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Abstract: The accelerated urbanization taking place across Xinjiang in recent years has vastly im-
proved the quality of life for people living in the region. However, to achieve rational urban growth
and sustainable regional development, a deeper understanding of the spatial and temporal patterns,
spatial morphology, and driving factors of urban sprawl is crucial. Nighttime light (NTL) data
provide a novel approach for studying the spatial and temporal changes in urban expansion. In
this study, based on DMSP-OLS and NPP-VIIRS data, we analyze the spatiotemporal characteristics
of urban changes using the standard deviation ellipse and employ the geographical detector to
analyze the impact of natural environmental and socioeconomic factors on the dynamic rate of urban
expansion. The results reveal the following. (1) The overall accuracy of urban area extraction is above
80%, and the urban area of Xinjiang has expanded about 9.1 times over the past 30 years. Further,
the growth rate from 2007 to 2017 exceeds the growth rate from 1992 to 1997, with the center of
gravity of urban development shifting to the southwest. (2) The 5a sliding average temperature and
average annual precipitation in the study area in 1992–2022 are 6.08 ◦C and 169.72 mm, respectively,
showing a decrease in the urbanization rate followed by an increase, due to a rise in temperature and
precipitation levels. (3) By combining the results of geographical detector factor detection and inter-
action detection, precipitation is determined to be the main controlling factor, while air temperature
and GDP are secondary factors. This study presents new findings on the correlation between urban
spatial and temporal changes and climate in Xinjiang, thus providing a scientific reference for future
research on urban expansion and natural environment evolution.

Keywords: nighttime light; urban expansion; spatial and temporal change; geographic detector; Xinjiang

1. Introduction

Cities, the core of politics, economy, society, and culture in a specific region [1], are
undergoing transformation in scale and spatial structure as China’s economy enters a new
phase of structural adjustment [2,3]. Urbanization describes the process of population
concentration and urban spatial change [4], and it is not only a key driver of global change
but also leads to an expansion in population size and a transformation of lifestyles [5,6].
The expansion of urban space is the most notable feature of urbanization [7], involving
complex dynamics of land use and population growth. Reasonable urban expansion can
stimulate sustained economic growth and achieve harmonious coexistence between urban
development and the resource environment [8–10]. On the contrary, disorderly urban
expansion may lead to the waste of land resources, conflicts in the supply and demand of

Land 2024, 13, 567. https://doi.org/10.3390/land13050567 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land13050567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://doi.org/10.3390/land13050567
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land13050567?type=check_update&version=1


Land 2024, 13, 567 2 of 26

urban land, and serious issues such as extreme climate events, environmental pollution,
and resource depletion [11–14]. Currently, with the occurrence of global warming [15] and
extreme precipitation [16], both human society and natural ecosystems are facing serious
threats. Therefore, clarifying the impact of temperature and precipitation under climate
change on urban development is of significant importance for revealing the mechanisms of
interaction between urban expansion and meteorological elements.

Climate change refers to significant alterations in the statistical average state of the
climate or climatic variations that persist over an extended period (typically 10 years or
longer) [17]. A significant amount of research has delved into the correlation between cli-
mate change and various aspects of urban development, such as ecosystems, food security,
and population. Bastos et al. [18] analyzed the direct and seasonal negative impacts of ex-
treme summer droughts and high temperatures on ecosystems. Kogo et al. [19] investigated
how climate change will continue to negatively affect crop production and food security
in the vulnerable regions of arid and semiarid areas in Kenya. Ghaffar et al. [20] analyzed
the adaptability of planting systems and patterns for sustainable crop production under
climate change scenarios. Li et al. [21] employed both bottom-up and top-down approaches
to quantify the impact of climate change on terrestrial water storage in the Qinghai–Tibet
Plateau. Lupi et al. [22] explored the bidirectional relationship between population growth
and climate change. It can be seen that climate change not only affects the balance of
ecosystems in cities but also has the potential to change patterns of agricultural production
and crop yields, impacting on changes in urban population dynamics and further affecting
the development of urbanization.

Since urban development and climate change are both dynamic processes involving
numerous elements, these elements are interrelated and mutually influential. Therefore,
in addition to studying the impact of climate change on urban development, the stress
effects of urbanization on the climate have also received widespread attention, e.g., urban
surface warming [23,24], the urban heat island effect [25–27], and the urban rain island
effect [28,29], among others. In summary, the relationship between urban development
and climate change is one of mutual influence and constraint. The process of urbanization
needs to be considered in terms of the risks brought by climate change, and adaptation
and mitigation measures for climate change should also be closely integrated with urban
development. Therefore, obtaining accurate and continuous dynamic information on
urban expansion is key to clarifying research on the correlation between climate and urban
expansion dynamics.

Nighttime light (NTL) can source visible and near-infrared electromagnetic wave
information emitted from the ground under cloud-free conditions [30]. The acquired ra-
diant brightness value, i.e., luminosity, highlights the urban area as a bright spot on the
image, and the eye-catching contrast between the brightness and the surrounding darkness
makes it an ideal representation of the frequency of human activities [31]. Nighttime
remote sensing data not only play an important role in urban studies, such as urban land
expansion studies [32], urban area extraction studies [33], and changes in the representation
of urban spatial structures [34], but have also been shown to have strong relevance to
socioeconomic factors. These include spatialization of gross domestic product [35], de-
mographic changes [36], and electricity consumption [37]. This study integrates the two
most commonly used nighttime light data sources in scientific research (DMSP-OLS and
NPP-VIIRS) and utilizes them as the data source for this study to assess urban expansion
information over time.

The Xinjiang Uygur Autonomous Region (hereinafter referred to as Xinjiang) is located
in the northwest of China and belongs to an extremely arid area with a relatively fragile
ecological environment [38]. A region inhabited by multiple ethnic groups, Xinjiang
has garnered widespread attention regarding the economic development of its cities and
regions, propelled by national strategies such as the Western Development project and the
Belt and Road Initiative [39]. However, the region’s characteristics of resource-based water
scarcity and extremely fragile ecology lead to prominent contradictions in the use of water
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for “production–life–ecology”. This not only exacerbates the competition for water between
agricultural production and urban living but also poses a threat to the sustainability of
the ecosystem. Against this backdrop, urban expansion must be carried out cautiously
to ensure the rational allocation and effective management of water resources. Therefore,
selecting Xinjiang as the area for studying urban expansion not only has significant guiding
importance for the development of the region itself but also offers a reference for other arid,
multiethnic regions facing similar challenges.

