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Abstract: The rational allocation of land use space is crucial to carbon emissions reductions and
economic development. However, previous studies have either examined inter-objective trade-offs
or intra-objective trade-offs within a single objective and lacked multilevel and comprehensive
studies. Therefore, this paper integrates inter- and intra-objective carbon mitigation and economic
efficiency trade-offs to comprehensively study the interaction between land pattern demand and
space due to policies. The research methods were mainly multi-objective planning, a gray model,
and patch-generating land use simulation model, and the study area was the less-developed urban
agglomeration—the Tianshan north slope urban agglomeration. The results of the study show that
the total change area of the study area from 2000 to 2020 was 5767.94 km2, the grassland area was
transferred out the most, 3582.59 km2, accounting for 62.11%, and the cultivated land area was
transferred in the most, 3741.01 km2. Compared with 2020, the simulated land use pattern obtained
for 2030 has significantly changed. In addition, the total economic benefits and total carbon emissions
under the economic and low-carbon objectives changed in the opposite direction. The four landscape
patterns under the three scenarios of economic and low-carbon objectives changed in the same
direction, and the degree of landscape fragmentation, agglomeration, and regularity under the low-
carbon objective was better than that under the economic objective. The study results are essential
references for future land resource management, carbon mitigation, and sustainable development of
urban agglomerations.

Keywords: carbon mitigation; economic benefits; scenario simulation; spatial optimization; Tianshan
north slope urban agglomeration

1. Introduction

The average temperature of the Earth’s surface has risen in the last one hundred years
above the highest levels of the previous few thousand years and is expected to continue
to rise [1–3]. The increase in the average temperature has led to a series of climatic and
ecological problems, such as the occurrence of extreme weather events (droughts and
floods), the rise in sea level, and the decrease in biodiversity; global warming has become
one of the severe challenges to the world’s economic development [4–6]. In response
to climate warming, the Paris Agreement proposes that global warming within the 21st
century should be kept within 2 ◦C compared to pre-industrial levels, and efforts should
be made to keep it within 1.5 ◦C. Otherwise, the ecological environment will continue to
deteriorate [7,8]. Carbon emissions mainly originate from using energy sources such as coal,
oil, electricity, etc.; land is an important carrier of these energy sources [9,10]. According
to the way of use, land is divided into different types such as cultivated land, forest land,
and construction land [11–13]. The amount of greenhouse gases emitted and the level of
economic benefits vary according to the type of land use (e.g., construction land consumes
a large amount of energy and thus emits a large amount of greenhouse gases but has a high
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economic level). In contrast, grassland, which is less affected by human activities, emits
far fewer greenhouse gases than construction land but has a low economic level [12,14]).
Therefore, the rational allocation of land use space is crucial to carbon emissions and
economic development. In turn, optimizing land use space by the government’s carbon
reduction targets and the requirements of the level of economic growth can reflect the
trade-offs between carbon reduction and economic development, as well as accurately
controlling carbon emissions and economic level.

Land use spatial optimization is based on the human–land relationship [15], system
theory [16], ecological economy [17], spatial equilibrium theory [18], etc. and adjusts the
structure and layout of land use types by setting objectives and constraints to achieve
the benign development of society, economy, and ecology [5,19,20]. Based on different
conflicting goals, the early literature focused on the ecological service system and economic
benefits as objectives to simulate land demand [21,22]; with the gradual maturation of
social benefit measurement methods [23], social benefits were also introduced, such as
Zhao et al. setting up the maximization of ecological, economic, and social benefits and
adopting the principles of land use suitability and spatial compactness to optimize the land
structure and space [24]. Subsequently influenced by national policies, cultivated land pro-
tection and carbon emission limitation have become new land optimization objectives [19].
In the existing research on the relationship between carbon emission and land use, the
literature is often based on the energy perspective, with carbon emission efficiency and
carbon neutrality as one-dimensional objectives, and economic benefits are only regarded
as constraints [25–28]. Secondly, divided by the methodological purpose of the research
in this field, scholars have already used the main tools such as the multi-objective pro-
gramming model (MOP), gray linear programming (GM (1, 1)), system dynamics, etc. to
optimize the land structure [29,30]. The ant colony algorithm [24], meta-cellular automata
model [31], genetic algorithm [32], CLUE-S [33] (conversion of land use and its effects at
small region extent) model, and other methods have been more frequently used in land
spatial optimization studies [34].

Although the existing literature provides rich insights for us to understand the opti-
mization of land patterns, as well as rich mathematical methods for us to carry out this
research, there are still the following shortcomings: Firstly, in terms of research content,
there are still not many current studies on the trade-offs between carbon mitigation and
economic benefits through optimizing land structure and layout, and they are still in their
infancy [27]. The existing literature mainly examines the trade-offs between objectives or
trade-offs within a single goal. It lacks the study to further set up multiple scenarios under
carbon mitigation and economic efficiency objectives to explore the land optimization
problem within the objectives from various perspectives and at multiple levels. Secondly,
regarding constraint setting, empirical constraints and land planning documents are often
considered constraints, and mutual constraints between objectives are lacking. Thirdly,
in terms of the research area, the past literature usually involves developed city groups,
provinces, and regions, such as when Wu et al. analyzed the land optimization problem of
Chengdu, a first-tier city in China [19]. There is a lack of land optimization problems under
the objectives of carbon mitigation and economy trade-offs in less-developed regions. Con-
ducting research with less-developed economic regions is conducive to obtaining different
conclusions and also helps enrich the land optimization literature study area.

