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Abstract: We describe a future land cover scenario construction process developed under 

consultation with a group of stakeholders from our study area. We developed a simple 

geographic information system (GIS) method to modify a land cover dataset and then used 

qualitative data extracted from the stakeholder storyline to modify it. These identified 

variables related to our study area’s land use regulation system as the major driver in 

the placement of new urban growth on the landscape; and the accommodation of new 

population as the determinant of its growth rate. The outcome was a series of three scenario 

maps depicting a gradient of increased urbanization. The effort attempted to create a simple 

and transparent modeling framework that is easy to communicate. The incorporation of the 

regulatory context and rules and place-specific modeling for denser urban and sparse rural 

areas provide new insights of future land conversions. This relatively rapid mapping 

process provides useful information for spatial planning and projects for where and how 

much urban land will be present by the year 2050.  
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1. Introduction 

Human pressures on the environment have their most apparent manifestation in the visible 

transformation of the Earth’s surface. Over the last 50 to 100 hundred years, the most important factor 
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in the change in terrestrial ecosystems has been land cover conversion [1,2], and this trend is likely  

to continue in the future [3]. Land use/land cover (LULC) maps offer a way to document and quantify 

these changes [4]. Technological improvements over the last several decades have enhanced LULC 

maps’ ability to observe the outcomes of social and ecological processes on the landscape [5]. 

Projecting LULC patterns into the future can be a useful exercise for evaluating how these processes 

change and identifying potential consequences. Creating a series of possibilities given the available 

information can provide insights for spatial planning. These possibilities or scenarios provide a useful 

way to sketch out the future with a level of plausibility “while explicitly incorporating relevant 

science, societal expectations, and internally consistent assumptions about major drivers, 

relationships, and constraints” [6]. LULC change scenarios are important, because these can be used 

to evaluate the potential environmental impacts of decisions or policy shifts [7,8].  

In many instances, scenario creation is expert- and/or model-driven, and researchers make the case 

for their utility to end users [9–12]. This is problematic in a case with high stakes and high uncertainty, 

as with land use. Decision makers often prefer their own judgment to model results, highlighting the 

need for a model to be transparent and simple [13]. Using a participatory approach can partly relieve 

this issue. Stakeholder and public participation legitimizes the process and justifies the use of the 

outcomes for planning and decision-making [14]. A key issue in scenario-building methods is the 

integration of stakeholder-derived qualitative data (typically in the form of a storyline) into models that 

require quantitative data to produce the final output [15]. There are strategies proposed to formally 

bridge this divide, like fuzzy cognitive maps [16]. However, in some practical cases, where LULC 

change is a large component of the final scenarios, an intuitive conceptual approach is used to translate 

qualitative storylines to quantitative input [17–19]. Our study follows a similar approach to these. 

The research objective is to develop maps of future LULC scenarios for the study area involving 

stakeholders. For this research, we define stakeholders as members of organizations with interests in 

LULC change within the study area [20]. Other researchers created LULC maps in the region for a 

larger area using a participatory method [21]. This work required several years with numerous 

iterations that struck a balance in defining assumptions along a gradient of citizen engagement and 

expert opinion for mapping outcomes to reach satisfactory results. The trend in scenario-building 

studies is that they are typically a time-intensive process. In an attempt to produce an LULC map 

relatively quickly, while still retaining the benefits of a participatory approach, we used a simple 

framework that integrated input from stakeholders with local knowledge into a geographic information 

system (GIS) modeling process. We took information gathered from a single workshop, as well as a 

few additional one-on-one conversations and used these as guiding principles for future land cover 

change. In this respect, our study is more a consultation than an engagement process, but it is a useful 

method for addressing an important problem in our research program. Although we anticipate more 

development along the urban-rural fringe in our study area, it is currently unknown where and how 

much new development will be placed specifically. 
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2. Methods 

2.1. Study Area 

The Tualatin and Yamhill basins drain a portion of the Willamette Valley’s northwest corner and 

are 1858 and 2000 km2, respectively (Figure 1). The area holds the three broad land typologies of 

western Oregon—developed lands, agriculture and natural vegetation dominated by upland forests.  

