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Abstract: A number of cytokines have shown beneficial effects in preclinical animal 

models of cancer and chronic inflammatory diseases. However, cytokine treatment is often 

associated with severe side effects, which prevent the administration of clinically relevant 

doses in humans. Immunocytokines are a novel class of biopharmaceuticals, consisting of a 

cytokine moiety fused to monoclonal antibodies or to an antibody fragment, which 

selectively accumulate at the disease site and thereby enhance the therapeutic effects of 

cytokines. This review surveys the recent preclinical and clinical advances in the field, 

with a special focus on the impact of antibody formats, target antigen and cytokine 

moieties on the therapeutic performance in vivo. We also discuss emerging data about the 

possibility to combine immunocytokines with other pharmacological agents. 
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1. Introduction 

A number of cytokines have shown beneficial effects in preclinical animal models of cancer and 

immune disorders and represent promising agents for therapy. However, despite encouraging results, 

only few cytokines are approved as drugs (e.g., interleukin 2 (IL2, Proleukin®), tumor necrosis factor 

(TNF, Beromun®), interferon alpha (IFN, Roferon A® and Intron A®)). Current indications in cancer 

include metastatic renal cell cancer, malignant melanoma, hairy cell leukemia, chronic myeloid 

lymphoma, sarcoma and multiple myeloma, either as single agents or in combination with 
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chemotherapy. In addition, certain cytokines are used for the treatment of viral and bacterial infections 

in the clinic and are administered to patients suffering from chronic inflammatory conditions.  

Unfortunately, considerable toxicities can be observed at low doses, which prevent escalation to 

therapeutically active regimens. For this reason the systemic administration of cytokines rarely induces 

complete cure, making the further clinical development of cytokines for therapeutic approaches 

difficult. Alternative delivery pathways have been successfully exploited, leading to complete tumor 

eradication in preclinical cancer models. The most promising results were obtained by intratumoral or 

peritumoral application of cytokines and gene therapy approaches, including intratumoral implantation 

of cytokine-producing cells or cytokine gene transfection of cancer cells before implantation [1–5]. 

However, these approaches are rarely applicable in the clinical setting and are typically not efficacious 

in the case of disseminated disease. Nonetheless, these findings do show that cytokines can promote 

disease eradication, if the drug is delivered to the disease environment at a sufficient concentration. 

One way to achieve specific localization of cytokines at the disease site after systemic 

administration consists in the use of antibodies as delivery vehicles, leading to a new class of 

biopharmaceutical agents, termed “immunocytokines”. These products consist of a cytokine moiety 

fused to monoclonal antibodies or to an antibody fragment, capable of mediating a preferential 

localization of the immunostimulatory payload at the site of disease. Immunocytokines have been 

evaluated for applications in cancer and chronic inflammatory disease [6,7]. Their therapeutic potency 

depends on molecular format, target antigen and cytokine fusion, as well as their combinatory function 

with other pharmacological agents. 

2. Molecular Formats 

Monoclonal antibodies bind target proteins with high affinity and selectivity and therefore represent 

ideal mediators of targeted therapeutic approaches for applications in cancer and immune diseases. 

The full size IgG antibody is the most often used format for therapeutic development. However, 

protein engineering allows the generation of various antibody fragments with specific targeting 

properties defined by molecular size, blood clearance and tissue penetration and retention [8]. A 

number of these formats have been explored for the development of immunocytokines (Figure 1). 

2.1. Targeting Properties of Antibody Formats 

Full size IgG antibodies (Mw ~ 150 kDa) are Y-shaped multidomain proteins consisting of two 

heavy (H) chains and two light (L) chains, each of which contain a constant (C) and variable (V) region. 