Aiming at the above deficiencies, this paper establishes two objectives of minimizing
carbon emissions and maximizing economic benefits, analyzes the relationship between
the two objectives by setting constraint thresholds between the objectives, and sets three
scenarios of low-carbon development, economic development, and coordinated develop-
ment under each objective to further study the deeper relationship between the two within
the objectives. The underdeveloped urban agglomeration Tianshan north slope urban
agglomeration was taken as a case study, and multi-objective planning and gray linear
planning were used to predict the land pattern demand in 2030. The PLUS model was used
to optimize the land spatial layout in 2030. In addition, the total carbon emissions and
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economic benefits of the land optimization results and the size of the landscape pattern
index were calculated, and the land use structure and layout plan suitable for the study
area were obtained by comparing the results and combining the actual situation.

China was selected as the country where the study area was located; it is not only the
largest developing country in terms of economic output, but also one of the largest emitters
of carbon [35,36]. In 2020, at the 75th session of the United Nations General Assembly,
China, for the first time, put forward the goal of “carbon peaking and carbon neutrality”
(hereinafter “the dual-carbon target”) [37]. Establishing the “dual-carbon” goal indicates
that China will go from carbon peak to carbon neutral in the shortest time in history.
Currently, China is in the stage of new industrialization and urbanization, and there is
still a great potential for future economic development. The trade-off between China’s
economy and carbon reduction in land use types is essential to the world economy and
climate change [38,39]. The Tianshan north slope urban agglomeration was chosen because
it is the resource-rich and most economically active region in Xinjiang, China, and has a
radiation-driven role in the economy of the whole territory. It is also the westernmost point
of the land-bridge corridor in the “two horizontal and three vertical” strategic urbanization
pattern, which is also an essential impetus to China’s economic development [40–42].
Because of the rich mineral resources of the urban agglomeration on the Tianshan north
slope urban agglomeration, although the region accounts for only 5.7% of Xinjiang’s land
area, it concentrates 83% of the heavy industry in the whole of Xinjiang, which puts
enormous pressure on the environment [43,44]. Exploring the trade-offs between economic
development and carbon mitigation in this study area is strategically significant for China’s
climate governance.

The main objectives of this study were to (1) obtain the evolutionary pattern of land use
changes in the Tianshan north slope urban agglomeration from 2000 to 2020; specifically, the
land transfer matrix model was used to analyze the situation; (2) project the land demand
in 2030 for each scenario; specifically, it was obtained by setting the objective function and
constraints and using the LINGO platform; (3) optimize and simulate the land structure
and allocation in 2030; specifically, based on the number of each land type under different
scenarios, the results were obtained through the domain weights, transfer matrix, and
restriction of conversion areas in the PLUS model; and (4) evaluate and compare the spatial
optimization schemes; specifically, landscape pattern indices such as an aggregation index
and average subdimension were used, and total carbon emission and economic value were
calculated for evaluation and comparison. The study results are intended to provide a
scientific reference and basis for the allocation of land structure and space in less-developed
cities under the trade-off between carbon mitigation and economic efficiency.

2. Materials and Methods
2.1. Study Area

The Tianshan north slope urban agglomeration is located in the northern part of
Xinjiang (83◦24′~91◦56′ E, 40◦18′~46◦11′ N), including the three prefectural-level cities of
Urumqi, Karamay, and Turpan and five county-level cities of Wusu, Kuitun, Shawan, Shi-
hezi, and Wujiaqu, as well as one autonomous prefecture, Changji, with about 193,900 km2

(Figure 1) [43]. The region was formed in the flood–alluvial fan, in the hinterland of the
Junggar Basin, with a unique and complex climate, including a temperate continental cli-
mate and plateau–alpine climate from south to north, with an average annual temperature
of −15~15 ◦C, yearly precipitation of 0~1092 mm, and 53.98% of the land belonging to
the arid and semi-arid areas [45]. Its economic status is critical, as it is the core area of the
Silk Road Economic Belt, the westernmost point of the land-bridge corridor in the “two
horizontal and three vertical” strategic pattern of urbanization, and the country’s most
resource-rich and economically active region. The urban agglomeration is one of the oasis
city clusters in arid zones that the government will focus on cultivating in the future, and
how to balance economic development and carbon emission reduction has become a vital
issue for this city cluster to take shape and mature.
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Figure 1. Overview map of the study area.

2.2. Data Sources

The data used in this study were divided into three types: base data, drivers, and
socio-economic statistics, and the primary information on these data is summarized in
Table 1. The basic data were land use remote sensing monitoring data, which were derived
from the GlobeLand30 database; the pre-processing of these data was to classify the land
use types and determine the object of land use spatial optimization. The GlobeLand30
database, an essential result for China, contains ten major surface cover types: cultivated
land, forest, grassland, shrubland, wetland, water body, tundra, man-made surface, bare
land, glacier and permanent snow. Combined with the current land use status of the
region, the land use types were reclassified into cultivated land, forest, grassland, waters,
construction land, and unused land (Table 2). The role of these data was threefold: Firstly,
they were used to analyze trends in the spatial and temporal evolution of land use types
from 2000 to 2020. Secondly, they were used to forecast land demand in 2030. Thirdly, it
helped to simulate the spatial distribution of land patterns in 2030.

Table 1. Characteristics of dataset.

Data Type * Data Time Range Resolution Source Description

Basic data Land use 2000,
2010, 2020 30 m

https:
//www.webmap.cn/commres.

do?method=globeIndex
Land use types, area

Driver data

DEM 2019 90 m https://www.gscloud.cn/ Spatial grid data describing the
elevation and slopeSlope 2019 90 m Calculated by DEM

Annual precipitation 2020 1 km https://worldclim.org/data/
index.html

Spatially interpolated datasets
describing annual precipitation,
annual mean temperature, and
annual mean wind speed in the

study area

Average annual
temperature 2020 1 km

Average annual
wind speed 2020 1 km

https://www.resdc.cn/
Population density 2020 1 km Spatial distributed grid datasets

describing the population and GDPAverage land GDP 2019 1 km
Highway 2020 -

https://www.webmap.cn/
main.do?method=index

Spatial distributed datasets
describing highway, railway, and

water system
Railroads 2020 -

Water system 2020

Statistical data

Agriculture, forestry,
animal husbandry

and fishery
output, etc.

