
Antibodies 2012, 1, 199-214; doi:10.3390/antib1020199 

 

antibodies 
ISSN 2073-4468 

www.mdpi.com/journal/antibodies 

Article 

Dual Targeting of Tumor Cells with Bispecific Single-Chain  
Fv-Immunoliposomes 

Katharina Mack 1, Ronny Rüger 2, Sina Fellermeier 1, Oliver Seifert 1 and  

Roland E. Kontermann 1,* 

1 Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, 

Germany 
2 Institut für Pharmazie, Friedrich-Schiller Universität Jena, Lessingstraße 8, 07743 Jena, Germany 

* Author to whom correspondence should be addressed;  

E-Mail: roland.kontermann@izi.uni-stuttgart.de; Tel.: +49-711-685-66989;  

Fax: +49-711-685-67484. 

Received: 8 May 2012; in revised form: 9 July 2012 / Accepted: 13 July 2012 /  

Published: 25 July 2012 

 

Abstract: Antibody fragments, especially single-chain Fv fragments, have been established 

for the generation of immunoliposomes for targeted drug delivery in cancer therapy and 

other applications. Bispecific immunoliposomes should be useful for dual targeting 

addressing inter- and intratumoral heterogeneity of tumor antigen expression. Here, we 

established a protocol to generate dual-targeted immunoliposomes using genetically 

engineered scFv molecules recognizing two different tumor-associated antigens, EGFR and 

CEA (CEACAM5), applying a step-wise insertion of antibody-coupled micelles into 

preformed PEGylated liposomes. The dual-targeted immunoliposomes retained binding 

activity for both antigens and combined the selectivity of both antibodies within one 

liposome. Thus, these dual-targeted immunoliposomes should be suitable to deliver 

therapeutic payloads to tumor cells expressing EGFR or CEA, or both antigens. 
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1. Introduction 

Liposomes have been extensively studied as drug carrier systems [1–3]. The composition of 

liposomes allows encapsulation of hydrophilic drugs into the aqueous interior as well as the 

incorporation of hydrophobic drugs into the lipophilic lipid bilayer(s) [4]. Several liposomal 

formulations, e.g., liposomal doxorubicin (Doxil®), are approved for cancer therapy [5,6]. In order to 

maintain an extended circulation in the blood stream, liposomes are sterically stabilized by 

incorporation of PEG chains into the liposomal surface (PEGylated liposomes) [7,8]. Therapeutic 

efficacy is mainly due to delivery of drugs to the tumor sites by means of an enhanced permeability 

and retention (EPR effect), caused by an irregular and defective tumor vasculature and a compromised 

lymphatic drainage [5,9,10]. This effect is passive and does not lead to a selective binding and uptake 

of the liposomal formulation into tumor cells. However, therapeutic efficacy should benefit from a 

targeted (active) delivery of the liposomes to tumor cells, thus increasing the local concentration of the 

drug in the tumor and facilitating intracellular delivery of the drug [11–13]. This can be achieved by 

coupling of tumor-selective ligands to the liposomal surface, for example using antibodies [14–16]. 

Immunoliposomes are generated by coupling whole antibodies or antibody fragments such as Fab 

or single-chain Fv fragments (scFv) directly to the liposomal surface [15]. Alternatively, ligands can 

be coupled to micellar lipids and subsequently inserted into preformed liposomes (postinsertion 

method) [17]. The use of Fab and scFv fragments avoids Fc-mediated interactions and elimination by 

the reticulo-endothelial systems. A site-directed and defined coupling of scFv fragments can be 

achieved by introducing an additional cysteine residue at the C-terminus or at the linker connecting the 

VH and VL domain, which can be used for coupling to maleimide-functionalized lipids [18–20]. 

Extensive studies have been performed with immunoliposomes targeting single antigens [15,16]. 

These studies demonstrated that immunoliposomes are able to bind selectively to antigen-specific 

target cells and to deliver therapeutic compounds to the cell. However, solid tumors are characterized 

by an intra- and intertumoral heterogeneity caused by genetic instability and clonal evolution, e.g., as 

described for breast cancer [21–25]. Furthermore, tumor cells often upregulate different cell surface 

antigens, which can be used to discriminate tumor cells from normal cells. Dual targeting of tumor 

cells has been proposed to improve therapy and several approaches, e.g., using a combination of 

monoclonal antibodies or bispecific antibodies, have demonstrated its feasibility to improve  

efficacy [26]. Dual targeting should also be applicable for liposomes and other nanoparticles. 

Several strategies have already been explored to generate dual-targeted nanoparticles using 

combinations of antibodies, natural ligands, and peptides [27–31]. For example, dual-targeted 

immunoliposomes were generated coupling thiolated monoclonal antibodies directed against CD19 

and CD20 to the surface of PEGylated liposomes that showed improved binding, uptake and cytotoxic 

activity compared with the individually targeted immunoliposomes [27]. 