This study takes Xinjiang as the research area and uses the integrated DMSP-OLS
and NPP-VIIRS data as the source dataset. The optimal threshold method is employed
to extract urban information, followed by accuracy validation. The study analyzes the
spatiotemporal characteristics and scale morphology of urban areas in Xinjiang from both
quantitative and qualitative perspectives, utilizing the TDN and the standard deviation
ellipse. Finally, the driving factors behind the dynamic changes in the urban expansion
rate in Xinjiang are analyzed. The aim of this research is to deepen the understanding of
the urbanization process development patterns and climatic element variations in Xinjiang
over the past 30 years, providing a basis for urban planning in Xinjiang and promoting its
sustainable development.

2. Data and Materials
2.1. Study Area

Xinjiang (73◦40′–96◦18′ E, 34◦25′–48◦10′ N) is located in northwestern China, which is
situated in the hinterland of the Asia–Europe continent. With an area of 1.66 × 106 km2,
Xinjiang is the largest provincial-level administrations in the Asian nation and accounts
for about one sixth of its total land area. Typical geomorphological units in the region
include the Altai Mountains, Junggar Basin, Tianshan Mountains, Tarim Basin, and Kunlun
Mountains, which together form a unique terrain known locally as the “three mountains
and two basins”. The topographic relief across the region ranges from −217 m to 8483 m.

Because the high mountains hinder warm and humid air currents from reaching
lower altitudes, Xinjiang has a typical temperate continental climate, with an average
annual precipitation of 155 mm and an average annual temperature of 10.10 ◦C. The natural
conditions are harsh, so the cities are mainly concentrated in the oases and their distribution
is fragmented and dispersed. Therefore, it is important to study the spatial and temporal
changes of urban expansion in Xinjiang and explore their relationship with climate change
in order to unpack the driving factors of urban expansion dynamic change and provide a
scientific basis for future urban development projects in the region (Figure 1).

2.2. Data Sources

The DMSP-OLS (Version 4) 1992–2013 non-radiometrically calibrated nighttime light
imagery dataset and the 11 January 2010–31 July 2011 reference imagery acquired by the
F16 satellite sensor were obtained from the National Geophysical Data Center (NGDC),
USA (https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html; accessed
on 8 April 2023). The spatial resolution of the data is 30 arc seconds, and the image values
are presented as grayscale values (DN values) in the range of 0–63. This paper utilizes
the stable light images from three annual average images as the data source, which are
calibrated for nighttime average light intensity and have noise removed.

The annual VIIRS_vcmslcfg dataset for 2012–2021 and month-by-month data for
January–November 2022 were obtained from the NCEI National Centers for Environmental
Information (https://eogdata.mines.edu/products/vnl/#annual_v2; accessed on 20 April
2023), a division of the National Oceanic and Atmospheric Administration (NOAA), USA.
The spatial resolution of the data is 15 arc seconds, and its day–night band (DNB) is
panchromatic with a strong capability of detecting weak light sources at night and on-orbit
radiometric calibration. The high sensitivity also makes the sensor more susceptible to the
noise of reflected light sources such as ice and snow, so there is substantial background

https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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noise and numerous outliers in the data. Consequently, the data underwent processing
such as noise reduction and outlier removal during the preprocessing stage.
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map of Xinjiang in 2023 (c) (revision GS (2023) 2767).

The monthly 2 m air temperature gridded data from 1992 to 2022 originate from
the ERA5-Land dataset published by the European Union and the European Center for
Medium-Range Weather Forecasts (ECMWF; https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-land-monthly-means?tab=overview; accessed on 11 May 2023),
among other organizations. The spatial resolution of the data is 0.1◦, and the data unit has
been converted to degrees Celsius (◦C).

The average annual temperature and precipitation data for various regions in Xinjiang
are derived from the daily meteorological observation station data of the National Centers
for Environmental Information (NCEI), which is part of the National Oceanic and Atmo-
spheric Administration (NOAA) of the United States (https://www.ncei.noaa.gov/data/
global-summary-of-the-day/archive/; accessed on 15 June 2023). Through the application
of the inverse distance weighting (IDW) method to this data, gridded data with a spatial
resolution of 1 km are obtained. By conducting statistical calculations on the meteorolog-
ical data within the boundaries of Xinjiang, the corresponding annual temperature and
precipitation data are derived.

The annual average precipitation data for the entire Xinjiang region, as well as various
socioeconomic data, are sourced from the Xinjiang Statistical Yearbook, China City Statistical
Yearbook, and Xinjiang Water Resources Bulletin published by the Department of Water
Resources and statistical data from the National Bureau of Statistics.

The annual land use data are sourced from the China Land Cover Dataset published
by Wuhan University, with a spatial resolution of 30 m (https://doi.org/10.5281/zenodo.
8176941; accessed on 15 June 2023).

2.3. Research Method
2.3.1. Urban Extraction of Xinjiang Based on the Best Threshold Method

Taking the corrected NTL as the data source (Figure 2), the optimal threshold method [40]
was used to extract Xinjiang city information. The extracted city limits were then compared
with Landsat data, and the thresholds for each year were adjusted to obtain the city limits

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
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from 1992 to 2022. The data indicated an increase of 3354.39 km2 in the city area. Next,
the land use data were used as the auxiliary information to assess the overall accuracy of
the urban area extraction results. Table 1 presents data pertaining to the accuracy of the
calculations for each year. As can be seen, the city limits of Xinjiang expanded about 9.1 times
during the 30-year period, and the rate of area growth was 111.813 km2/a. Furthermore, the
overall accuracy for all years was higher than 80%, ensuring the accuracy of the results of
subsequent studies.
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Table 1. Extraction accuracy test results in Xinjiang urban area.

Year Circumference
(km)

Area
(km2)

Overall Accuracy
(%)

1992 375.17 368.61 83.21
1997 613.91 726.18 84.71
2002 792.02 898.01 80.74
2007 1050.00 1286.00 86.93
2012 1262.02 1692.00 81.38
2017 1746.01 2142.99 84.83
2022 3076.00 3723.00 85.40

2.3.2. Urban Expansion Scale and Form Indicators
TDN

TDN (total DN value) is the sum of the DN values of the bright pixels of the image,
calculated as follows [41]:

TDN = ∑i DNi × Ci (1)

where DNi is the DN value of i image in the image and Ci is the number of i images in
the image.