2000–2020 - https://tjj.xinjiang.gov.cn/tjj/
zhhvgh/list_nj1.shtml

Temporal datasets describing the
socio-economic level of the

study area

* Basic and statistical data were accessed on 15 January 2024; driver data were accessed on 25 January 2024.

https://www.webmap.cn/commres.do?method=globeIndex
https://www.webmap.cn/commres.do?method=globeIndex
https://www.webmap.cn/commres.do?method=globeIndex
https://www.gscloud.cn/
https://worldclim.org/data/index.html
https://worldclim.org/data/index.html
https://www.resdc.cn/
https://www.webmap.cn/main.do?method=index
https://www.webmap.cn/main.do?method=index
https://tjj.xinjiang.gov.cn/tjj/zhhvgh/list_nj1.shtml
https://tjj.xinjiang.gov.cn/tjj/zhhvgh/list_nj1.shtml
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Table 2. Land use classification system.

Research Target Type Definition

Cultivated land Cultivated land The land is used for agriculture, horticulture, and gardens.

Forest

Forest Land with tree cover and more than 30% canopy
cover, and open forest land with 10–30% canopy cover.

Shrub land
Land with shrub cover and more than 30%

scrub cover, and desert scrub with
more than 10% cover in desert areas.

Grassland Grassland Land with natural herbaceous vegetation covers more than 10% of the land.

Water Water bodies Areas covered by land-wide liquid water, including rivers, lakes, etc.

Construction land Artificial surfaces Surfaces formed by man-made construction activities.

Unused land

Bare land Land with a natural cover of less than 10% vegetation.

Tundra
Land covered by lichens, mosses,

perennial hardy herbaceous and shrubby
vegetation in boreal and alpine environments.

Wetland It is located in the boundary zone between land and water.
Permanent snow and ice Land covered by permanent snow, glaciers, and ice caps.

Socio-economic statistics were mainly used for determining the economic value and
carbon emission coefficient in the objective function, including the output value of agricul-
ture, forestry, animal husbandry, and fishery, the output value of secondary and tertiary
industries, the input value of agricultural materials, the energy consumption for life and
production of industrial enterprises and urban residents, the sown area of agricultural
crops, etc. They were obtained from the Statistical Bureau of Xinjiang Uygur Autonomous
Region, the Xinjiang Production and Construction Corps, etc. Further explanation: this
dataset was mainly used to obtain the economic benefits and carbon emissions per unit area
of cultivated land, forest, grassland, waters, and construction land from 2000 to 2020, and
based on this result, the economic benefits and carbon emissions per unit area of cultivated
land, forest, grassland, waters, construction land were forecasted for 2030.

The driver data were principally the development potential of land use types in the
PLUS model, in which the digital elevation model is obtained from the geospatial data cloud
and the slope data are obtained by extracting the digital elevation model through ArcGIS.
The spatial distribution data of annual precipitation and annual average temperature were
obtained from the Global Climate and Weather Database; the spatial distribution data of
the yearly average wind speed, the population, GDP, and the vector of nature reserve range
were derived from the Chinese Academy of Sciences. The road, railroad, and water system
data were obtained from the National Geographic Information Resource Catalog Service
System; the distance from the grid image of each land use type to the nearest road, railway,
and water was obtained by the Euclidean distance processing in ArcGIS. These data were
primarily used to help simulate the spatial distribution of land patterns in 2030.

We harmonized the projected coordinate system and the number of rows and columns
of the above spatial data, and we harmonized the resolution to 30 m.

2.3. Research Design and Methods

The technical roadmap of the research is shown in Figure 2. The methods used in the
research were classified into four types: land use transfer matrix, land use quantitative
demand method, land use spatial optimization method, and landscape pattern index
evaluation. Among them, in the land use quantity demand acquisition method, multi-
objective planning breaks through the limitations of linear planning that can only list
one-dimensional objective functions and has the advantages of positive and negative
feedback of system dynamics. Still, it is easier to operate than system dynamics [21].
Meanwhile, to predict the future economic efficiency and carbon emission coefficients, this
paper integrates GM (1, 1) and MOP models to determine the land use demand. Among the
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land use spatial optimization methods, the PLUS model was developed based on the FLUS
model (future land use simulation), which solves the problem of land use simulation on
the patch scale that could not be achieved in the past [46]; so, according to the PLUS model,
this paper tries to complete spatial and structural optimization. Detailed descriptions and
specific practices of the methods are shown in Section 2.3.1, Section 2.3.2, Section 2.3.3,
Section 2.3.4.
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2.3.1. Transfer Matrix Modeling

The land use transfer matrix is mainly used to describe the structural characteristics
of land use change, which can reflect the mutual conversion of land use types in differ-
ent periods, and the result is expressed by a two-dimensional matrix [47]. Through the
superposition analysis in ArcGIS 10.7, the transfer matrices between 2000 and 2020 were
obtained, from which the direction of inflow and outflow of each land use type could be
analyzed to obtain the land use evolution pattern. The generalized form is:

Sij =

∣∣∣∣∣∣∣∣∣
S11 S12 · · · S1m
S21 S22 · · · S2m

...
...

. . .
...