Antigen binding is mediated in a bivalent fashion by VH and VL domains located on the two Fab 

(VHVLCH1CL) arms of the antibody. The remaining constant domains (CH2CH3) form the Fc region, 

which recruits effector functions. The bivalent nature of antibodies contributes to high affinity binding 

of the antigen and provides long retention times at the target site. IgGs typically display a long serum 

half-life (t1/2) of several days, which is mainly mediated by interaction of the Fc region with neonatal 

Fc receptors (FcRn) [9,10]. Binding to FcRn allows the transport of IgGs within and across cells and 

salvages them from default lysosomal degradation [11]. The role of this interaction in mediating 

prolonged antibody half-life is underlined by the finding, that IgGs with lower binding affinity to FcRn 

are more rapidly cleared. A number of genetic modifications as well as isotype-specific Fc properties 
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have been explored to modify FcRn binding and serum half-life of IgG antibodies [12,13]. Tissue 

penetration of IgGs has been found to be slow and heterogeneous. In particular in solid tumors, which 

display elevated interstitial pressure, the large IgG molecule shows limited extravasation and diffusion 

capacity [14]. 

Figure 1. Antibody formats used for the development of immunocytokines and their 

targeting properties. 

 

To the other extreme, single-chain Fvs (scFvs; Mw ~ 28 kDa) represent the smallest format, which 

retains the antigen-binding affinity, but not avidity, of the parental antibody. They consist of a variable 

VH and a variable VL domain fused by a flexible polypeptide linker. The low molecular weight of 

scFvs has shown to improve tissue penetration compared to IgGs [15,16]. However, rapid clearance of 

the small fragments combined with reduced retention property due to the monovalent nature of the antigen 

interaction leads to low absolute accumulation (8–10 fold lower than IgG) at the target site [17]. 

A number of multivalent antibody formats (i.e., diabody, SIP, scFvFc) of intermediate size have 

been engineered to profit from longer target-site retention than scFvs, as well as deeper tissue penetration 

compared to full size IgGs [8,18]. For example, reducing the linker length of the scFv to 5 residues or 

less, promotes the formation of stable scFv homodimers, called diabodies (Mw ~ 55k Da) [19]. This 

bivalent format displays high tumor-to-blood ratios with an increased absolute tumor accumulation 

compared to scFv of the same antigen specificity. 

2.2. Targeting Properties of Immunocytokines 

The clinically most advanced immunocytokines are recombinant fusion proteins in which the 

antibody moiety is used in the full IgG or in diabody format (Figure 2). 
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Figure 2. Comparison of the antibody formats of clinical stage immunocytokines. 

 

Immunocytokines have been reported to display a significantly reduced serum half-life compared to 

their corresponding naked antibody [20]. The IgG-IL2 fusion protein hu14.18-IL2, for example, 

displayed a serum half-life of ~4 h in melanoma and neuroblastoma patients [21]. In comparison, the 

serum half-life of the diabody L19 was 2–3 h when fused to IL2 [22]. In either case this represents a 

significant decrease of blood clearance of IL2 alone (t1/2 ~ 30–45 min) [20]. 

In some cases the cytokine moiety of immunocytokines can significantly interfere with targeting. 

One example is the immunocytokine L19-IFN, which targeted tumors in mice lacking IFN receptors, 

but not in wild-type mice [23]. 

Enrichment of cytokines at the target site is mediated by the antibody-antigen interaction. 

Recruiting effector functions is crucial for the therapeutic effect of immunocytokines and is mediated 

by binding of the cytokine moiety to the correspondent cytokine receptors on effector cells. For 

example, binding of the IL2 moiety of immunocytokines to the IL2 receptor stimulates the expansion 

and activation of immune cells such as cytotoxic T cells and natural killer (NK) cells. Newly generated 

antibody fusion proteins are validated for functional cytokine signaling. 

In addition, immunocytokines can activate antigen dependent cellular cytotoxicity (ADCC). The Fc 

region of IgG-based fusion proteins mediates ADCC by binding Fc receptors (FcR) on the surface of 

immune effector cells, such as NK cells. IL2 immunocytokines have shown that IL2 enhances the 

ADCC function of antibodies [7,24,25]. Recent findings describe the formation of activating immune 

synapses (AIS) between FcR-deficient NK cells and tumor cells mediated by IL2 immunocytokines. 