Standard Deviation Ellipse Method

The standard deviation ellipse can intuitively display the spatial distribution char-
acteristics of urban expansion, including the dynamic changes in the spatial scope and
centroid of urban agglomerations. It quantitatively explains the spatial distribution of
geographic elements in terms of global space, such as centrality, spreading, directionality,
spatial morphology, and other characteristics. The orientation angle of the ellipse can
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identify the main trend of direction of urban development, and the major and minor axes
of the standard deviation ellipse can reveal the primary and secondary directions of urban
expansion, offering unique advantages in the analysis of urban expansion.

The center of gravity coordinates are used to analyze the spatial extension direction
and concentration degree of the size of the luminous city cluster in Xinjiang [42]. The
standard deviation (GX , GY) is:

GX =
∑n

i=1 ωixi

∑n
i=1 ωi

, GY =
∑n

i=1 ωiyi

∑n
i=1 ωi

(2)

The angle θ of rotation is the angle formed by clockwise rotation in the due-north
direction to the long axis, calculated by the formula:

tan θ =
(∑n

i=1 ω2
i x′2i − ∑n

i=1 ω2
i y′2i ) +

√
(∑n

i=1 ω2
i x′2i − ∑n

i=1 ω2
i y′2i )

2
+ 4(∑n

i=1 ω2
i x′iy

′
i)

2

2 ∑n
i=1 ω2

i x′2i y′2i
(3)

The x standard deviation δx and the y standard deviation δy calculation formulae
are, respectively:

δx =

√√√√∑n
i=1 (ωix′i cos θ − ωiy′i sin θ)2

∑n
i=1 ω2

i
(4)

δy =

√√√√∑n
i=1 (ωix′i sin θ − ωiy′i cos θ)2

∑n
i=1 ω2

i
(5)

where (xi, yi) indicates the spatial location of the study subjects, ωi denotes the correspond-
ing weight, and (x′, y′) represents the coordinate deviation of the location of each subject
to the elliptic center of gravity (GX , GY).

Center-of-Gravity Migration Distance

The calculation formula of the moving distance of the center of gravity in the area is:

Dt−j = R ∗
√
(xt − xj)

2 + (yt − yj)
2 (6)

where Dt−j is the distance between the center of gravity in years t and j of the study area,
km is the unit, and R = 111.111 is the constant coefficient converting geographic coordinates
to plane distance [43].

2.3.3. Analysis of Urbanization Indicators and Meteorological Data
Urbanization Rate

The urbanization rate is the proportion of the urban population of an area in relation
to the resident population of that area. It is calculated as [44]:

URt =
UPt

TPt
× 100% (7)

where URt is the urbanization rate in t, and UPt and TPt are the urban population and
permanent resident population in t period, respectively.

Urban Expansion Dynamic Change Rate

The dynamic change rate of urban expansion is an important metric for studying
the spatiotemporal changes in cities. It provides a quantitative indicator to measure and
analyze the rate and pattern of urban expansion over time and space, which can be used to
monitor the trends of urbanization. The calculation formula is [45]:
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DD =
UAn+i − UAi

UAi
× 1

T
× 100% (8)

where DD is the urban expansion dynamic change rate, UAi is the urban area at the
beginning of the study period, UAn+i is the urban area at the end of the study period, and
T is the time interval.

5a for the Sliding Average Algorithm

The sliding average method can eliminate the unstable fluctuation in the mean tem-
perature change and is formulated as follows [46]:

T5a =
Tn−2 + Tn−1 + Tn + Tn+1 + Tn+2

5
(9)

where T5a is the sliding average temperature of 5a in a year; Tn is the temperature of a year;
Tn−2 is the temperature value of 2a before a year; Tn−1 is the temperature value of 1a before
a year; Tn+1 is the temperature value of 1a after a year; and Tn+2 is the temperature value
of 2a after a year.

Mann–Kendall Trend Test

The Mann–Kendall trend test is a nonparametric statistical method that does not
require any assumptions to be made about the distribution of the data [47,48]. This means
that even when the data do not conform to a normal distribution, this method can be used
to analyze trends and change points in the data. Given that meteorological data often
exhibit characteristics of abnormal distribution, it is necessary to employ this method to
analyze the trends and points of change within the data.

S = ∑n−1
j=1 ∑n

i=j+1 sig
(
xi − xj

)
(10)

where xi and xj represent the values of years i and j, respectively, and i > j.

sig
(
xi − xj

)
=

{
1, xi ̸= xj
0, xi = xj

(11)

F(t) = Qt + B (12)

where F(t) is the trend change equation and Q is the slope.

Q =
xj − xi

j − i
, j > i (13)

When n values are available, N = n(n − 1)/2 slope estimated values [49] can be obtained.

2.3.4. Analysis of the Driving Force of Urban Expansion Dynamic Change Rate

Existing analyses of the mechanism of the driving force of urban expansion dynamic
change rate mostly use mathematical and statistical methods in the traditional sense, such
as correlation analysis, regression analysis, etc. As an emerging statistical method, geo-
graphical detectors can quantify the degree of spatial differentiation, provide significance
tests, and conduct attribution analysis, thereby revealing the spatial regularities behind
urban expansion. This method has no linear assumption, and its computational process
and results will not be affected by the covariance of multiple independent variables. It also
has a clear physical meaning [50,51]. The model is capable not only of detecting the impact
of a single factor on the dynamic change rate of urban expansion but also of identifying
the combined effects of two or more factors on urban expansion, which helps to reveal the
potential complex relationships that may exist among different factors.

This study primarily employs methods such as factor detection and interaction detec-
tion to analyze the driving forces affecting the dynamic expansion rate of cities in Xinjiang.
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Divergence and factor detection can measure the degree of explanation of the independent
variable on the spatial divergence phenomenon of the dependent variable, while interaction
detection analyzes the degree of influence on the distribution of the dependent variable after
the superimposed effect of different factors. According to the actual development situation
in the study region, two types of factors are selected for discretization. These are: (1) natural
environment factors, which include elevation (X1), slope (X2), average annual precipitation
(X3), and average annual temperature (X4); and (2) socioeconomic factors, which include
population density (X5), GDP (X6), government revenue (X7), electricity consumption (X8),
proportion of secondary industry (X9), and proportion of tertiary industry (X10).

We employ a discretization method to explore the impact of various factors on the
urban dynamic expansion rate (Y) with the formula [52]:

qD,U = 1 − 1
nσ2 ∑m

i=1 nD,iσ
2UD,i (14)

where qD,U is the explanatory power index of the factors affecting urban change, n is the
number of samples of the whole region, m is the number of secondary regions, nD,i is the
number of samples of the sub-level region, σ2 is the variance in the change of urban area in
the whole region, and σ2UD,i denotes the variance in the sub-primary region. Assuming a
σ2UD,i ̸= 0 model is established with a qD,U value interval in [0, 1], qD,U = 0 means that the
urban dynamic expansion is randomly distributed, but not driven by influencing factors.
As such, the more qD,U tends toward 1, the greater the explanatory power of the driver for
urban dynamic expansion.