Sm1 Sm1 · · · Smm

∣∣∣∣∣∣∣∣∣ (1)
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where S represents the area, m represents the number of land use types before and after the
transfer, i, j(i, j = 1, 2, . . . . . . , m) represents the land use types before and after the transfer,
respectively, and Sij represents the area of land type i before the transfer that is converted
to land type j.

2.3.2. Land Use Quantity Demand Approach

The land use quantity demand needs to determine the objective function according to
the research content and then determine the constraints according to the national macro
plan. This study used the GMMOP model to solve the land use quantity demand results
under different objectives and scenarios. GMMOP is an integration of gray linear program-
ming and multi-objective linear programming models. Among them, GM (1, 1) was used to
predict the economic value and carbon emission coefficient of the research area in 2030. The
MOP model can realize the constraints to solve the optimal value of the land use quantity
under different scenarios with multiple objectives.

• Coefficients for the economic value and carbon emissions of land use

Economic value and carbon emission coefficients are mainly used to establish the
objective function. The economic value coefficient refers to the existing studies [21,48].
The output value of agriculture, forestry, animal husbandry, and fishery per unit area
from 2000 to 2020 was taken as the economic value coefficient of cultivated land, forest,
grassland, and waters, respectively. The output value of the agriculture, forestry, animal
husbandry, and fishery service industries and the secondary and tertiary industries was
taken as the economic value coefficient of construction land; the unused land was set as
0.1. The carbon emission coefficient is each land use type’s carbon emission per unit area.
Among them, the cultivated land was calculated from the use of agricultural materials such
as chemical fertilizers, compound fertilizers, agricultural films, and agricultural diesel in
agriculture, as well as the plowing of agricultural land [49–51]; grassland was obtained
from the CH4 and N2O gases released from the intestinal fermentation of livestock and
poultry and fecal emissions in animal husbandry by converting them into CO2 [49,50];
construction land was obtained from the energy consumption of urban land, industrial
land, and rural settlement [25]; forest and water carbon emissions were set as 0.03 and 0.72,
respectively, concerning the existing literature [25]; and unused land was set to 0.1. The
carbon emission calculation method mainly adopts the source strength estimation method
based on inventory analysis, and the detailed calculation will not be expanded here due
to space limitations. Based on the above data, the economic values and carbon emission
coefficients of each category in the study area in 2030 were predicted by GM (1, 1) (Table 3).

Table 3. Economic value and carbon emission coefficients of each land use type in 2030.

Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land

Economic value
coefficient

(104 Y·hm−2)
3.82 1.10 0.39 0.51 265.67 0.1

Carbon emission
coefficients

(t·hm−2)
65.27 0.03 0.39 0.72 3501 0.1

• Objective function construction and scenarios’ setting

Objective function construction. This paper constructs two objectives: maximizing
economic development (economic objective) and minimizing carbon emissions (low-carbon
objective). The formula is as follows:

Z1 = MAX∑6
i=1 MiXi (2)
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Z2 = MIN∑6
i=1 NiXi (3)

where Z1, Z2 are the total economic benefits and total carbon emissions of regional land
use, respectively; X is the research subject; Xi is the area of land use in category i; and Mi,
Ni are the economic benefits and carbon emissions per unit area of land use in category i,
i.e., the economic benefit coefficient and carbon emission coefficient, respectively.

Scenarios’ setting. The Tianshan north slope urban agglomeration faces the trade-off
between economic development and carbon emission reduction; so, this paper refers to
the existing research and experts’ experience. In order to emphasize the focus on the
economic and low-carbon objectives, three different development scenarios were set up
under each objective in addition to the natural development scenario; they are the low-
carbon development scenario, the economic development scenario, and the coordinated
development scenario, respectively. Among them, the natural development scenario is not
subject to policy intervention and was obtained through the Markov chain in the PLUS
model; the low-carbon development scenario emphasizes the increase in ecological land
with high carbon sequestration capacity, i.e., forest, grassland, and waters; the economic
development emphasizes appropriately liberalized economic policies and the expansion
of the area of agricultural, urban, and industrial oases to promote economic efficiency;
and the coordinated development scenario involves the rationalization of the area of low-
carbon land and economic land to achieve the coordinated development of low-carbon
and economy.

• Constraints’ setting

In order to enhance the match between scenario simulation and relevant policies
and development needs, the following constraints were set (Table 4). Three development
scenarios were set up under both objectives, and the constraint on the total economic
value was set based on the growth rate in 2030 compared with that in 2020 obtained from
the regional GDP projections for the period 2000–2020 for the coordinated development
scenario; the other two scenarios were adjusted up or down as appropriate. The total carbon
emission constraint was set by the article “Strengthening Action to Combat Climate Change:
China’s Nationally Owned Contributions”, which states that carbon emissions per unit of
GDP should be reduced by 60–65% by 2030 compared with the 2005 level. Therefore, the
coordinated development scenario was set to reduce carbon emissions per unit of regional
GDP by 65%, with a 5% upward and downward fluctuation in low-carbon development
and economic development. The macro target constraints and scenario constraints were
based on the “14th Five-Year Plan for the Protection, Development, and Utilization of Land
Resources in the Xinjiang Uygur Autonomous Region”, the “Overall Territorial Spatial Plan
of Urumqi City (2021–2035)”, and other policies and plans.

Table 4. Constraint setting.