These functional AIS were formed by the interaction of the IL2 component of the immunocytokine and 

IL2 receptors on effector cells [26,27], demonstrating that IL2 immunocytokines can initiate direct 

target cell lysis even without Fc involvement. 

3. Targets 

Antibody-based delivery of cytokines to the site of disease requires the presence of accessible, 

abundant and stable target antigens, which allow a clear discrimination between diseased tissue and 
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healthy organs. Potential targets can be expressed either directly on the surface of cancer cells or in the 

disease environment. Both of these targeting strategies have been exploited for the development of 

immunocytokines. The targets of the most advanced immunocytokines are described in Table 1. 

Table 1. Targets of the most advanced immunocytokines. 

Antigen Expression profile Antibody 

Disease cell surface 

EpCAM 
Epithelial cell adhesion 
molecule 

Physiologically expressed in epithelia 
Over-expressed in breast, colorectal and pancreatic 
carcinomas. 

KS 

GD2 
Disialoganglioside 

Physiological expression restricted to cerebellum and 
peripheral nerves. 
Expressed in neuroectodermal tumors including 
melanoma, neuroblastoma. 

Ch14.18 

Disease environment 

EDA / EDB of fibronectin 
Extra-domains EDA and 
EDB of fibronectin 

Physiological expression restricted to endometrium in 
the proliferating phase. 
Expressed around the neo-vasculature and in the stroma 
of aggressive tumours and in chronic inflammation. 

F8 / 
L19 and 
BC1 

A1 domain of Tenascin-C 
 

Physiological expression restricted to endometrium in 
the proliferating phase. 
Expressed around the neo-vasculature and in the stroma 
of aggressive tumours and in chronic inflammation. 

F16 

DNA / Histone complexes 
Normally not accessible. 
Exposed in necrotic tissue. 

NHS 

3.1. Targeting the Cell Surface 

Epithelial cell adhesion molecule (EpCAM) is a well-described cell surface antigen for a broad 

range of carcinomas, such as breast, colorectal and pancreatic carcinomas. EpCAM overexpression is 

considered to be a marker of tumor initiating cells and is involved in cancer metastasis. However, the 

selectivity of EpCAM is limited by its expression in healthy epithelia [28,29]. 

GD2 disialoganglioside is expressed on the cell surface of neuroectodermal tumors, such as 

melanoma and neuroblastoma and soft tissue sarcomas [21,30,31]. In the healthy body, GD2 expression 

is restricted to neurons and peripheral pain fibers, and thereby displays a high degree of selectivity [32]. 

3.2. Targeting the Disease Environment 

Progression of cancer or immune diseases involves the formation of a specific disease environment, 

which involves tissue remodeling, angiogenesis and the recruitment of stromal and immune cells [33,34]. 

Disease environments provide a number of well accessible target structures. 
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Newly formed blood vessels are particularly attractive targets for antibody-mediated delivery 

approaches. Vascular antigens are readily reached via the blood stream and angiogenesis is involved in 

the disease progression of most cancers as well as numerous inflammatory diseases [35]. Our group 

has extensively studied the in vivo performance of vascular targeting antibodies [36]. Splice isoforms 

of fibronectin and of tenascin-C represent some of the best-characterized markers of newly formed 

blood vessels [37]. Specifically, the alternatively-spliced extra-domains EDA and EDB of fibronectin, 

as well as the extra-domain A1 of tenascin-C, are virtually undetectable in normal adult tissues, but are 

strongly expressed at sites of physiological and pathogenic angiogenesis. The human monoclonal 

antibodies F8, L19 and F16 specifically recognize the EDA and EDB domains of fibronectin and the 

A1 domain of tenascin-C, respectively, and have shown selective accumulation at the disease site in a 

broad range of cancers and inflammatory disorders in animal models as well as in patients [38–41]. 