2.4. Research Framework

To better study the spatiotemporal patterns of dynamic urban expansion in Xinjiang
and the driving factors affecting the rate of urban dynamic expansion, we carried out
four key steps (Figure 3). Firstly, this paper corrects and integrates two types of nighttime
light data. Then, the urban areas are extracted using the optimal threshold method, and
the temporal and spatial changes in Xinjiang’s cities are analyzed using the TDN and the
standard deviation ellipse.
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The impact of climate change on urban expansion is becoming increasingly significant.
Global warming may lead to rising sea levels, extreme precipitation, and the greenhouse effect,
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all of which can affect urban infrastructure and residents’ lives to varying degrees. Therefore,
in the third part of this paper, linear regression and Mann–Kendall tests are used to analyze
the interannual and spatial variations in temperature and precipitation in Xinjiang.

Finally, to explore the driving forces behind the dynamic changes in urban expansion,
in terms of the natural environment, we have selected four environmental factors (elevation,
slope, annual average precipitation, and annual average temperature). Suitable elevation
and slope can promote the development of agriculture and urban construction; adequate
water resources provide the foundation for urban living and industrial activities; and
climate change may lead to an increase in extreme weather events, posing threats to urban
safety and thereby affecting the pace and speed of urban expansion. Therefore, for the
aforementioned reasons, we have chosen to analyze these four factors. In the realm of
socioeconomic factors, we have chosen six indicators (population density, GDP, government
fiscal revenue, electricity consumption, the proportion of the secondary industry, and the
proportion of the tertiary industry) for analysis. These factors are directly related to
the quality of life of urban residents and the attractiveness of the city. For instance, job
opportunities created by economic development can attract population influx, which in
turn promotes urban expansion; an increase in income levels may lead to the pursuit of
a higher quality of life, thereby affecting the adjustment of urban spatial structure and
functional layout. Therefore, this paper selects the 10 aforementioned factors and employs
the geographical detector model to explore the driving forces behind the dynamic changes
in urban expansion.

Through the aforementioned steps, this paper hopes to clarify the direction of urban
development in Xinjiang and the driving factors that influence urban expansion, providing
a basis for urban planning in Xinjiang and promoting its sustainable development.

3. Results and Analysis
3.1. Monitoring the Total NTL Value in Xinjiang
3.1.1. Interannual Variations in Total NTL Values in Xinjiang Cities

The TDN was used to quantitatively analyze changes in NTL values of Xinjiang
cities from 1992 to 2022 (Figure 4). The cities are divided into three levels based on their
brightness value. The total TDN value of the first-level cities (Urumqi City and Karamay
City) range from 150,000 to 180,000, which is significantly higher than those of the other
cities. The second-level cities include Korla City, Changji City, Hami City, Aksu City,
Tacheng City, Turpan City, and Bole City, and the third-level cities include tertiary cities
such as Altay City, Kashgar City, Yining City, Artux City, and Hotan City. Tertiary cities
tend to be geographically more complex, which restricts the development of the city limits,
so their total TDN value is generally lower than 40,000.

The number of cities in Xinjiang and their grades differ between the southern and
northern regions, with the degree of urban development in the north being notably higher
than that in the south. The calculation results show that there was no significant change in
the overall urban pattern of Xinjiang from 1992 to 2022.

Furthermore, the study shows that the total nighttime luminous values of primary
cities from 1992 to 2022 increased from below 20,000 to above 180,000, with the growth rate
of TDN in Urumqi City reaching 332.89% and that in Karamay City reaching 770.89%. In
secondary cities, the TDN of Korla City and Changji City increased from below 7000 to
above 70,000, with growth rates reaching 1012.59% and 735.38%, respectively. Tacheng City
showed the largest growth rate among secondary cities, reaching 3706.70%. For tertiary
cities, Altay City jumped from below 2000 to above 30,000, with a growth rate of 2053.53%,
and Artux City had the largest increase in TDN, showing a growth rate of 6494.52%. The
rest of the cities also showed high growth rates of minimum 600%.

Figure 4 illustrates the change in total nighttime brightness value across Xinjiang
for four different periods during 1992–1997. As can be seen, all of the cities showed a
significant increase, indicating high growth. Karamay City had a growth rate of 186.99%,
while second-level cities had growth rates exceeding 100%. Notably, the growth rates of
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Turpan City and Bole City were 258.51% and 235.90%, respectively. Of the tertiary cities,
Artux City showed the highest growth rate (230.68%).
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During 1997–2007, Xinjiang cities as a whole experienced medium-speed growth,
with the exception of Turpan City, Bole City, Kashgar City, Artux City, and Hotan City,
whose growth rates topped 100%. The growth of the rest of the cities decelerated. Between
2007–2017, most cities saw a new round of growth, with Urumqi City, for instance, expand-
ing 93.77%. During 2017–2022, the cities showed more moderate growth rates of between
10% and 30%.

3.1.2. Spatial Changes in NTL in Xinjiang Cities
Standard Deviation Ellipses and Changes in the Center of Gravity of Light at Night

In order to understand the spatial change characteristics of nighttime light in Xinjiang’s
urban zones, this study constructed a standard deviation ellipse (Figure 5). The results,
which included observed changes in the ellipse flatness, center-of-gravity coordinates, and
center-of-gravity moving distance, showed that the long axis of the ellipse was distributed
in the northeast–southwest direction, indicating that the changes in nighttime light mainly
occurred in a northeast–southwest direction. In contrast, the changes in the other directions
were relatively balanced.

Furthermore, by calculating each parameter in different time periods (Table 2), the
results show that the flatness fluctuated between 0.53 and 0.54 in 2002–2022 and that
the spatial location of each urban point was extremely dispersed. There was also an
overall trend of increase. Specifically, the total moving distance of the center of gravity
of the city was 209.471 km in 1992–2022, of which the farthest moving distance was
50.563 km in 2017–2022, accounting for 24.14% of the total moving distance, followed by
22.22% in 1992–1997. It is worth noting that the center-of-gravity displacement is larger
in each successive time period, and that the overall movement of urban development
is southwesterly, reflecting the relatively unbalanced development of Xinjiang cities in
various stages.
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Table 2. Statistical table of urban center of gravity in Xinjiang cities from 1992 to 2022.

