated by models and those ob-
served by GRACE can help identify abnormal changes in large-scale groundwater storage
globally, facilitating assessments of human activities’ impacts such as irrigation, pumping,
and reservoir operations on TWS [14,20].

In this study, GRACE satellite observations were integrated into the Common Land
Model (CoLM) [30] to enhance its water cycle simulations. A data assimilation scheme
employing an optimal estimation of model errors was developed. To maintain mass conser-
vation, scaling factors were introduced and updated in the runoff parameterization scheme
during the assimilation step, rather than updating the states of the TWS components.

Section 2 outlines the data and methods employed in this study. The results are pre-
sented in Section 3 and subsequently discussed. Finally, Section 4 provides the conclusions
drawn from the study.

2. Model, Data and Methods

Data assimilation algorithms are methods that combine model predictions with ob-
servation data. In this section, the framework of assimilating GRACE observations for
parameter optimization in the Common Land Model is introduced.

2.1. Land Surface Model

CoLM [30] simulates energy, water, biogeochemical, and other land processes. In CoLM,
terrestrial water storage (TWS) is calculated as the sum of water storage in canopy, snow,
land ice, surface water, soil moisture, and water in an aquifer. The water balance equation
within each grid cell is written as follows:

∆W
∆t

= P − ET − R (1)

where ∆W represents the change in TWS within a grid cell; ∆t denotes a certain period; P
and ET indicates the precipitation and evapotranspiration rate over the same period, respec-
tively; and R represents the total runoff rate. Precipitation is obtained from atmospheric
forcing data, while evapotranspiration and runoff are simulated by the model.

Parameterization schemes are used for the simulations of runoff in this study [31].
The total runoff consists of surface runoff and subsurface runoff. The parameterization
scheme for surface runoff considers factors such as groundwater table depth, precipitation,
and saturated hydraulic conductivity in soil. Within a model grid cell, all of the surface
water in the saturated area contributes to runoff, while in the unsaturated area, only excess
water beyond infiltration contributes to runoff. The fraction of saturated area within the
model grid cell is calculated as follows [31]:

fsat = fwt · e−0.5· fdecay·zwt (2)

where zwt represents the groundwater table depth (m), fwt represents the fraction of area in
the grid cell with shallow groundwater depth, and fdecay is a decay factor. fwt = 0.38 and
fdecay = 0.5 m−1 are taken as constants in the scheme.

In the unsaturated area, the maximum infiltration capacity considers the state and
properties of the top three layers of soil and is calculated as follows [31]:

qin,max = min
i=1,2,3

{(
10−6.0· fice,i

)
· Ksat,i

}
(3)
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where fice,i represents the volume percentage of ice in the soil pores for the ith layer of soil,
and Ksat,i represents the saturated hydraulic conductivity of the ith layer of soil.

The total surface runoff is then estimated as follows [31]:

rsurface = fsat · Gwat + (1 − fsat) · max(Gwat − qin,max, 0) (4)

where Gwat represents the amount of liquid water reaching the surface, including rain
through the canopy, water dripping from the canopy, and snowmelt; fsat represents the
fraction of the grid cell area that is saturated by (2); and qin,max represents the maximum
infiltration capacity calculated by (3).

The subsurface runoff is estimated by [31]

rsubsurface = qdrai,max · exp(− fdrai · zwt) (5)

where qdrai,max is the maximum value of drainage, and fdrai = 2.5 m−1 is the decay factor.
When soil ice is present, the resistance of ice is considered. qdrai,max takes a globally uniform
value of 5.5 × 10−3 mm/s in the scheme.

Globally, runoff depends on factors such as topography, soil properties, and land cover
types, which are neglected in the above simplistic parameterization schemes. Although pa-
rameters in these schemes can achieve a certain level of simulation accuracy after parameter
calibration, large uncertainties still exist due to the neglect of key factors. This study
optimizes the runoff parameterization scheme further by using GRACE observation data.