A significant portion of the Tualatin basin lies in the greater Portland metropolitan area. Washington 

and Yamhill counties, whose areas approximately correspond to the majority of the study area,  

have experienced rapid growth since 1980 (Table 1) [22], continuing a legacy of population growth in 

the Portland metropolitan area over the last century [23]. The city of Hillsboro, a west Portland suburb,  

has more than tripled in population between 1980 and 2010. Washington County is seeing higher 

population density increase than the average for all counties of the north Willamette Valley region 

(Figure 2) [24]. Despite higher density, urban land cover continues to grow in the study area as 

population increases (Table 2) [25,26].  

Table 1. Populations by decade for two counties and select cities in the study area. 

 Pop. 1980 Pop. 1990 Pop. 2000 Pop. 2010 Ann. Ave. Change Total Change 

County       

Washington 245,860 311,554 445,342 529,710 2.39% 115.4% 
Yamhill 55,332 65,551 84,992 99,193 1.90% 79.3% 

Large Cities       

Beaverton 31,962 53,307 76,129 89,803 3.39% 181.0% 
Hillsboro 27,664 37,598 70,186 91,611 3.94% 223.2% 

McMinnville 14,080 17,894 26,499 32,187 2.70% 128.6% 
Newberg 10,394 13,086 18,064 22,068 2.46% 112.3% 

To understand the drivers of the area’s land cover change, a discussion of the policy context is 

warranted, as institutional factors mediate people’s response to economic opportunities [27]. In 1973, 

the Oregon legislature created an institutional framework for land-use planning applying state-wide 

goals informed by citizens and implemented through local governments [28]. This regulatory environment 

was meant to first protect Oregon farmlands and also encouraged livable urban communities with  

well-planned infrastructure. A primary tool towards this end was an urban growth boundary (UGB) for 

each incorporated city to reduce urban sprawl and encourage future compact development. These 

UGBs effectively create a land use dichotomy of urban lands within and the resource lands on the 

outside. In 2004, the passage of state ballot Measure 37 allowed a compensation claim or waiver of 

development restrictions for property acquired prior to the enactment of the legislation [29]. Land use 

planning advocates convinced voters to replace it with Measure 49 in 2007. It provides a more rigorous 

definition of compensation by limiting claims to three or less new dwellings on a parcel. In 2007, 

Metro, the Portland regional governing agency, proposed urban and rural reserve areas (URAs and 

RRAs) surrounding the current UGB to plan for growth in a manner compatible with state land  

use goals, which include targeting areas for future development that limit impacts on ecological  

systems [30]. These basins and the Tualatin in particular have also come under a high level of scrutiny 
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for water quality issues [31,32]. Both basins have stream reaches placed on the state’s 303(d) list for 

impaired surface water bodies in accordance with the federal Clean Water Act. Total Maximum Daily 

Loads (TMDLs) are in place or in development for several water quality indicators [33]. LULC plays a 

major role in determining water quality indicator values and stream health within both urbanizing and 

agricultural catchments in the study area [34,35]. 

Figure 1. Study area, including the current urban growth boundaries around  

each municipality.  
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Figure 2. Annual increase in population density (people/ha) for two counties.  

The six Oregon counties of the northern Willamette Basin (Clackamas, Columbia, Marion, 

Multnomah, Washington and Yamhill Counties) are included for reference. Data are from 

Portland State College of Urban and Public Affairs Population Research Center. 

 

Table 2. Change in urban land cover classes for two counties and select cities in the study 

area. Change based on National the Land Cover Dataset (NLCD) 1992–2001 land cover 

change retrofit product [34] and the 2001 and 2006 NLCD datasets. 