An alternative approach, termed target necrosis therapy (TNT), targets necrotic tissue, which is 

present primarily in the hypoxic environment of solid tumors and is absent in the healthy body. The 

monoclonal antibody NHS76 recognizes DNA / histone complexes, which have been demonstrated to 

be exposed by necrotic cells in the tumor core as well as metastases [42,43]. 

3.3. Target Identification 

The identification of novel disease markers is of great importance for the development of targeted 

therapies. This process is driven mainly by comparative transcriptomic [44] and proteomic 

technologies, which have rapidly advanced in the past years [44–46]. For example, in vivo labeling 

followed by proteomic analysis has led to the identification a number of vascular accessible  

antigens [47,48], some of which are expressed in a broad range of diseases [39,49], while others are 

more restricted to specific malignancies [50]. 

4. Fusion Partners 

Cytokines are a diverse group of immune-modulators, which can have pro-inflammatory or  

anti-inflammatory activity, depending on the microenvironment. Under normal conditions pro- and 

anti-inflammatory stimuli are carefully balanced to ensure an adequate immune response. This balance 

is disturbed in pathological settings, such as cancer progression and inflammatory disorders [51,52]. 

Understanding the functions of cytokines as well as the immunological environment of pathologies is 

important when choosing antibody fusion partners for the generation of immunocytokines as 

therapeutic agents. A number of cytokines have been tested for the generation of immunocytokines. A 

conclusive list of preclinical findings can be found in [6]. In this review we will focus on the clinical 

stage antibody–cytokine fusions, which are listed in Table 2. 

4.1. Cytokines in Cancer 

Tumor formation and progression is a complex process involving a multitude of changes within 

both cancer cells and the body’s defense mechanisms. The tumor microenvironment harbors cytokines 

and other inflammatory mediators, which influence immunosurveillance, the growth of cancer cells, 

tissue remodeling and angiogenesis [33]. Anti-inflammatory factors, mainly IL10 and TGF, interfere 
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with the cell-mediated immune response against cancer cells and promote tumor development. 

However, pro-inflammatory signals and chronic inflammation also play a crucial role in tumor growth 

and progression [51,53]. 

The development of immunocytokines for cancer therapies has so far focused on the delivery of 

pro-inflammatory cytokines, which mediate the infiltration of leukocytes into the tumor mass and 

promote an antitumor immune response. The most promising results were reported for fusion proteins 

with interleukin 2 (IL2), interleukin 12 (IL12) and tumor necrosis factor (TNF). 

Table 2. Immunocytokines in clinical development. 

Compound Antibody 
format 

Target 
antigen 

Indications Clinical 
phase 

Company 

Pro-inflammatory 

F16-IL2 Diabody A1 domain of 
tenascin-C 

Breast cancer and lung cancer Phase II Philogen 

L19-IL2 Diabody EDB of 
fibronectin 

Melanoma Phase II Philogen 

hu14.18-
IL2 

IgG GD2 Melanoma and 
neuroblastoma 

Phase 
I/II 

Merck 
KGaA 

KS-IL2 IgG EpCAM Ovarian cancer, colorectal 
cancer, prostate cancer and 

NSCL carcinoma 

Phase I 
 

Merck 
KGaA 

 

NHS-
IL2LT 

IgG DNA/ histone Non-Hodgkin lymphoma and 
NSCL carcinoma

Phase I Merck 
KGaA

NHS-IL12 IgG DNA/ histone Epithelial and mesenchymal 
malignant tumors 

Phase I Merck 
KGaA 

BC1-IL12 IgG EDB of 
fibronectin

Melanoma Phase 
I/II 

Antisoma 

L19-TNF Trimeric 
scFv 

EDB of 
fibronectin 

Melanoma (isolated limb 
perfusion) 

Phase 
I/II 

Philogen 

Anti-inflammatory 

F8-IL10 Diabody EDA of 
fibronectin 

Rheumatoid arthritis Phase I Philogen 
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4.1.1. IL2-Based Immunocytokines 

Recombinant IL2 (rIL2, Proleukin®) is commonly used in the clinic for the treatment of patients 

with metastatic renal cell carcinoma and melanoma [54,55]. For this reason, IL2 fusion proteins 

account for the most advanced immunocytokines in clinical development. There are currently five IL2 

based immunocytokines in clinical trials. 