CoLM requires meteorological forcing data including variables of wind speed, air
temperature, humidity, air pressure, precipitation, shortwave radiation, and longwave
radiation. In this study, these atmospheric forcing data are obtained from the CRU JRA
dataset v2.4, which is a gridded land surface blend of Climatic Research Unit and Japanese
reanalysis data [32]. The CRU JRA dataset provides 6-hourly 0.5-degree gridded data
covering the global region except for Antarctica, with a time series from 1901 to 2020.

The spatial resolution of the CoLM simulation is 2 degrees, and the forcing data
are upscaled from 0.5 degree to 2 degrees using an area weighted averaging method.
The temporal resolution is half-hourly. The resolution of 2 degrees is used in this study
because GRACE products have a native resolution of 3 degrees [33] and allow for a spatial
resolution of typically 300 km [34].

To ensure the model reaches a near-equilibrium state of water, a spin-up with approxi-
mately 100 years was carried out before assimilating GRACE data. The near-equilibrium
state was determined based on the criterion that the ten-year moving average of the
change in ∆W was less than 2% of the annual precipitation. It was observed that over
90% of the land grid cells with annual precipitation exceeding 250 mm attained a state of
near-equilibrium after the spin-up period.

The spin-up period was from 1901 to 2001, and data assimilation started in 2002 when
GRACE observation was available. Monthly averaged values of TWS by CoLM were
calculated on each grid to make them consistent with the GRACE observations.

To evaluate the data assimilation results through independent observations, CoLM was
coupled with CaMa-Flood [35] to simulate discharge in rivers. The simulated discharge was
compared with in situ observation data on a global scale from the Global Runoff Database
Center (GRDC).

2.2. Observations

The monthly averaged TWS data in the JPL GRACE and GRACE-FO MASCON
RL06Mv2 CRI datasets was used [33,36] in this study. The JPL Mascon data do not use
empirical filtering for noise reduction but include additional geophysical information
beyond the GRACE data. Moreover, a coastal resolution improvement filter has been
developed to address coastline issues. The JPL-RL06M product is represented on 0.5-degree
grid, while the effective resolution is 3 degrees. The datasets cover a time period of 2002 to
2022, but only observations from 2002 to 2020 were used in this study.
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The GRACE-derived difference of TWS in two consecutive months was taken as an ob-
servation in the data assimilation framework. The difference between the two observations
is written as

∆Wo = Wo
1 − Wo

0 (6)

where Wo
0 and Wo

1 are observed TWS by GRACE in months T0 and T1, with uncertainties
of σo

0 and σo
1 , respectively. Assuming the two observations are independent, the vari-

ance of ∆Wo is given by (σo)2 = (σo
1 )

2 + (σo
0 )

2. Using ∆W between two consecutive
months removes the long-term trend of TWS changes, which is beneficial for optimizing
runoff schemes.

The GRDC dataset (https://grdc.bafg.de/GRDC/EN/Home/homepage_node.html,
accessed on 3 April 2024) was used in this study to evaluate the model’s simulated dis-
charge; while the dataset contains river discharge from over 10,000 stations globally, only
observations from those with an upstream area larger than 10,000 km2 were selected since
the model is run at coarse resolution. The evaluation time period was from 2006 to 2015,
which is after a 4-year data assimilation started in 2002, and monthly averaged values
were used.

2.3. Data Assimilation Method

The forecast value of ∆W by CoLM is denoted as ∆Wf. With an unbiased estimator
for a scalar state variable combined with a single measurement [37], the analysis value of
∆W, denoted as ∆Wa, can be calculated from ∆Wo and ∆Wf by

∆Wa =
∆Wf(σo)2 + ∆Wo

(
σf
)2

(
σf
)2

+ (σo)2
(7)

where
(

σf
)2

denotes the variance of ∆Wf.
In order to maintain the mass conservation of water, a factor αslp to adjust the simulated

runoff was introduced instead of updating the TWS state in CoLM, satisfying

∆Wa

∆t
= P − ET − αslp · R (8)

where the subscript “slp” in αslp indicates that the error in the runoff is mainly from the
model’s neglect of the influence of topography. Considering that runoff exhibits significant
seasonal variations while satellite observation data are monthly values, αslp is further
divided into 12 values, one for each month.