 
1992 to 2001 Urban 

Change (ha) 
Percent 
Change 

2001 to 2006 Urban 
Change (ha) 

Percent 
Change 

County     
Washington 1209 4.3% 1073 3.0% 

Yamhill 260 20.8% 381 3.0% 
Large Cities     
Beaverton 108 2.5% 43 1.0% 
Hillsboro 293 6.5% 288 5.8% 

McMinnville 34 1.8% 138 7.2% 
Newberg 89 8.1% 43 10.9% 

Study Area 1669 3.1% 1476 2.7% 

2.2. Data 

We chose the USGS National Land Cover Dataset (NLCD) 2006 as the baseline land covers in  

our study area for a variety of reasons [26]. First, the dataset contains a manageable amount of 

classifications, with 15 falling within the study area. Second, at 30-m resolution, it allows a fair degree 

of spatial differentiation without overwhelming the subsequent modeling efforts. Third, the year 2006 

is the most up-to-date product available from the USGS. The socioeconomic calculations for this 

project started in 2010 to align with U.S. Census estimates. Considering the late decade economic 

downturn slowing of new development, we assumed the four-year difference in land cover would be 
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small at the landscape scale. Several other datasets were gathered from various state and local agencies 

and governments [36–39]. As the focus was on the increase in urban development, most of the data 

was primarily composed of spatially explicit data pertaining to the Oregon land use regulation 

framework (Table 3). 

Table 3. Data sources used to create a spatial mask and graded weight map used as inputs 

to a model, creating future scenario maps in the study area. 

Data Type Description Sources 

Urban Growth 
Boundaries 

(UGB) 

Includes current UGB plus accepted and proposed 
urban reserve areas (URAs), rural reserves with 
additional protection and some additional adjacent 
land in case growth exceeds current reserves. 

Metro Regional Land and 
Information System (RLIS), 
City of McMinnville Planning 
Department, 
City of Newberg Engineering 
Department 

Zoning 

Includes all except a few small communities. A 
statewide layer designating broad classifications 
(forestry, agriculture and rural residential) was 
integrated with municipality zoning layers. 

RLIS, Mid-Willamette Valley 
Council of Governments 
(City of Dayton’s zoning estimated 
from online map)  

Measure 49 
Claims 

632 claims joined to tax lot parcel data to make 
spatially explicit. Authorized claims collected from 
three counties making up the vast majority of the 
study area. 

Oregon Department of Land 
Conservation and Development, 
State of Oregon Geospatial 
Enterprise Office, Yamhill County 
Assessor’s Office 

High Value 
Farm Soils 

Agriculture soils of U.S. Natural Resource 
Conservation Service Class I and II (irrigated or non-
irrigated)  

Oregon Spatial Library 

Groundwater 
Restriction 

Zones 

Critical and restricted groundwater zones could 
possibly be an impediment to rural residential 
development. Designated by the Oregon Department 
of Water Resources where aquifers are identified as 
depleted or used at an unsustainable rate  

Oregon Department of Water 
Resources 

Protected Areas 
Lands off-limits to development for a variety of 
reasons, including federal forest lands, city and state 
parks, private green spaces and schools. 

RLIS, U.S. Fish Wildlife Geospatial 
Services  

2.3. Construction of Scenarios with Stakeholder Consultation 

Our modeling framework followed a multistage process (Figure 3). Using a previously published 

approach, we elicited opinions on our modeling process from a small group of stakeholders. The 

researchers took the view that in their limited role, stakeholders would serve to validate assumptions 

the researchers made in creating maps, or if they distrusted the results, we could make improvements. 

Swetnam et al. [18] used a rules-based framework for integrating stakeholder narrative data into a 

quantitative geographic information system (GIS) modeling method. We produced an initial LULC 

map projected for the year 2050 using this method with data and rules defined by the researchers. The 

initial rate of changes in land cover types were estimated through an extrapolation of the differences 
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detected in the NLCD 1992–2001 land cover change retrofit product [25], as well as the 2006  

NLCD product.  