Year Oblateness Azimuth
(◦) Center-of-Gravity Coordinates Center-of-Gravity

Traveled Distance (km)
Center-of-Gravity

Shift Direction

1992 0.487 70.106 (86◦10′01′′ E, 43◦27′59′′ N)
46.5433 Northwest

1997 0.479 72.689 (85◦44′57′′ E, 43◦26′07′′ N)
32.4862 Northwest

2002 0.533 73.523 (85◦27′35′′ E, 43◦23′37′′ N)
24.0594 Southwest

2007 0.547 70.223 (85◦15′11′′ E, 43◦19′45′′ N)
26.7808 Northeast

2012 0.534 73.152 (85◦28′60′′ E, 43◦24′02′′ N)
29.0383 Southwest

2017 0.535 71.622 (85◦14′43′′ E, 43◦17′34′′ N)
50.5630 Southwest

2022 0.542 70.030 (84◦50′16′′ E, 43◦05′25′′ N)

Spatial and Temporal Variations in NTL in Major Cities

Figure 6 depicts the changes in the NTL range of five major cities in Xinjiang from
1992 to 2022. As shown, the TDN of Urumqi City increased by 140,000, with an annual
growth rate of 11.10%. The city layout is in the shape of a “T” (i.e., narrow in the south and
wide in the north) due to limitations imposed by mountain slopes and water protection in
the southern part of the city and the river valley in the central portion. In Karamay City, the
TDN increased by 110,000, with an annual growth rate of 25.70%. However, unlike Urumqi
City, Karamay’s urban development shows a radial expansion centered on the energy
source to a “bead” spatial pattern. The urban space has thus developed in the direction of
agglomeration. In Korla City, urban construction entered a period of rapid expansion after
the arrival of the Tarim Petroleum Exploration and Development Command in the early
1990s. The TDN has since increased by 70,000 and the annual growth rate is 33.75%.
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Yining City is located in the northwestern border of Xinjiang, in the center of the
Yili River Valley basin. Because of its favorable location, Yining City is an important
international gateway to the west. The annual growth rate of the city’s development from
1992 to 2012 was 16.29%. However, the TDN has since increased by 22,000, with an annual
growth rate of 20.64%, thanks to the implementation of the Belt and Road Initiative strategy
in 2013. Yining City has established strong connections with surrounding ports, becoming
an important bridge for linking and interacting with the economic growth areas of the East
Coast and the Caspian Sea. Because the old town is located in the southern part of the
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city and the northern part can meet the expansion needs of the city, the city limits have a
northwest–southeast direction, with a more obvious northwest expansion.

Kashgar City, situated on the far western border of China, is also an important gateway
to the west. It serves as a crucial pivot point in the core area of the Silk Road Economic Belt,
connecting Central Asia, West Asia, and South Asia. The launching of Counterpart Aid to
Xinjiang and Western China 1999 Development Strategy in 1996 led to an increase in TDN
of 7100 by 2002 compared to 1992, with an annual growth rate of 29.55%. In 2010, Kashgar
City was designated a special economic zone, and a few years later the China–Pakistan
Economic Corridor project was proposed, both of which provided the city with a unique
advantage in terms of development. Reflecting these changes, Kashgar’s TDN increased
by 18,000 from 2002 to 2022, at an annual growth rate of 9.66%. Overall, the past 30 years
of development in Kashgar City have increased its TDN by 25,000, at an annual growth
rate of 35.32%. It is worth noting that for expansion purposes, the city can only grow in an
eastward direction towards the Tarim Basin, as the region is surrounded by mountains to
the west, south, and north.

The NTL ranges of the major cities in Xinjiang, as shown in Figure 6, are all expanding
in the periphery of the original area. Although the direction and scope of the expansion
differs from city to city, demonstrating the uniqueness of urban development in the study
region, a certain degree of similarity is also evident. For instance, expansion mainly
occurs at the periphery of the original urban areas, and the socioeconomic situation is also
gradually strengthening to the periphery.

3.2. Analysis of the Driving Factors of Urban Expansion in Xinjiang
3.2.1. Characteristics and Influence of Temperature Factors in Xinjiang
Temperature Factor Changes in Xinjiang

The interdecadal climate leap refers to the phenomenon of significant differences
in statistical characteristics between two stable climate stages. In this study, the sliding
average method and the Mann–Kendall test were used to analyze interdecadal changes in
temperature in Xinjiang, to identify the years of temperature leap [53], and to determine
the degree of influence of temperature elements on urban development. Additionally,
mean raster calculation was performed on month-by-month temperature raster data to
obtain the corresponding year-by-year temperature data, along with the 5a sliding average
temperature. In order to ensure the coherence of the data and to reduce the uncertainty
between the datasets, any missing data from 2021 and 2022 were calculated by linear
interpolation to obtain the 5a sliding average temperature data for that year.

The 5a sliding mean temperature change in Xinjiang (Figure 7) shows an overall fluctu-
ating increase, with an annual mean temperature of 6.08 ◦C. The difference in temperature
change between time periods is more obvious, with an upward trend in 1994–2007 and a
downward trend in 2007–2012, after which the temperature rebounds. By observing the
changes in the UF curve, it can be seen that the 5a sliding mean temperature traces an
upward trajectory from 1997 onward that is particularly significant after 1999.

Furthermore, at the 0.05 confidence level, the intersection of the UF statistical curve
and the UB statistical curve shows that the 5a sliding mean temperature in Xinjiang did not
have a sudden moment of change and was not abrupt. This indicates that the temperature
has been relatively stable over the past 30 years (Figure 8). During this entire period, the
temperature has increased by 1.07 ◦C, at a rate of 0.036 ◦C/a. More specifically, from 1992
to 2008, the warming rate was 0.062 ◦C/a, and from 2013 to 2022, the rate was 0.058 ◦C/a.
The lowest temperature of the study period was 5.03 ◦C, which occurred in 1994. From 1994
to 2008, the temperature was in a warming state, followed in 2009–2012 by a temperature
drop of 0.42 ◦C and a cooling rate of 0.14 ◦C/a. After that, the temperature gradually
recovered, but the warming rate was lower than during 1992–2008.
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Spatial Variation in Temperature Elements in Xinjiang