L19-IL2 successfully targeted the neo-vasculature of several tumors in preclinical mouse models, as 

determined by quantitative biodistribution studies and therapy experiments [56,57]. Clinical trials in 

patients with metastatic renal carcinoma resulted in disease stabilization in 83% of the patients after 

the two cycles of the recommended dose (i.e., 22.5 Mio IU/patient/day—3 injections/week), promoting 

a median progression-free survival of 8 months (1.5–30.5 months) [22]. 

F16-IL2, a second vascular targeting antibody-IL2 fusion protein, is currently being tested in a 

phase II trial in patients with breast or lung cancer [58]. 

Ch14.18-IL2, which recognizes GD2, was clinically tested for applications in melanoma and 

neuroblastoma. Disease stabilization was achieved in 58% of melanoma patients after the first cycle 

(i.e., one week) of ch14.18-IL2 administration in a phase I trial. However, after the second cycle  

(i.e., six weeks) only 24% of the patients still displayed stable disease. The maximal tolerated dose was 

determined to be 7.5 mg/m2/d. In line with the results from the phase I trial, only 2 out of 9 patients 

reached disease stabilization after treatment with 4–6 cycles (at 4 mg/m2/d) of ch14.18-IL2 in phase II 

studies. No objective responses were observed [59,60]. In children with neuroblastoma, the 

recommended dose of ch14.18-IL2 was determined (110 Mio IU/m2 over 3 days) and its 

administration led to disease stabilization in 54% of the patients in a phase I trial. In a subsequent 

phase II trial 21.7% of patients with low tumor load (i.e., disease evaluable only by 

(123I)metaiodobenzylguanidine scintigraphy or bone marrow histology) experienced a complete 

response, whereas patients with bulky disease unfortunately did not respond [61,62]. 

Two additional immunocytokines, the EpCAM targeting KS-IL2 and the DNA targeting NHS-

IL2LT, have been tested in phase I clinical trials [63,64]. 

In general, the adverse side effects caused by IL2 immunocytokines are comparable to the ones 

reported for IL2 alone, including hypotension, fever, rigor, neuropathic pain, hypoxia, pruritus, allergic 

reactions, hypophosphatemia, thrombocytopenia, leucopenia and neutropenia. IL2 based immunocytokines 

have so far been administered at 67.5–110 Mio IU IL2 equivalents/m2 per week for 4–6 treatment 

cycles (one cycle: 21–28 days) [22,62]. In comparison, rIL2 is applied from 100 Mio IU/m2 per week 

for at least 6 cycles as a low dose regimen to 900 Mio IU/ week as an intense regimen [65,66]. The 

reduction in dose, which can be achieved by selective delivery of IL2 to the site of disease helps 

reduce the incidence and severity of side effects. 

4.1.2. IL12- and TNF-Based Immunocytokines 

IL12 plays an important role in the activities of natural killer cells and T lymphocytes. The 

antitumor activity of recombinant IL12 (rIL12) has been demonstrated in several animal models and 

further evaluated in a number of clinical trials in humans. However, the systemic administration of  
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1–1.5 g/week of rIL12 was associated with significant toxicities, which prevented further clinical 

development of rIL12 as a single agent for cancer therapy [67]. 

Preclinical findings show that the antibody-based targeted delivery of IL12 mediated the infiltration 

of macrophages, lymphocyte-activated killer (LAK) cells, NK cells, and T lymphocytes into the tumor 

mass and resulted in an increase of anti-angiogenic stimuli. IL12–based immunocytokines can greatly 

improve the effects of IL12, allowing therapeutic benefits at (up to 20-fold) lower administrated doses [68]. 

Two IL12 based immunocytokines have progressed to clinical trials.  

The immunocytokine NHS-IL12, which targets DNA / histone complexes in necrotic regions of 

tumors, is currently being evaluated in a phase I trial [69]. 