Figure 3. Conceptual diagram of the stakeholder consultation process informing the 

development of the modeling approach used to produce future land cover scenarios. AHP, 

pairwise analytical hierarchy process. 

 

The researchers convened a workshop in June 2012, that lasted several hours. A project partner 

involved with the current environmental issues in our study area chose four professionals for the 

consultation. They represented a cross-section of land use interests, including a representative from the 

Oregon Department of Agriculture, a county planner, an economist with Portland Metro administrative 

and planning agency and a land use attorney. We presented the project background information and the 

LULC modeling method and initial maps. Workshop participants initially discussed what they knew 

about land use in the region. The workshop then evolved into discussion about the future of developed 

lands in the study area and the factors they considered relevant.  

As the discussion progressed, it became evident that the participants’ opinions pointed to the state 

land use regulatory framework being the primary factor deciding where new developed land would be 

located over the next several decades. It yielded other important points. Any large increases of 

farmland were unlikely given that almost all suitable lands were already in production. County 

planners worked hard to maintain rural landscapes, so although conversion of farmlands will occur, 

they will be too small to fundamentally alter the land cover type present. Based on these participants’ 
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inputs, we decided to focus on new urban development in our modeling effort. They quickly agreed 

that the UGB was the most important factor, followed by the Oregon Department of Water Resources 

groundwater restriction zones [40], high value farm soils [41], zoning and Measure 49 claims. These 

factors are readily available or adaptable to spatial datasets (Table 3). In our subsequent scenario maps, 

participants replaced the criteria chosen by the researcher in the initial map that included a few 

biophysical factors, like soil type and slope.  

For quantifying new urban growth, we relied on the two planner participant comments that made 

the link between urban growth and the accommodation of new population. They suggested basing the 

estimated amount of required new urban area on population growth and a few demographic variables. 

When asked for rates of population growth within the range of plausibility, we received a single 

volunteered response of roughly 0.5% to 2.5%, which we adapted to 0.6%, 1.5% and 2.0% for the 

construction of future scenarios. This is supported by the known increases in observed growth over the 

previous decades (Tables 2 and 3).  

We performed some simple calculations to link population to urban development, based on 

consultation with planning professionals who participated in the workshop. These included future 

average household size (2.46) [23], an estimated employment-population (e-p) ratio (0.44) consistent 

with 2010 population and jobs numbers [42,43], employment per household (1.2) and an estimated 

density of future jobs and residences. Employment per household was a slight modification of the rule 

of thumb of one job per household suggested by one. Both planners anticipated a modest increase in 

job density in the future and smaller residential lot sizes and higher density housing developments in 

the upcoming decades. The researchers chose an employment density metric slightly higher than a 

current estimate using the e-p ratio and the NLCD 2006 high development category. This was regarded 

as plausible, as many employment facilities will continue to be low density, like warehouses. One 

participant mentioned a current density target for housing (approximately 35 per ha). We chose a 

somewhat higher figure (42 per ha) to account for the existing urban area absorbing a small portion of 

the additional needed residences and the additional comment that density targets are likely to increase 

in the future under political pressure. The additional required land averaged with the current urban land 

base yielded small to moderate increases in urban densification (Table 4).  

To allocate area to NLCD’s different developed cover classes, we assumed that the proportional 

relationship between open, low and medium development would hold from current conditions. The 

open development class in our study area typically covers urban greenspaces, such as city parks, large 

lawns and golf courses. Low and medium classes cover the majority of residential areas. A final 

modification was suggested again by the planners to split the growth between urbanizing and 

traditionally rural areas. The sentiment communicated to the researchers was that the regulatory 

framework would discourage growth in rural areas to the point that it would be very small over the 

coming decades. At the workshop, participants agreed that very small “cities” are unlikely to expand 

for cultural, social, economic and infrastructural reasons. As a consequence of this observation, the 

study area was split into medium to large urban areas and the rest of the landscape. One participant 

suggested dividing the growth to 95% urban and 5% rural (Table 4). Job densities are higher in rural 

areas than urban areas, because the job densities were artificially compressed into the small amount of 

present urban land cover. We summarize the final increases of new developed area from NLCD 2006 

to the future scenario in Table 5.  
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Table 4. Summary of the metrics used to calculate area of new urban land cover by the 

year 2050. 