An analysis of the average annual temperature in Xinjiang from 1992 to 2022 (Figure 9a)
reveals that, overall, the average temperature in the northern part of Xinjiang is lower
than that in the southern part. This is primarily due to the influence of topography, with
the northern region exhibiting distinct mountain climate characteristics where tempera-
ture decreases with increasing altitude. In contrast, the southern region, with its basin
topography, experiences a pronounced heat-retention effect, resulting in generally higher
temperatures, among which the Kashgar Administrative Offices and Hotan Administrative
Offices areas have relatively higher average temperatures. This study calculates the annual
average temperature change rate to measure the speed of temperature change over time,
thereby assessing the trend of climate warming or cooling. As can be seen from Figure 9b,
Hami City has the highest temperature change rate over the 30 years, at 0.119 ◦C/a. This is
closely related to the increased frequency and significantly enhanced intensity of extreme
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high-temperature events in Hami City. By analyzing Figure 9c, it is observed that the urban
expansion rates in Urumqi City and Changji Hui Autonomous Prefecture in the northern
part of Xinjiang are the fastest, at 41.967 km2/a and 39.367 km2/a, respectively. In the
southern part of Xinjiang, the Aksu Administrative Offices has the fastest urban expansion
rate, reaching 59.167 km2/a. By analyzing the relationship between the annual average
temperature change rate and the annual urban expansion speed (Figure 9d) across various
regions in Xinjiang, it is noted that regions with higher and lower temperature changes tend
to have slower urban expansion. This suggests to some extent that areas with moderate
temperatures are more conducive to urban development.
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Urbanization Rate and Temperature Change

The urbanization rate, a measure of urbanization, can directly reflect the development
process of cities. The segmented linear regression method is used to analyze the urbaniza-
tion rate and 5a sliding average air temperature in Xinjiang (Figure 10), with the results
showing that except for 1997–2002 and 2007–2012, there is a positive correlation between
the urbanization rate and the 5a sliding average air temperature in other time periods.
Furthermore, the two have a high degree of correlation in 2002–2007 and 2012–2017, with
the correlation coefficients reaching 0.984 and 0.919, respectively. These two time periods
represent a stage of rapid urban development, with correlation coefficients as high as 0.984
and 0.919 and urbanization rate increases of 8.183% and 9.585% for every 1 ◦C increase in
temperature. From this, it is evident that changes in temperature have a significant impact
on urbanization rates.

During 1992–1997 and 2017–2022, urbanization rates in Xinjiang have a low correlation
with the 5a sliding average temperature, showing correlation coefficients of 0.403 and 0.559,
respectively. These rates indicate that changes in temperature during the two time periods
have some impact on the increase of urbanization rate. In addition, there is a weak negative
correlation between the urbanization rate and the 5a sliding average air temperature in
1997–2002, when the influence of temperature changes on the urbanization rate is weak.
However, there is a strong negative correlation in 2007–2012, with a correlation coefficient
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as high as 0.971. This obviously has a greater influence on changes in the urbanization rate.
Overall, temperatures showed a downward trend from 1992 to 2002.
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It is worth noting that as temperatures rise, agricultural production and water re-
sources are affected to varying degrees, leading to a decrease in farmers’ income and water
resources and an increase in the cost of living in cities. These changes tend to weaken farm-
ers’ incentive to migrate to urban centers. Rising temperatures may also lead to an increase
in the number of extreme weather events in a region, with serious impacts on infrastructure
and the economy. In 2012, the Chinese government drew an ecological protection “red line”
program nationwide, aiming to highlight the importance of environmental management.
Since the implementation and promotion of the program in Xinjiang, vegetation coverage
has increased, the trend of temperature rise has slowed down, and urban development and
the rate of urbanization have increased accordingly.

3.2.2. Characteristics and Influence of Precipitation Factors in Xinjiang
Change Characteristics of Precipitation

The average annual precipitation in Xinjiang from 1992 to 2022 was 169.72 mm, with an
overall fluctuating upward trend and an annual incremental rate of 0.57 mm/a (Figure 11).
The changes in the UF curve show a decreasing trend in the average annual precipita-
tion in 1994–1995 as well as an increasing trend both before and after this period. At
the 0.05 confidence level, the intersection of the UF and the UB statistical curves clearly
indicates that Xinjiang’s average annual precipitation experienced continuous mutation
during 1992–1995 (Figure 12). Specifically, the maximum annual average precipitation was
248.22 mm in 1996 and the minimum was 98.2 mm in 1997, with a difference of 150.02 mm
between the two years.

Spatial Variation Characteristics of Precipitation Elements

An analysis of the average precipitation in Xinjiang from 1992 to 2022 (Figure 13a)
reveals that the northern region of Xinjiang receives more precipitation than the southern
region. Within the northern region, the central and western areas receive more rainfall than
the eastern part. This is due to the presence of tall mountain ranges such as the Tianshan
Mountains in the northern part of Xinjiang. These mountain ranges act as barriers and
lift air currents, resulting in higher precipitation levels in the northern areas. The annual
mean precipitation change rate refers to the degree or trend of change in annual mean
precipitation over a certain time scale. As can be seen from Figure 13b, the annual mean
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precipitation change rate is generally high in the northwestern region of Xinjiang, with
significant variations in precipitation, particularly in the Tacheng Administrative Offices
and surrounding areas, where the change is as much as 16.365 mm/a. This is due to the
increased intensity of extreme precipitation in the mountainous areas of northern Xinjiang,
and the increased frequency of extreme precipitation in the plain areas. The Yili River
Valley is a region prone to frequent extreme precipitation events, hence the higher annual
precipitation change rate in the northwestern region. By analyzing Figure 13c, the annual
precipitation in Urumqi, a city in northern Xinjiang, is relatively sufficient, but the annual
precipitation change rate is −6.889 mm/a. This indicates that with the rapid development
of the city, the increase in impervious surfaces has affected the retention and evaporation of
precipitation. The annual precipitation change rate in the Aksu Administrative Offices of
southern Xinjiang is relatively high at 4.877 mm/a. The increase in precipitation has met
water resource demands for urban development, thereby promoting urban growth to a
certain extent. By analyzing the relationship between the annual precipitation change rate
and the annual urban expansion speed (Figure 13d) across various regions in Xinjiang, it
is observed that in areas where precipitation has increased, the speed of urban expansion
has also tended to increase. The increase in precipitation has, to some extent, improved the
water resource supply in the Xinjiang region, providing conditions for urban development.
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(c) annual average urban expansion speed; (d) annual precipitation change rates and annual urban
expansion speeds in various regions of Xinjiang.