The antibody BC1-IL12 recognizes the neo-vascular antigen EDB of fibronectin and was tested in a 

phase I trial in patients with malignant melanoma or renal cell carcinoma. The recommended dose was 

set at 15 g/kg weekly (corresponds to a 3–5 fold molar increase compared to rIL12) and treatment 

promoted disease stabilization in 2 out of 13 patients [70]. 

TNF is one of the most potent antitumor cytokines. However, its substantial toxic side effects 

prevent systemic administration at therapeutically effective doses. The clinical use of TNF has 

therefore been limited to regional applications, such as Isolated Limb Perfusion for the treatment of 

nonresectable sarcoma and melanoma [71]. The immunocytokine L19-TNF is being evaluated in a 

phase I/II clinical trial [72,73]. 

4.2. Cytokines in Chronic Inflammatory Diseases 

Chronic inflammatory diseases, such as rheumatoid arthritis, psoriasis, endometriosis, atherosclerosis 

or inflammatory bowel disease, are characterized by persistent inflammation mediated by complex 

interactions between immune cells and the disease microenvironment. These commonly both activate 

the immune system and interfere with pathways involved in the resolution of inflammation [34,52]. 

Immunocytokines based on the anti-inflammatory cytokine interleukin 10 (IL10) have been tested 

for applications in rheumatoid arthritis, psoriasis and endometriosis. 

4.2.1. IL10 Immunocytokines 

Recombinant IL10 (rIL10, TenovilTM) demonstrated promising in vitro immunomodulatory activity 

as well as therapeutic benefit in a number of animal models of chronic inflammation. And clinical 

evaluation in patients with inflammatory disorders showed an excellent tolerability profile at doses up 

to 25 g/kg. However, the clinical development of rIL10 was discontinued due to lack of efficacy 74,75]. 

IL10-based immunocytokines targeting the neo-vasculature (F8-IL10 and L19-IL10) were tested in 

preclinical models of rheumatoid arthritis, psoriasis and endometriosis with encouraging outcomes.  

F8-IL10 has progressed to the clinic and is currently being tested in a phase I trial in patients with 

rheumatoid arthritis [76–78]. 
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5. Combination Studies 

5.1. Selected Preclinical Combination Therapies 

A number of preclinical studies have been performed to explore the combinatorial effect of 

immunocytokines with other therapeutic agents, such as chemotherapeutics, monoclonal antibodies 

and other biologicals. 

Most chemotherapeutics that are used for cancer therapy are traditionally considered to be 

immunosuppressive by killing or inhibiting the progression of dividing cells, including lymphocytes. 

But accumulating evidence indicates that cytotoxic drugs and radiotherapy also indirectly and directly 

effect the immune system to contribute to tumor regression [79]. 

For example, preclinical combination experiments with F8-IL2 [80] and KS-IL2 [81] showed that 

paclitaxel, when administered prior to the immunocytokine, enhances the antibody-targeted delivery of 

IL2 to the disease site and promotes a synergistic anti-cancer effect in different cancer models. 

Encouraging results were also observed for the combination of F16-IL2 and temozolomide in an 

ortothopic glioblastoma mouse model, demonstrating the effective delivery of cytokines to a 

pathological disorder in the brain [82]. In this case simultaneous administration of the immunocytokine 

and the chemotherapeutic agent led to complete eradication of lymphoma xenografts [57]. 

Radiofrequency ablation (RFA) followed by KS-IL2 treatment enhanced the antitumor effect and 

survival, compared to mice treated with RFA or KS-IL2 alone, in a murine colon adenocarcinoma 

model [83]. 

Some antibody–cytokine fusions (in particular IL2- and TNF-based immunocytokines) display 

vasoactive properties and can therefore also enhance the uptake of therapeutic agents at disease site, if 

administered as a pretreatment [84]. In general, immunocytokines and conventional chemotherapeutic 

agents are promising combination partners because they typically do not exhibit overlapping limiting 

toxicities. But the ideal combination partners, dose regimen and also administration sequence have to 

be elucidated for different disease settings. 