The online updating scheme for the adjustment factor αslp is as follows: (1) initialize
the value of αslp to 1; (2) in each two consecutive months m and m + 1 with satellite
observations, run the model based on the current values of αslp,m and αslp,m+1 to forecast
∆Wf, and then combine ∆Wf with the observed ∆Wo to update the adjustment factors
αslp,m and αslp,m+1; (3) continue running the model to the next observation months with
satellite observations, returning to step 2. The workflow is shown in Figure 1.

The variance of the forecast
(

σf
)2

is estimated with the maximum likelihood method [38].

Assuming ∆Wf − ∆Wo is a random variable with mean 0 and variance
(

σf
)2

+ (σo)2 [39],

the -2log-likelihood function for
(

σf
)2

is given by

−2L
((

σf
)2

)
= ln

[(
σf
)2

+ (σo)2
]
+

(∆Wf − ∆Wo)2(
σf
)2

+ (σo)2
(9)

When −2L attains its minimum value,
(

σf
)2

satisfies the equation

https://grdc.bafg.de/GRDC/EN/Home/homepage_node.html
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1(
σf
)2

+ (σo)2
− (∆Wf − ∆Wo)2[(

σf
)2

+ (σo)2
]2 = 0 (10)

It can be solved for
(

σf
)2

from (10):

(
σf
)2

=
(

∆Wf − ∆Wo
)2

− (σo)2 (11)

The estimated
(

σf
)2

from (11) is then used in (7) for the calculation of the analysis value. It is

noteworthy that when the observation error σo is greater than |∆Wf − ∆Wo|, the solution (11)
is meaningless. In this case, the observation is considered invalid and discarded.

Month j Month j+1 Month j Month j+1

Year i Year i+1

TWS by model

𝚫TWS by GRACE

Data AssimilationData Assimilation

Runoff 
adjustment 
factor for 
months in 
next year

𝚫TWS by GRACE

Data AssimilationData Assimilation

Runoff 
adjustment 
factor for 
months in 
next year

Figure 1. Workflow of data assimilation algorithm.

2.4. Evaluations

The following three statistical metrics are used to evaluate the results of parameter optimization.
The Pearson correlation coefficient is calculated by

r = ∑n
i=1(yi − ȳ)(oi − ō)√

∑n
i=1(yi − ȳ)2

√
∑n

i=1(oi − ō)2
(12)

where oi represents the time series of the observed ∆W from GRACE observations; yi
represents the time series of modeled ∆W; n is the number of data in the time series; ō
and ȳ are the means of oi and yi, respectively. The correlation coefficient r ranges from
−1 to 1, where a larger value indicates a higher correlation between the simulations and
observations. After adjusting the parameters in the model, if the correlation coefficient
improves, then it is considered as parameter optimization.

The Root Mean Square Error (RMSE) is calculated by

RMSE =

√
1
n

n

∑
i=1

(yi − oi)2 (13)

where oi represents the observed values of ∆W from GRACE observations; yi represents
the modeled values of ∆W; n is the number of data in the time series. A smaller value of
RMSE indicates a higher degree of closeness between the simulations and observations.
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After adjusting the parameters in the model, if the RMSE decreases, then it is considered as
parameter optimization.

The Nash–Sutcliffe efficiency coefficient is used for the comparisons and is defined as

NSE = 1 − ∑n
i=1(yi − oi)

2

∑n
i=1(oi − ō)2 (14)

where oi represents the observed discharge from the GRDC dataset; yi represents the
modeled discharge by using coupled CoLM and CaMa-Flood; n is the number of data in
the time series. A value of NSE closer to 1 indicates a higher degree of closeness between
the simulations and observations. In this study, observed discharge data spanning from
2006 to 2015 were utilized, with monthly averaged values derived for analysis.