Scenario Area 
Ann. Pop. 
Growth 

Future Jobs 
per Ha 

Total Jobs 
per Ha 

Future 
Households per 

Ha 

Total Households 
per Ha 

Current 
(NLCD 2006) 

Urban   82.4  8.8 

Current 
(NLCD 2006) 

Rural   95.3  3.2 

Future Low  Urban 0.57% 86.5 83.5 42.0 10.4 
Future Low Rural 0.03% 96.4 95.4 6.2 3.2 

Future 
Medium 

Urban 1.43% 86.5 84.3 42.0 13.3 

Future 
Medium 

Rural 0.08% 96.4 95.4 6.2 3.2 

Future High Urban 1.90% 86.5 84.7 42.0 14.4 
Future High Rural 0.10% 96.4 95.4 6.2 3.3 

* The required area is based on the assumed future jobs and households per ha. The total jobs and households 

per ha are the density of increase averaged over both current and future urban land cover. Current land cover 

is based on NLCD 2006. 

Table 5. Summary of growth in each developed land cover category in each future 

scenario expressed as total new hectares and percent increase from the USGS NCLD  

2006 dataset*.  

Scenario  High Dev. Medium Dev. Low Dev. Open Dev. 

Low Urban 1250 (37%) 603 (5%) 944 (5%) 260 (5%) 
 Rural 34 (12%) 5 (1%) 40 (1%) 64 (1%) 

Medium Urban 3046 (91%) 1805 (16%) 2823 (16%) 777 (2%) 
 Rural 41 (14%) 13 (2%) 108 (4%) 173 (2%) 

High Urban 4331 (129%) 2665 (24%) 4168 (23%) 1148 (23%) 
 Rural 44 (15%) 18 (2%) 146 (2%) 234 (4%) 

*Land use categories are based on NLCD 2006. 

2.4. Mapping 

Based on new urban lands dominating the discussion at the workshop, we chose to focus solely on 

new urban growth. Transitions from existing development types to higher intensity development were 

not considered because of time constraints and the uncertainty of future densification in the existing 

developed areas. While we acknowledge that changes within the current urban area will occur, like 

high density re-development, we assumed they would be small, based on the preservation of the 

existing residential area structures [44]. Thus, our model only allows new urban land cover to replace 

agriculture and natural vegetation types, and there are no shifts in the patterns of the remaining 

agriculture and natural vegetation lands.  
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Figure 4. Maps of the six criteria (urban growth boundaries, distance from current urban 

growth boundaries, zoning, groundwater restriction zones, high value farm soils and 

Measure 49 claims) used to construct the graded weights map.  

 
* The protected areas in the spatial mask are not eligible for land cover change, yielding the final graded map 

that is used to guide the assignment of new developed land cover in the study area. 

The GIS process, implemented in ArcGIS 10.1 [45], used the combination of a spatial mask based 

on protected areas and a spatial weight map based on the regulation criteria identified by the 

stakeholders (Figure 4). The storyline data acquired from the workshop was not sufficiently detailed to 

address all the assumptions and required parameters. We interpreted the workshop discussion by 

identifying the criteria that were most emphasized, but also had to use the researchers’ own judgment. 