The combined use of therapeutic antibodies and cytokines has been shown to potentiate the ADCC, 

due to an increase of effector cells [85,86]. And in fact, a synergistic therapeutic effect was observed 

for F8-IL2 and the monoclonal antibody sunitinib in mouse models of renal cell carcinomas [87]. A 

comparable effect was described for the combination of L19-IL2 and rituximab in a mouse model of 

B-cell lymphoma [57]. 

In addition, the combination of different immunocytokines, such as L19-IL12 and L19-TNF, 

demonstrated enhanced therapeutic benefit compared to the administration of each immunocytokine 

alone [88]. In accordance with these findings, bifunctional antibody cytokine fusion proteins  

(KS-IL2/IL12) displayed synergistic effects in vivo [89]. 

5.2. Combination Therapies in Clinical Development 

Some clinical results of combination therapies with immunocytokines and chemotherapeutic agents 

have recently been reported. The combination of KS-IL2 with cyclophosphamide and the combination 

of F16-IL2 with doxorubicin or with paclitaxel are being studied in phase Ib clinical trials in patients 

with solid tumors [90,91]. And the combined use of L19-IL2 (at the same dose applied as 
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monotherapy) with dacarbazine showed an excellent tolerability profile and led to objective responses 

in 8/29 patients and a complete response in one patient in a phase Ib trial in patients with metastatic 

melanoma. This combination therapy is currently being evaluated in a randomized phase II trial [92].  

6. Concluding Remarks 

This review surveys the recent preclinical and clinical advances in the field of immunocytokines, 

with a special focus on the impact of molecular formats, target antigen, cytokine moieties and 

combination approaches on therapeutic performance. 

Several antibody formats and their specific targeting properties have been explored during the 

development of immunocytokines. The clinically most advanced immunocytokines are recombinant 

fusion proteins in which the antibody moiety is in the full IgG or in the diabody format. 

The identification of selective antigens is a prerequisite for the antibody-based delivery of cytokines 

to the site of disease. A number of potential targets can be considered, including those located on the 

surface of diseased cells (e.g., cancer cells) or in the modified extracellular matrix. The targeting of 

newly formed pathological blood vessels is particularly attractive and has found application in a wide 

range of malignancies, but also for the treatment of chronic inflammatory diseases. 

Preclinical and clinical experiments with antibody–cytokine fusion proteins have demonstrated that 

increased accumulation at the disease site enhances the therapeutic index of the corresponding  

cytokine [6]. The development of immunocytokines for cancer therapies has focused on the delivery of 

pro-inflammatory cytokines (IL2, IL12 and TNF), whereas anti-inflammatory cytokines (IL10) are 

used for the treatment of chronic diseases, such as rheumatoid arthritis. 

The translation of preclinical findings to clinical settings, however, remains one of the main 

challenges for the future. 

When used as single agent, immunocytokines are rarely curative. For this reason, a number of 

combination therapies with other pharmacological agents have been tested. The combined use of 

immunocytokines and chemotherapeutics for cancer therapy has been extensively studied and is 

currently being investigated in clinical trials. 

The large diversity in disease characteristics as well as immunological state of patients may have a 

significant impact on the function of immunocytokines. To address this issue imaging techniques  

(e.g., nuclear medicine techniques like positron emission tomography) could in principle be used to 

screen patients for antigen expression and selective targeting of the antibody prior to treatment [93]. In 

addition, the recent discovery that cancer cells release peptides bound to soluble HLA-I molecules, 

which can be identified and quantified by mass spectrometry, indicates potential avenues for  

non-invasive assessment of tumor-antigens that are displayed at the tumor site [94]. 

Taken together, progress in antibody engineering, identification of accessible and selective markers 

of disease, use of different cytokine moieties and the combination with other therapeutics has driven 

the development of immunocytokine therapies. We anticipate that immunocytokines will find an increasing 

use in clinical settings, in particular for the treatment of cancers and chronic inflammatory diseases. 
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