3. Results and Discussions

This section presents the results of parameter optimization using GRACE satellite data
and gives a preliminary analysis of the results.

Since αslp functions as a multiplication factor, the investigation focuses on the time-
averaged logarithm (with base e):

log ᾱslp =
1
n

n

∑
i=1

log(αslp,i) (15)

where n is the number of data in the time series. A positive value of log αslp indicates an
underestimation of runoff in the forecast, while a negative value indicates an overestimation.
Figure 2 shows global log ᾱslp values averaged from 2002 to 2020. It can be seen that log ᾱslp
varies both positively and negatively globally. Positive values are concentrated in regions
with low precipitation, such as western North America, northern Africa, northwestern
China, Greenland, etc., while negative values are concentrated near the equator and in
high-latitude regions such as northern North America and northern Eurasia. Regions with
significant variations, such as around the Tibetan Plateau and western North America, are
typical areas with significant terrain fluctuations.

Figures 3 and 4 depict the annual mean runoff without data assimilation and the
differences observed upon assimilating GRACE data. Through GRACE data assimilation,
an increase in runoff is evident across most areas between 30◦ S and 30◦ N, as well as regions
north of 60◦ N. Conversely, notable decreases in runoff are observed in western North
America and eastern Europe. An increase in runoff generally indicates an overestimated
TWS change in wet seasons or underestimated TWS change in dry seasons by the model
compared to GRACE observations. For example, the largest increase in Islands near the
equatorial Pacific is due to an overestimated TWS change in wet seasons (not shown here).
By contrast, a decrease in runoff is usually the result of an underestimated TWS change in
wet seasons or overestimated TWS change in dry seasons. As an example, runoff in western
North America is decreased because of an underestimated TWS change in wet seasons.

Figure 5 illustrates the correlation coefficients defined in (12) without parameter opti-
mization. The correlation coefficients between the simulated TWS changes and observations
are greater than 0.5 for more than half of the global land grid points (depicted in red and
yellow). Grid points with lower correlation coefficients are mostly located in regions with a
low annual average precipitation (such as the Sahara Desert region, northwestern China)
or regions with a high annual average precipitation (such as the equatorial region in the
Pacific and Amazon River basin). In these areas (depicted in blue), the lower correla-
tion coefficients may be attributed to the smaller variations in TWS or less pronounced
seasonal changes.

Figure 6 illustrates the difference between correlation coefficients resulting from assim-
ilating GRACE data into CoLM and simulations without data assimilation. With parameter
optimization, the global distribution of correlation coefficients between simulated TWS
changes and observations remains largely similar to that without optimization. Approx-
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imately 62% of grid points globally exhibit an enhancement in correlation coefficients,
while 36% witness a decline compared to simulations without optimization. Significant
enhancements in correlation coefficients are notably observed in regions near 60◦ N, eastern
China, and upstream areas of the Amazon River basin. Conversely, prominent declines in
correlation coefficients are evident in central parts of the Amazon River basin, southern
regions of the Sahara Desert, and certain areas of the Tibetan Plateau.

Time average of log(factor) (2002 – 2020)

−4.0 −2.4 −0.8 0.8 2.4 4.0

Figure 2. Time-averaged logarithm of adjustment factor to runoff in CoLM.

Figure 3. Annual mean runoff simulated by CoLM without data assimilation.
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−300.0 −180.0 −60.0 60.0 180.0 300.0

Figure 4. Difference in annual mean runoff between simulations with and without assimilating
GRACE data into CoLM.

Figure 5. Correlation coefficients between time series of terrestrial water storage changes simulated
by CoLM and those observed by GRACE satellite.