Weight assignment was performed through a two-stage process. In the first stage, the variables within 

each criterion were ranked using values from nine, the highest conversion potential, to one, the lowest 

conversion potential. For example, the UGB criteria layer included the current UGB, URAs, 

undesignated lands adjacent to the UGB and RRAs. They were ranked nine, eight, five and one, 

respectively (Figure 4). We included a distance band from the current UGB criterion based on our 

judgment to preferentially assign new urban map pixels to lands closest to the UGB. Measure 49 

claims were incorporated by randomly placing a small group of pixels in a claimed tax lot. This 

technique is likely overestimating the effect of Measure 49 claims, even though their fraction of the 

study area is small (~0.15%). Since it was considered an important factor by stakeholders, we did not 
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eliminate it from our analysis. We assumed that the high development land cover class would consume 

the highest weighted pixels first, followed by the medium class, low and, finally, open. This allowed us 

to rank the zoning dataset from more intense land use types to least intense.  

In the second phase, we calculated weights among the criteria using a pairwise analytical hierarchy 

process (AHP) [46]. The AHP assesses the importance of each criterion by directly comparing it to all 

others. For example, we assumed, based on stakeholder discussion and our judgment, that the UGB 

dataset will be more important than all other criteria types, but some will have more importance to it 

compared to others. Using the same one to nine value range, our decision was to make the UGB 

criteria nine times as important as prime farm soils, groundwater restriction zones and Measure 49 

claims. It was three times as important as the distance band and twice as important as zoning (Table 6). 

The weight values were then used to combine all criteria into a single map using a weighted overlay. 

Finally, we automated the geoprocessing routine using a Python script. 

Table 6. Results of the pairwise analytical hierarchy process (AHP) for each spatial 

variable incorporated into the final graded map that guides the allocation of new urban land 

cover grid cells in three scenarios of increased urbanization.  

 

Urban 

Growth 

Boundary 

(UGB) 

UGB 

Dist. 
Zoning 

Prime 

Farm 

Soils 

Groundwater 

Restriction 

Zones 

Measure 

49 Claims 

Geometric 

Mean 
Weight 

Urban Growth 

Boundary 

(UGB) 

1 3 2 9 9 9 4.04 44% 

UGB Distance 1/3 1 1/2 7 9 5 1.94 21% 

Zoning 1/2 2 1 9 7 1 1.99 21% 

Prime Farm 

Soils 
1/9 1/7 1/9 1 1/3 1/7 0.21 2% 

Groundwater 

Restriction 

Zones 

1/9 1/9 1/7 3 1 5 0.55 6% 

Measure 49 

Claims 
1/9 1/5 1 7 1/5 1 0.56 6% 

Total       9.29 100% 

The AHP determines the weight value of each variable to be used in a weighted overlay GIS procedure. 

3. Results 

Our consultation with stakeholders in the study area resulted in a simple storyline. Future 

urbanization will be placed in the study area where land use regulations allow it to be placed. The 

urban growth boundary and its planned extensions are the primary factor, but other factors, like 

zoning, high value farm soils, groundwater restriction zones and Measure 49 claims will also play a 

role. This qualitative data was transferred to a GIS process through spatial datasets, demarcating where 

those regulations are enforced. The amount of new urban land cover is harder to address, but a good 

rule of thumb is to assume population growth will be the main determinant. This is the historical 
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precedent. A suggested range of quantitative values of population growth were used to select low, 

medium and high urban LULC growth. This basic process produced three maps of urban  

LULC growth. 

Figure 5. Maps representing potential future urban land cover change in the study area. 

The insets represent a portion of the study area showing growth adjacent to the city of 

Hillsboro, OR.  

 

The three scenarios maps (Figure 5) showed development increasing along the current urban fringe. 

In the low scenario, the northern edge of the west side of the Portland metro area exhibited the most 

land consumption (Figure 5). The municipality in this area is actively planning for growth as a hub for 

the technology industry. The spatial regulatory data attracted commercial/industrial or high developed 

land cover here in all scenarios. Other areas also received growth resembling a “creep” around the 

edges of the current UGB to accommodate additional housing. This expansion intensified in the 

medium scenario as commercial/industrial land cover increases more substantially in other areas, 

including the southern portion of the Portland metro region, as well as the satellite communities in and 

near the Yamhill basin. 