Urbanization Rates and Changes in Precipitation

During the study period, there are differences in the effects of average annual precipi-
tation on urbanization rates in Xinjiang for different time periods (Figure 14). For example,
in 1997–2002 and 2002–2007, the urbanization rates and average annual precipitation were
negatively correlated, whereas during other time periods they were positively correlated.
The highest degree of correlation occurred in 2012–2017, with a correlation coefficient of
0.589. During that period, the urbanization rate increased by 0.0319% for every 1 mm
increase in precipitation, which indicates that changes in precipitation have had an impact
on Xinjiang’s urbanization rate. For the two time periods with negative correlation, the
correlation reached 0.59 in 2002–2007, indicating that the urbanization rate decreased by
0.0761% for every 1 mm increase in rainfall during this period.

From Figure 14, it is clear that the distribution of data points is messy. The messiness
of these data is caused by major fluctuations in precipitation in Xinjiang from year to year.
Moreover, extreme drought and heavy rainfall events occurred more frequently, leading
to issues such as restrictions on water resource utilization, the deterioration in living
conditions in cities, and the obstruction of urban infrastructure construction. All of these
challenges affected the development of cities in the region. However, with the promotion
and implementation of an ecosystem restoration and protection program, along with water
resources management and scheduling and water conservation and management, the
efficiency of urban water use has improved, which to a certain extent has facilitated urban
development and increased the urbanization rate accordingly.

3.2.3. Analysis of the Driving Force of Urban Expansion Dynamic Change Rate
Factor Detection

In addition to analyzing the urbanization rate, the study of urban development also
needs to explore the temporal and spatial characteristics of urban geospatial changes.
To that end, this study analyzes data from 2012, 2017, and 2022 for Xinjiang using a
geographical detector to obtain the degree of explanation of the relative magnitude of
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changes in the urban expansion dynamic change rate by each driving factor in the temporal
dimension (Figure 15). The results show that the P-values of all factors is 0, indicating that
the results passed the significance test at the 0.05 level and the models are all plausible.
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By measuring data from three years (2012, 2017, and 2022), this study found that the
selected driving factors have varying degrees of influence on the urban dynamic expansion
rate. Xinjiang is a large area with a diversified development pattern over different stages,
which means that the influence of each driving factor varies from place to place and year
to year. To determine the influence of the factors, the q-statistics for each of the three
mentioned years are summed and averaged and then ranked in descending order, as
follows: average annual precipitation (X3) > average annual temperature (X4) > GDP (X6)
> proportion of secondary industry (X9) > government revenue (X7) > population density
(X5) > proportion of tertiary industry (X10) > electricity consumption (X8) > elevation (X1)
> slope (X2).

The average values of the q-value statistics of average annual precipitation, average
annual temperature, GDP, and the proportion of the secondary industry account for 0.155,
0.135, 0.128, and 0.121 of the total average value of the total influence factors, respectively.
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These values indicate that precipitation has the greatest impact on the dynamic expansion
rate of cities in the study area. The reason for this phenomenon is closely related to the
fact that Xinjiang is located in an arid region where water resources are scarce and urban
development and expansion scale are limited by water resources. Changes in temperature
also play a role in urban expansion. Furthermore, with the implementation of the Western
Development and Belt and Road Initiative, Xinjiang, as an important region for exchange
and cooperation with neighboring countries, has seen rapid development of its GDP and
secondary industry, which further affects the scale of urban expansion in the region.

Interactive Detection

The analysis of the interaction detection results for the driving factors of the urban
dynamic expansion rate within the study area indicates that the interactions among the
driving factors selected in this paper are primarily characterized by nonlinear enhancement.
This indicates that urban expansion is the result of complex coupling between multiple
factors, rather than a single factor (Figure 16). From the figure, it can be seen that the
interaction between the natural environment factor and the socioeconomic factor is the
strongest, but there is also a certain degree of fluctuation in the strength of the interaction
between the factors. Overall, the interaction between average annual precipitation (X3) and
other factors is generally larger than that of others affecting urban expansion from 2012 to
2022. The strongest interaction, which occurs between average annual precipitation (X3)
and GDP (X6), contributes more than the largest single factor (X3), demonstrating that the
combined effect of multiple factors has a larger influence than factors in isolation.
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Secondly, the interaction between average annual precipitation (X3) and proportion of
tertiary industry (X10) and population density (X5) is stronger. Moreover, the contribution
rate of the interaction between these factors is higher than that of either factor alone, which
indicates that the two sets of interacting factors play a more important role in the expansion
of cities in Xinjiang. In addition, the interaction between the natural environment factors
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and the socioeconomic environment is weaker, but the synergistic enhancement between
the two factors also influences the degree of expansion.

4. Discussion
4.1. Advantages and Limitations of NTL in Urban Extraction Studies

Satellite-acquired NTL data are currently being used in a range of urban sprawl
correlation studies with socioeconomic variables to identify the developmental relationship
between human activities and urban sprawl [54]. Numerous studies have been conducted
on relevant anthropogenic or socioeconomic activity aspects affecting urbanization using
a single data source, i.e., DMSP-OLS or NPP-VIIRS, within a time series, while the study
of urbanization using multiple-source NTL data has yet to be carried out. Whole and
two types of luminous remote sensing data provide an effective method for monitoring
large-scale dynamic urban expansion, as the extent of a city can be directly discerned by
the lighted areas of the image, providing objectivity and consistency in the study data [55].

In the present study, the optimal threshold method is used to extract city limits. During
the extraction process, it was found that in the peripheral areas of large cities, due to the
influence of the light saturation effect, there exists a certain degree of expansion of the
scope of the extracted city compared with the actual city area. Secondly, it was found
that the use of satellite imagery for the extraction of city limits produces uncertainty, and
the main reasons for this phenomenon are the low spatial resolution, the saturation halo
effect caused by lighting, and the lack of an on-board calibration system in both types of
data [55,56].

4.2. Characteristics of Urban Development in Xinjiang

China has experienced rapid and large-scale urban expansion since the commencement
of its reform and opening-up period [57]. As a frontier region of China, Xinjiang occupies a
unique geographic location as the meeting point of different cultures and economic systems,
providing a broad space and ample opportunity for urban development. Compared with
China’s concentrated urban expansion in the east-central region, the urban spatial and
temporal characteristics of urban expansion in Xinjiang are mainly reflected in its increasing
scope and is mainly concentrated in the urban agglomeration area.