Figure 7 illustrates the global distribution of root mean square errors (RMSEs) in the
time series of TWS changes simulated by CoLM compared to those observed by the GRACE
satellite. Without parameter optimization, the simulated TWS changes display relatively
large RMSEs compared to the observations, particularly in the Amazon basin and certain
coastal areas (such as the northwestern coast of North America, surrounding regions of
Greenland, and southern areas of Asia).
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−1.0 −0.6 −0.2 0.2 0.6 1.0

Figure 6. Difference between correlation coefficients by assimilating GRACE data into CoLM and
those without data assimilation.

Figure 7. Root mean square errors in time series of terrestrial water storage changes simulated by
CoLM relative to those observed by GRACE satellite.

Figure 8 depicts the differences in RMSEs resulting from assimilating GRACE data into
CoLM compared to simulations without data assimilation. Through parameter optimiza-
tion, approximately 65% of grid points globally experience a reduction in RMSEs, while
around 33% exhibit an increase in RMSE. Specifically, significant decreases in RMSE are



Land 2024, 13, 508 10 of 15

observed in most parts of the Amazon basin and areas near 60◦ N. Conversely, noticeable
increases in RMSE are noted on islands near the equatorial Pacific.

−60.0 −36.0 −12.0 12.0 36.0 60.0

Figure 8. Difference in root mean square errors by assimilating GRACE data into CoLM compared to
those without data assimilation.

Globally, except for arid regions, simulations of TWS changes by CoLM show good
agreement with GRACE satellite observations. In most regions at mid to low latitudes,
the correlation coefficients of the time series exceed 0.5, reflecting the model’s performance
in simulating hydrological processes in these areas. However, in high latitudes near 60◦ N,
the correlation coefficients are lower, indicating the need for improvement in the model’s
simulation of hydrological processes in these regions. By using GRACE for parameter
optimization, the model simulations improved in over 60% of the global regions (with
increased correlation coefficients or decreased RMSE), especially in high-latitude regions
near 60◦ N.

In arid regions, the correlation coefficient between the simulated TWS changes, and
the GRACE satellite observations are generally low, but RMSE is also small. This is mainly
due to the small magnitude of TWS changes in these regions, resulting in a relatively small
runoff. Therefore, optimizing parameters in these areas may not be very meaningful.

A total of 13 regions globally were selected to further analyze the results of the param-
eter optimization, covering various climatic, topographic, and geological characteristics.
The locations and extents of these regions are depicted in Figure 9.

Table 1 presents the averaged correlation coefficients and RMSE for these regions.
With parameter optimization, the RMSE decreased in 12 regions except for Region 2 (the
Indochinese Peninsula). Among the 13 regions, correlation coefficients improved with
parameter optimization in 8 regions, while they decreased in 5 other regions. The op-
timization results in some regions significantly corrected biases in extreme values (not
shown here).
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Figure 9. A total of 13 regions selected for further evaluations.

Table 1. Parameter optimization results in 13 selected regions.

Number Description r without DA * r with DA * RMSE without DA + RMSE with DA +

1 Middle and Lower Reaches of
the Yangtze River 0.478 0.668 29.2 24.7

2 Indochina Peninsula 0.930 0.856 27.8 40.3
3 Northern South America 0.943 0.902 45.1 30.5
4 Central Africa 0.957 0.963 13.2 11.0
5 Northeast Asia 0.463 0.585 25.2 22.0
6 Tibet and Indian Peninsula 0.954 0.950 34.7 27.6
7 Eastern North America 0.756 0.822 20.3 17.1
8 Western North America 0.882 0.920 15.8 14.3
9 Northern Africa 0.132 0.129 11.2 9.3

10 Middle East 0.360 0.367 11.7 11.7
11 Central Eurasia 0.584 0.786 26.3 18.5

12 Islands Near the Equatorial
Pacific 0.667 0.647 24.9 16.5

13 Northern North America 0.537 0.708 19.3 16.0

* r refers to correlation coefficient. + RMSE refers to root mean square error. DA refers to data assimilation.
Numbers with underline indicate larger r or smaller RMSE.