In the high scenario, a large portion of urban reserves were consumed around the western Portland 

metro area. The southern communities also showed a substantial increase in urban land, and even some 

of the smaller communities displayed gains. This was illustrated by two of the southern communities 
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beginning to merge (Figure 6). The rural areas and very small communities exhibited very little change 

over the next forty years considering the very modest growth rates placed on them. This is consistent 

with the planning goals mentioned in the workshop. The simple modeling approach led to unrealistic 

patterns at the fine scale (Figure 7). Adding refinements to the modeling procedure was not feasible to 

rectify these discrepancies. The two planning stakeholders reviewed the final maps and confirmed the 

lack of realistic patterns at this scale. However, at the landscape scale, they agreed that the maps are 

plausible. The stakeholder representing agriculture also considered the maps plausible. Considering 

that this is the scale of analysis that we were most interested in projecting, we felt additional effort to 

address these issues was not warranted. At a subsequent meeting where the land cover results were 

presented as a small component of a greater project, we were able to communicate quickly and 

effectively how scenarios were produced.  

Figure 6. Inset maps of potential land cover change in the study area focusing on the area 

encompassing the cities of Newberg (center of inset) and Dundee (southwest quadrant). 
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Figure 7. Example of grid cell raster mosaic phenomena depicting potential future land 

cover change. Exact arrangement of grid cells is determined randomly where there are 

more candidate pixels for transformation than are required.  

 

4. Discussion 

This research presents a model of LULC change that provides a plausible answer to our research 

question of where and how much new urban growth will occur in the urbanizing basins of Oregon. Our 

expectation was that this simple modeling method could be disseminated easily to stakeholders with at 

least some familiarity with the geospatial sciences and the characteristics of spatial data. It was our 

intention to reduce the number of decisions necessary to build and parameterize the model in order to 

produce maps relatively rapidly. Our final product is not as consistent as those produced through data 

gathered in a demanding iterative storyline process [15,18,21] or a well-designed role playing  

game [19,47]. Instead, we gathered qualitative data through an ad hoc workshop and select interviews 

to develop a simple storyline, which is used elsewhere [48]. The maps can still prove useful as input in 

further scenario modeling. Considering uncertainty is inherently high in projecting future land conversions, 

the consistency of the maps is sufficient at the landscape scale. Other modeling approaches, like  

agent-based systems or cellular automata, may address complexity with more sophistication [49], but 

also produce a more complex message to explain, leading to additional time investment.  

At the workshop where results were presented, members unfamiliar with the process understood  

it quickly. We aimed for a simple, flexible model that facilitates communication about complex 

relationships among stakeholders with varying backgrounds [13]. Their comprehension led to 

questioning an underlying assumption used to produce the final map outputs. Unsurprisingly, it was an 

assumption based on our judgment: a similar proportion of urban land cover intensities in the future as 

in the current LULC map. This points out a problem our study shares with others. GIS modeling 

processes are difficult to fully parameterize with participatory data. This leads to the use of researcher 

discretion in modifying parameters or to assuming similar values across all scenarios [50]. We 
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attempted to counteract this by relying on the opinion of at least some of the initial stakeholders for the 

validation of our results. This is similar to the “social validation” approach taken by others [47]. Their 

agreement that the maps are plausible at the landscape scale lends support to their viability as input in 

certain applications. 