Target Type Scenario Setting Economic/Carbon
Constraints

Macro-Goal
Constraints Situational Constraints

Economic target

Low-carbon
development

70% reductionin
carbon

(1) Total area
constraints: the total
area of each land use

type is 19,394,160.03 ha;
∑6

i=1 xi = TA

Cultivated land area: X1 ≥ CUAC;
X1 ≤ CUAN; Construction land area:

X5 ≥ COAC; X5 ≤ 1.2*COAC;
Unused land area: X6 ≥ 0.95*UAC

Coordinated
development

60% reductionin
carbon

Cultivated land area: X1 ≥ CUAC;
X1 ≤ 1.2*CUAC; Construction land
area: X5 ≥ COAC; X5 ≤ 1.2*COAC;
Unused land area: X6 ≥ 0.925*UAC

Economic
development

65% reductionin
carbon

Cultivated land area: X1 ≥ CUAC;
X1 ≤ 1.3*CUAN; Construction land
area: X5 ≥ COAC; Unused land area:

X6 ≥ 0.90*UAC
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Table 4. Cont.

Target Type Scenario Setting Economic/Carbon
Constraints

Macro-Goal
Constraints Situational Constraints

Low-carbon goal

Low-carbon
development 20% increasein GDP

(2) Ecological
protection: Forest,

grasslands, and waters
are not lower than the

current values.
(X2 ≥ FAC;
X3 ≥ GAC;
X4 ≥ WAC)

Cultivated land area: X1 ≥ CUAC;
X1 ≤ CUAN; Construction land area:

X5 ≥ COAC; X5 ≤ 1.2*COAC;
Unused land area: X6 ≥ 0.95*UAC

Coordinated
development 25% increasein GDP

Cultivated land area: X1 ≥ CUAC;
X1 ≤ 1.2*CUAC; Construction land
area: X5 ≥ COAC; X5 ≤ 1.2*COAC;
Unused land area: X6 ≥ 0.925*UAC

Economic
development

22.5% increasein
GDP

Cultivated land area: X1 ≥ CUAC;
X1 ≤ 1.3*CUAN; Construction land
area; X5 ≥ COAC; Unused land area:

X6 ≥ 0.90*UAC

Notes: TA denotes total area; FAC denotes forest area of 2020 (259,542.9 ha); GAC denotes grassland area of
2020 (5,901,417.6 ha); WAC denotes water area of 2020 (175,399.2 ha); CUAC denotes cultivated land area of 2020
(2,248,494.6 ha); CUAN denotes cultivated land area in the natural development scenario (2,352,502.44 ha); COAC
denotes construction land area in 2020 (339,688.4 ha); UAC denotes unused land area in 2020 (10,469,617.38 ha);
X1, X2, X3, X4, X5, and X6 represent cultivated land, forest, grassland, waters, construction land, and unused
land, respectively.

2.3.3. Spatial Optimization Models

On the basis of the quantitative land use demand under different objectives and
scenarios obtained from the GMMOP model, the PLUS model was coupled to optimize the
spatial layout of land use under different objectives and scenarios in 2030. In addition to
the demand for land use quantity, the PLUS model must also set up the driving factors,
domain weights, restricted conversion areas, and conversion rules. The main steps of the
PLUS model were as follows: Firstly, we took the 2000 and 2010 land use data as the basic
data, and, according to the driving factors, domain weights, restricted conversion areas,
and conversion rules, obtained the 2020 land use data through the PLUS model prediction.
Then, the predicted 2020 land use data and the actual 2020 land use data were verified
for accuracy; when the Kappa value is more than 0.7, it indicates higher accuracy. Finally,
using the 2010 and 2020 land use data as the base data, and according to the original set
of drivers, domain weights, restriction of conversion areas, and rules, and then inputting
the land use quantity demand of 3 different scenarios under the two objectives, six spatial
optimization results of land use in 2030 were obtained.

(1) Driving factors’ selection. Driving factors were mainly used to obtain the devel-
opment potential data of each land use type, combining with the actual situation of the
study area and referring to the existing literature [21,52]; selecting soil type, elevation, and
slope as the geological and topographic driving factors; annual average wind speed and
temperature and annual precipitation as the climatic driving factors; population density
and land-averaged GDP as the socio-economic driving factors; and the distance to highway,
distance to railway, and distance to water as the accessibility driving factors.

(2) Neighborhood weight setting. Domain weights mainly indicate the expansion
ability of each land use type. The range is 0–1; closer to 1 means a more vital expansion
ability of the land use type [46]. We found, through the following formula, combined with
an expert opinion, the obtained domain weights of cultivated land, forest, grassland, water,
construction, and unused land were, respectively, 0.21, 0.1, 0.28, 0.1, 0.1, and 0.21.

Wi =
TAi

∑6
i=1 TAi

(4)

TAi = |TAt+1 − TAt| (5)
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In Equation (4), Wi is the domain weight of land use in category i and TAi is the area of
expansion or contraction of land use in category i. In Equation (5), TAt+1 and TAt indicate
the area at the end and beginning of a land use type, respectively.

(3) Transition matrix setting. The transition matrix mainly stipulates whether a certain
land use type can be converted to another one, with 0 representing that it cannot and 1
representing that it can. By analyzing the land use changes in 2000–2020, it was found that
each category could be converted to another one; therefore, the values of the transition
matrices were set to 1.

(4) Accuracy verification. To verify the accuracy of the above model construction, the
land use results in 2020 were predicted from the basic data and driver data in 2000 and
2010. A Kappa value of 0.86 was obtained by comparing them with the real data, indicating
that the model had high accuracy. It can be used for the simulation of the land use of the
research area in 2030.

2.3.4. Landscape Pattern Index

This paper introduces the landscape pattern index to evaluate the land use spatial
layout optimization results, including four indices: aggregation index, patch density, mean
patch fractal dimension, and Shannon’s diversity index. Among them, the aggregation
index refers to the spatial agglomeration level of the landscape; the larger the value is, the
higher the level is. Patch density refers to the fragmentation level of the landscape; the
larger the value is, the higher the level is. Mean score dimension refers to the regularity
of the landscape layout; the lower the value is, the more regular it is. Shannon’s diversity
refers to the level of landscape diversity; the higher the value is, the higher the level is.