Figure 10 shows details of parameter optimization results in Region 8 (western North
America). The model simulations agree well with the monthly variations observed by
GRACE (Figure 10a). With data assimilation, there is a further improvement in the correla-
tion coefficient between the model-simulated TWS changes and observations. During win-
ter months, runoff decreases by data assimilation, while it increases during summer months
(Figure 10b). With assimilation, groundwater levels decline year by year (Figure 10b).
log αslp exhibits both positive and negative values, with correlation coefficients showing
improvement in most regions and root mean square errors decreasing (Figure 10c–e).

Since the changes in TWS obtained from the analysis in the optimization algorithm
are not used to update the model state of TWS but only to calculate adjustment factors,
the improvement in forecast accuracy comes from adjustments to runoff.
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The river discharge data from GRDC serve as independent observations to assess the
optimization results. The Nash–Sutcliffe efficiency (NSE) coefficient, defined in Equation (14),
is employed for evaluation. The difference in NSE coefficients between simulations with
parameter optimizations and those without optimizations is illustrated in Figure 11. It can
be observed that for most sites in western North America, particularly around the Rocky
Mountains, the NSE coefficients increase with optimization. However, in eastern North
America, Europe, and the Amazon River catchment, the NSE coefficients decrease.

log slp
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Figure 10. Parameter optimization results in western North America. (a) Time series of terrestrial
water storage changes by CoLM without data assimilation, CoLM with data assimlation, and GRACE
observations. (b) Time series of logarithm of scaling factor and change in water table depth.
(c) Spatial distribution of time-averaged logarithm of scaling factor. (d) Difference in correlation
coefficients between CoLM simulations with data assimilation and those without data assimilation.
(e) Difference in root mean square errors between CoLM simulations with data assimilation and those
without data assimilation.
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Difference in Nash Sutcliffe efficiency coefficient

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1− − − − −

Figure 11. Difference in Nash–Sutcliffe efficiency coefficient between coupled model with data
assimilation and that without data assimilation.

4. Conclusions

Land surface models play an important role in the research on terrestrial water storage.
They have a broad coverage and are suitable for various scales, allowing for simulations
over long periods, both past and future. However, different models employ distinct pa-
rameterization schemes, leading to uncertainties in simulation results. Addressing these
uncertainties is a critical aspect of model development. Data assimilation and parameter op-
timization are important methods for reducing model uncertainties. Satellite observations
provide essential data for optimizing large-scale global models.

In this study, within the framework of data assimilation algorithms, GRACE satellite
data were applied to optimize parameters of the Common Land Model, adjusting the
runoff parameterization scheme while maintaining water balance constraints. Firstly,
a method for calculating the optimal value of terrestrial water storage changes within a
probabilistic framework was developed, combining with maximum likelihood estimation
to assess model errors. Secondly, the runoff parameterization scheme was adjusted using
the optimal value of terrestrial water storage changes. This method assumes that the error
in terrestrial water storage changes mainly stems from runoff. By comparing forecasted
and optimal values of terrestrial water storage changes, temporally and spatially varying
adjustment factors for runoff can be derived and updated online during model runs. These
factors can be regarded as “empirical knowledge” learned by the model from observations.

The evaluation results indicated that after optimizing the runoff parameterization
scheme using GRACE satellite observations, the correlation coefficient between the simu-
lated and observed terrestrial water storage change improved in over 60% of global grid
points. Furthermore, the root mean square error between model predictions and GRACE
observations decreased in 11 out of 13 selected typical regions, with significant corrections
to extreme forecast biases observed in some areas. In summary, the study demonstrates
that utilizing GRACE satellite observations for parameter optimization in land surface
models is effective, providing an improved simulation accuracy and reducing uncertainties
in modeling terrestrial water storage changes. Independent assessments utilizing in situ
river discharge observations showed notable improvements in rugged terrains like western
North America.

The adjustment factors reflect some factors not considered in the runoff calculation
of the model, which may vary over time and space and may be related to factors such
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as topography, geology, and climate. A comprehensive examination and understanding
of these factors are essential. Therefore, it is necessary to introduce other independent
observations for further validation.
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