Our consultation process left us with a narrative about increased urban growth and largely assumed 

other types of land conversions would be minimal to non-existent in our study area. Had various 

groups with differing perspectives been consulted over the course of a longer process, other factors 

addressing LULC change in rural areas could have potentially been identified. Even with the urban 

focus, other variables are likely important. Although deemed not important at the workshop, 

transportation networks could still be an important driver of land cover change [51]. Groundwater 

restriction zones, while having real consequences in rural lands, may not be a severe impediment to 

growth in urban land, since they are fed by surface supplies in our study area [52]. Additionally, 

stakeholders mentioned infrastructure access variables (e.g., water, sewer, gas lines) as having huge 

consequences on the location of new development, but data access has proven difficult. Using a few 

economic/demographic variables as parameters determining the amount of growth is simple and 

straightforward to communicate. This approach does not account for the dynamic nature of land supply 

and the spatially variable nature of demand. Our stakeholders pointed out that this is a major factor in 

urban planning. Our model assumes that as population grows, so will urban development. However, 

there are concerns that the land use regulations the model is based on will make property values 

unaffordable to many residents, leading to growth in communities outside of the study area, but still 

commutable to the employment centers within it. Econometric models based on assumptions of land 

owner decisions to maximize net returns from land can potentially address some of these 

issues [53,54]. 

This analysis hinges on Oregon’s land use system being the largest variable in guiding future land 

conversion in the state, barring any major government policy shifts over the next several decades. 

Indeed, the analysis already performed by local agencies in defining the current UGB, as well as URAs 

is what makes the following analysis a practical approach for developing these land cover scenarios 

and can be thought of as an extension of these efforts [55]. The heavy debt of this work means that a 

model based on land use regulations will not be generalizable to other regions. What is presented here 

may indeed rely too much on regulations, considering the land use systems have seen real challenges 

to their authority [56]. It must then be acknowledged that our scenarios used present conventional 

assumptions held by stakeholders in the region that aided a relatively quick process of parameterizing 

our land change model. In this sense, our scenarios are in reality a gradient of outcomes for a single 

storyline: land use regulations will be the dominant factor in deciding where new urban land will be 

located. More time and creative thinking would be necessary to develop other alternative possible 

future realities that aid in planning for the unpredictable [57], but would then challenge the framework 

for linking qualitative and quantitative data [16]. This issue, in fact, did come up in our workshop, 

where one member challenged the idea that future urbanization will follow the previous paradigm of 

what is developed land cover. Stressing technological innovations and social demands, we cannot 

simply assume that urban lands will impact natural systems through the loss of biota, increased 

impermeable surfaces, etc., as they did before. Exploring a scenario with these compelling qualitative 

factors would necessitate a much increased effort to develop a LULC map matching such a vision. 
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5. Conclusions  

The method presented in this paper offers a simplified and transparent approach for producing 

future land cover scenario maps. Our process contains important stakeholder involvement that was 

integral to identifying and prioritizing the factors that drove new urban growth in the model. Our main 

objective was to develop a straightforward process that was easy to communicate. We make several 

observations describing the degree of success we obtained in our study. 

(1) Although simple, our land cover projection requires the use of a quantitative GIS 

process to actually produce the maps, so it still faces the same issues of other scenario 

modeling efforts when translating qualitative data to quantitative. 

(2) Keeping the stakeholder consultation limited is advantageous, because it allows 

researchers to model future land cover under manageable time and effort constraints 

with widely available GIS data. Our land cover scenarios represent a gradient of 

potential realities based on the same storyline, and researchers still needed to make 

assumptions and set some of the parameters themselves. 

(3) The stakeholder consultation led to place specific analysis (e.g., different growth rates 

for urban vs. rural areas). The land use regulatory system is unique to Oregon, and the 

spatial data based on it encapsulates a great deal of external analysis that made our 

process faster. This highlights the potential difficulty in generalizing scenario 

development frameworks that facilitate reproducibility [15].  

Ultimately, we acquired an answer to our pressing research question of where will new urban 

growth be placed and how much of it will there be. We conclude that developed land will consume 

portions of the metropolitan fringe, and its amount will be determined by how much population will be 

present in the area by 2050. The case study points out that a relatively simple GIS-based modeling 

process is possible given available data, but this also leads to sacrificing some complex dynamic 

processes of land cover change. Therefore, this effort represents an initial step in modeling land cover 

in our study area, and further modifications and refinements to the participatory framework and to the 

model itself are warranted. 
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