During the study period, urban expansion in Xinjiang was primarily led by cities
with a large base of construction land, with more noticeable expansion in the northern
regions, while the southern regions and some border small and medium-sized cities still
experienced relatively slow expansion. Because Xinjiang is a typical arid region, the
natural environment tends to limit urban expansion to oasis areas scattered throughout
the region. According to the results of this study, the northern region of Xinjiang has
relatively suitable temperatures and precipitation, which are conducive to the development
of agriculture and animal husbandry. These conditions provide a stable supply of materials
and a foundation for economic development for urban growth, and hence the development
of cities is faster and more concentrated. With the impact of global warming, temperatures
in the southern region of Xinjiang have risen to some extent, accelerating the water cycle
process and leading to glacier melting, which has increased the region’s water resources.
Agricultural resources have also developed accordingly, providing conditions for rapid
urban development. Therefore, in the 21st century, the overall trend of urban development
in Xinjiang has been expanding towards the southwest direction.

4.3. Relationship between Urban Development and Climate

The relationship between urban development and climate change is a complex and
multidimensional issue that not only relates to the sustainable development of cities but
also significantly impacts global climate governance. As areas of high concentration of
human activities, the patterns and pace of urban expansion directly or indirectly affect the
climate system. At the same time, the impacts of climate change on cities are becoming
increasingly evident, such as the increase in extreme weather events [58], the rise in sea
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levels, and the urban heat island effect. These changes pose new challenges to urban
planning, infrastructure, and the lives of residents, thereby influencing the development
and expansion of cities.

Firstly, the impact of climate on cities is multifaceted. The rise in temperature, changes
in precipitation patterns, and the increasing frequency of extreme weather events such
as floods, droughts, and heatwaves pose threats to the health of city dwellers, public
services, and the urban environment. For instance, Ebi et al. [59] have studied how hot
environmental conditions and associated heat stress increase mortality and morbidity rates,
with higher levels of global warming posing greater risks. Burrillo et al. [60] focused on Los
Angeles County and investigated the impacts of long-term climate warming on extreme
high temperatures and their effects on electric power infrastructure. Knapp et al. [61]
examined the spatiotemporal dynamics of vegetation in ecologically fragile and climate-
sensitive areas in the Hexi Corridor, finding that extreme climates significantly influence
vegetation dynamics. To address these challenges, urban planning and management
departments need to implement a series of adaptation and mitigation measures to enhance
the city’s resilience and recovery capabilities against extreme climate events.

Additionally, the relationship between urban development and climate change also
involves socioeconomic factors [62]. The process of urbanization can promote the efficient
use of resources and diversification of the economy, thereby enhancing the city’s adaptive
capacity. However, rapid urbanization can also lead to spatial inequality, resulting in
peripheral urban areas and informal settlements lacking the infrastructure and services to
cope with climate change, which to some extent slows down the scale of urban expansion.

Precisely because urban development and climate change influence and constrain each
other, this study inherently possesses a certain degree of uncertainty. Secondly, the accuracy,
completeness, and temporal span of urban development and climate data will affect the
reliability of the research results, and the statistical models employed in this study cannot
fully capture the complex interactions between urban systems and climate. Finally, with
the increasing frequency of extreme weather events in Xinjiang in recent years, short-term
climate events may mask long-term trends, leading to biases in research results. Therefore,
in subsequent studies, a variety of climate models and statistical methods will be used
to analyze the data, incorporating more climate impact factors. This will enable a more
accurate understanding and prediction of the relationship between urban development
and climate change in the Xinjiang region, thereby facilitating the development of more
effective response strategies.

5. Conclusions and Outlook
5.1. Conclusions

This study analyzes the nighttime light remote sensing data from DMSP-OLS (1992–2013)
and NPP-VIIRS (2012–2022) to explore the spatial distribution characteristics of urban dynamic
development in Xinjiang, as well as the relationship between climate factors and urban
expansion, using various indicators of urban expansion and climate change. The main
conclusions are as follows.

(1) Changes in the total nighttime light value: The total nighttime light value of cities
in Xinjiang has been increasing year by year, with significant growth rates during
the periods of 1992–1997 and 2007–2017. Influenced by the development of cities in
southern Xinjiang such as Kashgar City and Korla City, as well as the rapid develop-
ment of areas in the east like Yining City, the regional center of gravity in Xinjiang has
noticeably shifted towards the southwest direction from 2012 to 2022.

(2) Relationship between climate factors and urban development: From 1992 to 2022, the
5-year moving average of annual temperature and annual precipitation in Xinjiang
showed an upward trend, with growth rates of 0.036 ◦C per year and 0.57 mm per
year, respectively. With the increase in temperature and precipitation, the urbanization
rate in Xinjiang exhibited an upward trend after experiencing fluctuations.
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(3) Analysis of influencing factors on urban expansion dynamics: Through the geographic
detector model, it was found that both socioeconomic factors and natural environ-
mental factors jointly influence the dynamic changes in urban expansion. In the
single-factor detection, precipitation is the main influencing factor, followed by tem-
perature and GDP, with the least impact from slope. In the interaction factor detection,
the interactive effect between precipitation and GDP has the greatest influence.

In summary, the increase in economic activities and climate change have, to some extent,
influenced the dynamic expansion of cities in Xinjiang. These findings provide an important
perspective for understanding the dynamic changes in urban expansion in Xinjiang and offer
a basis for the formulation of urban planning and climate adaptation strategies.

5.2. Outlook

Urban dynamic expansion is a development process involving multiple dimensions
and levels. For Xinjiang, its unique geographical location, abundant natural resources,
diverse cultural heritage, and distinctive socioeconomic structure collectively shape the
uniqueness of urban development in this region.

Leveraging the unique geographical advantages as the core area of the Silk Road Eco-
nomic Belt, there are increased demands for the high-quality development of urbanization
in Xinjiang with an open-door approach. The high-quality development of urbanization in
Xinjiang faces numerous international complexities. This paper’s analysis of the external
driving factors of Xinjiang’s urbanization dynamic expansion is insufficient, and with the
influence of the international environment, the uncertainty of the impact of external driving
factors on the high-quality development of urbanization in Xinjiang is increasing. This
represents the existing challenges in current research and also points to the direction for
our future research.

Additionally, Xinjiang has a relatively fragile ecological environment and faces unique
challenges in ecological conservation. The balance between urban expansion and the
utilization of natural resources requires more attention and research. Therefore, in future
research, it is necessary to continuously improve relevant methodologies, expand research
perspectives, and conduct further refinement of the driving factors in different prefectures.

Finally, based on the characteristics of urban distribution in Xinjiang, sustainable
urban planning strategies should be developed and promoted, encouraging compact urban
development models to reduce the encroachment on farmland and natural ecosystems. On
this basis, efforts should be gradually directed towards more sustainable and balanced
development. Considering the potential impact of climate change on urban dynamic
expansion to some extent, the region needs to formulate corresponding adaptive planning
measures to enhance the resilience and sustainability of cities.
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