3. Results and Analysis
3.1. Spatial and Temporal Characteristics of Land Use Change

The land use type of the Tianshan north slope urban agglomeration is dominated
by unused land and grassland, followed by cultivated land, forest, and construction land
(Figure 3). From 2000 to 2020, cultivated land, water, and construction land decreased by
3019.3 km2, 18.13 km2, and 1236.65 km2, respectively. Forest, grassland, and unused land
increased by 38.52 km2, 3073.51 km2, and 1162.05 km2, respectively. The total transferred
area was 5767.94 km2, with grassland transferring the largest area, 3582.59 km2, accounting
for 62.1% of the total transferred area, of which 80% was transferred to grassland. The
next largest area transferred out was unused land, at 1279.27 km2, accounting for 22.2%
of the total transferred area, of which 64.2% was transferred to cultivated land. Therefore,
cultivated land was the most transferred area, with 3741.01 km2 transferred, followed by
construction land, with 1237.11 km2 transferred (Table 5).
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Table 5. Transfer matrix (km2).

2020
2010

Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land Transfer Out

Cultivated land 18,743.94 0.03 344.39 2.93 371.69 2.67 721.71
Diversion rate — 0.005% 47.7% 0.4% 51.5% 0.4% 100%

Forest 40.35 2582.21 6.13 1.70 2.34 1.21 51.72
Diversion rate 78.0% — 11.9% 3.3% 4.5% 2.3% 100%

Grassland 2865.75 11.54 58,505.10 109.50 538.06 57.74 3582.59
Diversion rate 80.0% 0.3% — 3.1% 15.0% 1.6% 100%

Water 12.98 — 43.89 1603.69 19.70 55.60 132.18
Diversion rate 9.8% 0% 33.2% — 14.9% 42.1% 100%

Construction land 0.41 — 0.05 0.0009 2159.77 — 0.46
Diversion rate 88.4% 0% 11.4% 0.2% — 0% 100%
Unused land 821.53 1.64 114.62 36.17 305.32 104,578.95 1279.27

Diversion rate 64.2% 0.13% 9.0% 2.8% 23.9% — 100%

3.2. Quantitative Land Use Requirements under Different Objectives and Scenarios

According to the LINGO 18.0 platform, the land use quantity demand results for the
low-carbon development, coordinated development, and economic development scenarios
under macro-objectives, ecological protection, trade-offs, and scenario constraints were
obtained for the economic and low-carbon objectives, respectively (Table 6).

Table 6. Quantitative land use needs in 2030 (thousand km2).

Target Scenario Setting Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land

Economic target

Low-carbon
development 23.53 6.11 59.01 1.75 4.08 99.46

Economic
development 28.23 2.60 59.01 1.75 8.12 94.23

Coordinated
development 26.98 3.96 59.01 1.75 5.38 96.84

Low-carbon
goal

Low-carbon
development 22.48 3.11 59.01 1.75 3.40 104.18

Economic
development 28.23 3.11 59.01 1.75 3.40 98.43

Coordinated
development 23.53 3.11 59.01 1.75 3.40 103.14

From 2020 to 2030, land patterns can change significantly. Under the natural devel-
opment scenario, compared to 2020, cultivated land will increase by 4.6%, grassland will
decrease by 3.1%, water will decrease by 1.4%, and construction land will change the most,
rising by 32.1%. Under the economic maximization objective, cultivated land, forest, and
construction land will increase significantly, with cultivated land rising by 4.6%, 20.6%, and
25.6% under the low-carbon, economic, and coordination scenarios, respectively, compared
to 2020. Construction land will increase by 20%, 139.1%, and 58.5%, respectively. The
increase in cultivated land, forest, and construction land will slow down under the carbon
minimization objective compared to the economic maximization objective, and in order to
minimize carbon emissions, the cultivated land will maintain a status quo under the low-
carbon objective and the increase will decrease to 4.6% under the coordinated development
scenario. The increase in forest land will decrease to 20% under the low-carbon, economic,
and coordination scenarios, and the construction land area will be at the 2020 level.

Comparing the area of land types between the two objectives shows that the area of
grassland and water under both objectives will be the same as in 2020, although unchanged,
and indirectly protected through ecological conservation constraints towards the natural
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development scenario. The presence of forest land with higher or lower areas under the
three scenarios of the economic objective than under the low-carbon objective indicates
that forest land will be both an economic and low-carbon land type, which is consistent
with reality. The area of cultivated land will increase under both the economic and low-
carbon targets compared to 2020, suggesting that there will be scope for cultivated land to
increase under existing economic and low-carbon constraints. Construction land area will
grow considerably under the economic target but remain consistent with 2020 under the
low-carbon target, suggesting that construction land should not expand further under the
low-carbon target.

3.3. Optimization Results of Land Use Structure and Layout

The results in Section 3.2 were taken as the quantitative data of spatially optimized
land use, combined with the driving factors, domain weights, transfer matrix, and other
data, obtaining the optimization results of land use structure (Table 7) and spatial layout
optimization (Figures 4 and 5) in the study area. After comparing Tables 6 and 7, it was
found that there is not much difference between the optimized area and quantity demanded
for each category, which again verifies that the model’s accuracy is good.

Table 7. Results of optimizing the land use structure in 2030 (thousand km2).

Target Scenario
Setting

Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land
Total Economic
Benefits/108 Y

Total Carbon
Emissions/108 t

Economic
target

Low-carbon
development 26.98 2.61 59.01 1.75 5.38 98.21 1.57 20.67

Economic
development 28.23 2.59 59.01 1.75 8.12 94.23 2.30 30.34

Coordinated
development 26.98 2.60 59.01 1.75 5.38 98.21 1.57 20.67

Low-
carbon

goal

Low-carbon
development 22.48 2.61 58.93 1.75 3.40 104.77 1.03 13.42

Economic
development 28.23 2.59 55.43 1.75 3.40 102.55 1.05 13.80

Coordinated
development 23.53 2.74 59.01 1.75 3.40 103.52 1.03 13.49

2020 23.53 2.59 57.21 1.73 4.49 104.40 1.32 17.30
Natural development 22.48 2.60 59.01 1.75 3.40 104.70 1.03 13.42
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According to Figure 4, it can be seen that the source of the increase in cultivated land
under the economic objective is mainly the exploitation of unused land at the edge of
cultivated land, which is distributed primarily in the central northwestern part of the study
area. The increase in construction land comes from unused and cultivated land, which is
more widely distributed, mainly dispersed around the edge of cultivated land and mainly
distributed in the study area’s central and central northeastern parts. The increase in forest
land under the low-carbon target compared to 2020 is obtained from the conversion of
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cultivated and unused land, which is mainly distributed in the central southeastern part of
the study area.
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Analyzing the total economic benefits and total carbon emissions shows that compared
to 2020, while total carbon emissions decrease by 22.4% under the natural development
scenario in 2030, total economic benefits also decrease by 22.2%. Under the economic
objective, total economic benefits increase by 19.1%, 74.6%, and 19.1% under the low-carbon,
economic, and harmonization scenarios, respectively. Total carbon emissions increase by
19.4%, 75.3%, and 19.4%. Total economic benefits and total carbon emissions decrease by
about 20% under the low-carbon goal for all three scenarios. Total economic benefits and
total carbon emissions increased more in all three scenarios under the economic goal than in
the natural development scenario, while total economic benefits and total carbon emissions
stopped decreasing in all three scenarios under the low-carbon goal, and all were positive.

A further analysis revealed that the total economic benefits and total carbon emissions
will be the largest under the economic development scenario with the economic objective
and the smallest under the low-carbon development scenario with the low-carbon objective,
showing a trade-off between economic development and carbon emissions. Under the
economic objective, the values of total economic benefits of the three scenarios will be
higher than those of the natural development scenario, but the growth of land categories
with high economic coefficients such as cultivated land and construction land will make
the total carbon emissions of the three scenarios higher than the total carbon emissions of
the natural development scenario. The total economic benefits of the three scenarios will
decrease under the low-carbon target compared to the economic target but will increase by
1.98% and 0.39% for the economic and coordinated development scenarios, respectively.
The total carbon emissions will be slightly higher than the 2020 emissions, but the land
use structure of the low-carbon target will achieve a more significant reduction in carbon
emissions through a more minor reduction in construction land than the land use structure
of the economic target.

3.4. Evaluation of Landscape Pattern Indices

Based on the Fragstats 4.2 platform, the map of land use status quo in 2020 and the map
of land use layout optimization under the economic target and low-carbon target in 2030
were used as data sources to calculate the landscape pattern indices of the current status
quo of the Tianshan north slope urban agglomeration and the optimization of the layouts
under the economic target and low-carbon target (Table 8). The current land use of the
Tianshan north slope urban agglomeration has a patch density of 0.08, a mean patch fractal
dimension of 1.09, a degree of agglomeration of 99.06, and Shannon’s diversity of 0.62, with
a low degree of fragmentation of the overall landscape, a high degree of agglomeration,
and a general degree of regularity and diversity. Compared with 2020, the four landscape
patterns under the three scenarios of economic and low-carbon objectives changed in the
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same direction, with patch density and Shannon’s diversity generally higher than the status
quo and the average subdimensional index and degree of aggregation usually lower than
the status quo, indicating that the overall landscape became more fragmented, with a
lower degree of agglomeration and an improved degree of regularity and diversity. A
comparison of landscape pattern indices between targets revealed that patch density and
Shannon’s diversity under the economic target were generally higher than those under
the low-carbon target. The average subdimensional index and aggregation degree were
usually lower than those under the low-carbon target, which indicates that the degree of
landscape fragmentation, agglomeration, and regularity under the low-carbon target was
better than those under the economic target.

Table 8. Landscape pattern indices for different objectives and contexts.

Target Scenario Setting Patch Density Mean PatchFractal
Dimension Aggregation Index Shannon’s

Diversity Index

Economic target

Low-carbon
development 1.33 1.06 97.68 0.66

Economic
development 1.68 1.05 97.28 0.68

Coordinated
development 1.33 1.06 97.68 0.66

Low-carbon
goal

Low-carbon
development 0.11 1.08 99.03 0.62

Economic
development 1.07 1.06 98.08 0.64

Coordinated
development 0.46 1.07 98.72 0.63

2020 0.08 1.09 99.06 0.62

4. Discussion

Land use is often oriented to multiple objectives, and scientific land use structure
and spatial optimization according to different objectives is an important step to achieve
the objectives [23,53]. In the context of promoting urbanization and implementing the
“dual-carbon” strategy, how to better weigh the dual objectives of economic development
and carbon emission reduction has become a significant challenge for the Tianshan north
slope urban agglomeration [54]: whether it is to continue to take economic development as
the goal and increase the consideration of low-carbon development or to pursue a certain
value of economic efficiency based on the guarantee of minimizing carbon emissions. This
paper quantitatively compares the optimization results of land use structure and layout
in three scenarios of economic development, low-carbon development, and coordinated
development under the two objectives of economic and low-carbon goals by coupling the
GMMOP and PLUS models. This paper has three main contributions: Firstly, the article
quantifies national policies to achieve inter-objective trade-offs. Secondly, low-carbon,
economic, and coordination scenarios are set for each goal. The past literature has only
explored the trade-offs between economic and low-carbon objectives or the optimization of
land patterns under low-carbon objectives based on the energy perspective only. Thirdly,
it enriches the research object, as the past literature tends to use developed regions as the
research object, with less research on less-developed regions.

The results of this paper have both similarities and differences with the existing
literature. In terms of simulating the spatial allocation of land in 2030, compared with 2020,
the land pattern changes significantly under the two targets, and the low-carbon target
brings about a more significant reduction in carbon emissions compared with the economic
target and the natural development target, which is consistent with the results of the studies
by Ding et al. [5,55] and Zeng et al. [25]. The values of total economic benefits and total
carbon emissions are the largest in the economic development scenario of the economic
targets and the smallest in the low-carbon development scenario of the low-carbon targets,
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which again verifies the trade-offs between economic development and carbon emissions,
which is consistent with the results of the studies by Li et al. [56] and You et al. [27]. In
addition, this paper adds to the existing findings that, compared with the economic target,
the land pattern of the low-carbon target achieves a more significant reduction in carbon
emissions through a more minor reduction in construction land, which suggests that the
low-carbon development pattern is also applicable to less-developed urban agglomerations.
The area of forest under the three scenarios of the economic target exists higher or lower
than that under the low-carbon target, indicating that forest is a medium-attribute land
pattern, which neither belongs to the land pattern with very strong economic attributes
such as construction land nor to the land pattern with weaker economic attributes such as
grassland. This is also different from the results of past studies.

In conclusion, the paper examines the optimization of land patterns under carbon
mitigation and economic trade-offs through geographic information technology and math-
ematical models. It provides theoretical and technical guidance for the integrated man-
agement and sustainable development of land in underdeveloped regions and to realize
carbon mitigation and economic efficiency trade-offs. In future research, policies at different
levels can be quantified to examine the interaction between land use patterns and space. In
addition, in this paper, when setting the economic growth constraint threshold under the
low-carbon goal, we predicted the regional GDP in 2030 through the gray model based on
the regional GDP data from 2000 to 2020 and obtained the growth rate of 2030 relative to
2020, which is used as the economic growth constraint under coordinated development;
combined with the existing literature, the economic development and low-carbon develop-
ment are, respectively, up and down by 2.5 percent. In the future, it can be predicted by
different mathematical models and adjusted in combination with reality, and other data can
be used for the up and down floating rate to compare the research results under different
floating rates, thus forming a new research direction and enriching the existing literature
on land optimization.

5. Conclusions

Based on the relevant policies, this paper obtains the quantity demand of each land
type under the scenarios of economic development, low-carbon development, and coordi-
nated development under the economic target and low-carbon target by integrating the
gray model and the MOP model, then couples the PLUS model simulation to obtain the land
use structure and spatial allocation in 2030, and obtains the following three conclusions:

(1) From 2000 to 2020, the land use type of the Tianshan north slope urban agglomer-
ation was dominated by unused land and grassland, followed by cultivated land, forest,
and construction land. The total change area was 5767.9 km2, with grassland being trans-
ferred out of the largest area, 3582.6 km2, accounting for 62.1%, and cultivated land being
transferred into the largest area, 3741 km2.

(2) From 2020 to 2030, some land patterns will change significantly—the area of
cultivated land will increase under both the economic and low-carbon targets. Forest
will be higher or lower than the area under the low-carbon target in all three scenarios
of the economic target. Grassland and water areas will remain consistent with 2020. The
construction land area will have a significant increase under the economic target but remain
consistent with 2020 under the low-carbon target. The increase in cultivated land will be
mainly in the central northwest of the study area, the increase in construction land will be
mainly in the central and central northeast, and the increase in forest land area under the
low-carbon target will be mainly in the central southeast of the study area.

(3) By calculating the total economic benefits and total carbon emissions of each land
space optimization scenario, it was found that, compared with 2020, the total economic
benefits and total carbon emissions under the economic objective and low-carbon objective
will change in the opposite directions (both will increase under the economic target and
decrease under the low-carbon target). Compared with the natural development scenario,
the total economic benefits and total carbon emissions of the three scenarios under the
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economic target will increase more than those under the natural development scenario,
while the total economic benefits and total carbon emissions of the three scenarios under
the low-carbon target will stop decreasing; all of them will be positive. In addition, the
landscape pattern will change significantly. The four landscape patterns will change in
the same direction under the three scenarios of the economic target and the low-carbon
target. The degree of landscape fragmentation, agglomeration, and regularity under the
low-carbon target will be better than that under the economic target.

6. Policy Implications

The implications of this study for carbon mitigation, resource allocation optimization,
and spatial management in the Tianshan north slope urban agglomeration are as follows:
Firstly, policymakers should combine the spatial optimization results of each scenario to
formulate a land pattern optimization policy suitable for the region. A total of six land
pattern optimization results were obtained in this study. It is difficult to determine which
result is the optimal solution, and it is necessary for policymakers to determine one or two
options according to the actual situation in the study area. Secondly, when formulating
a land pattern optimization strategy, it is necessary to comply with national guidelines
and policies [27,57], such as strictly observing the red line of permanent basic farmland
protection, the red line of ecological protection, and the urban development boundary.
Finally, in the new urbanization process, policy implementers should appropriately control
construction land expansion. They should try to revitalize the stock of construction land,
systematically transform and upgrade industries with low utility in urban land to those
with high economic returns and low-carbon emissions, and gradually reduce the increment
of construction land. At the same time, mixed industrial land development should be
explored under relevant policy constraints.
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