Dual targeting should also be possible using recombinant antibody fragments such as cysteine-

modified single-chain Fv fragments (scFv') [20]. Here, we applied two recombinant scFv' molecules 

directed against EGFR and CEA (CEACAM5) for the generation of bispecific immunoliposomes. 

Both antigens have been described to be over-expressed by cells from various tumor types including 

colon carcinoma [32–34]. The dual-targeted immunoliposomes (dt-IL) were generated applying an 

adapted postinsertion protocol utilizing a step-by-step insertion of antibody fragments coupled to 
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micellar maleimide-PEG-DSPE lipids. We show that the dual-targeted immunoliposomes retain 

antigen binding for both antigens, thus are capable of recognizing tumor cells expressing both or only 

one of the tumor-associated antigens. 

2. Materials and Methods 

2.1. Materials 

Egg phosphatidylcholine (EPC) was purchased from Lipoid (Ludwigshafen, Germany), cholesterol 

was purchased from Calbiochem (Darmstadt, Germany). 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-

N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (NBD-DOPE) and 1,2-dipalmitoyl-sn-glycero-

3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (rhodamine-DPPE) and 

all other lipids were purchased from Avanti Polar Lipids (Alabaster, AL, USA). DiI was purchased 

from Sigma (Taufkirchen, Germany). HRP-conjugated anti-His-tag antibody was purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA) and FITC-conjugated anti-His antibody from 

Dianova (Hamburg, Germany). The PE-labeled monoclonal anti-EGFR antibody (EGFR R-1) was 

purchased from Santa Cruz Biotechnology. The BW 431/26 (mouse anti-CEA) antibody was provided 

by Behringwerke (Marburg, Germany). The polyclonal anti-moIgG-FITC IgG was purchased from 

Sigma-Aldrich, St. Louis, USA. The human colon carcinoma cell line LS174T, the human epidermoid 

carcinoma cell line A431 and the human lung adenocarcinoma epithelial cell line A549 were cultured 

in RPMI1640 containing 5% FCS, 2 mM L-glutamine and 100 units/mL penicillin G and 100 µg/mL 

streptomycin. The human breast cancer cell lines SKBR3 and MCF7 and the human colon 

adenocarcinoma cell line LoVo were cultured in RPMI1640 containing 10% FCS, 2 mM L-glutamine 

and 100 units/mL penicillin G and 100 µg/mL streptomycin. Cells were cultured at 37 °C in a 

humidified 5% CO2 incubator. 

2.2. Generation of scFv' Fragments 

An anti-EGFR scFv' was generated by cloning a humanized version of scFv C225 (hu225) into 

vector pABC4 [19]. An anti-CEA scFv' was described previously [19]. Antibody fragments  

(anti-EGFR scFv' hu225, anti-CEA scFv' MFE23) were purified by immobilized metal ion affinity 

chromatography (IMAC) as described elsewhere [35]. Protein concentration was determined by 

measuring the absorbance at 280 nm. Purified scFv' were analyzed by SDS-PAGE under reducing and 

non-reducing conditions and stained with Coomassie brilliant blue G250 or immunoblotted with an 

HRP-conjugated anti-His-tag antibody. 

2.3. Protein Melting Points 

Purified scFv' (100–150 µg) was diluted in PBS to a total volume of 1 mL and sterile filtered  

(0.2 µm) into a quartz cuvette. Dynamic laser light scattering intensity was measured with a Zetasizer 

Nano ZS (Malvern, Herrenberg, Germany) while the temperature was increased in 1 °C intervals from 

30 to 70 °C with 2 min equilibration for each temperature step. The melting point was defined as the 

temperature at which the light scattering intensity dramatically increased. 
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2.4. Preparation of Immunoliposomes 

Immunoliposomes were generated by postinsertion of scFv'-conjugated micelles into preformed 

PEG-liposomes [20]. Liposomes composed of EPC:Chol:mPEG2000-DSPE at a molar ratio of 

6.75:3:0.25 were prepared by the film hydration-extrusion method as described previously [19]. All 

liposomes further contained 0.3 mol% fluorescent dye (DiI). Mal-PEG2000-DSPE micelles were 

generated by removal of chloroform under a stream of nitrogen at RT. The dried lipid was dissolved in 

double distilled water to a final concentration of 10 mg/mL and incubated for 5 min at 65 °C in a water 

bath to form micelles. Purified scFv were reduced in 8 mM tris(2-carboxyethyl)phosphine (TCEP) for 

2 h at room temperature followed by removal of TCEP by dialysis against degassed 10 mM 

Na2HPO4/NaH2PO4 buffer, 0.2 mM EDTA, 30 mM NaCl (pH 6.7) overnight at 4 °C. Micellar lipid 

and reduced scFv' were mixed at a molar ratio of 5:1. Coupling reaction was performed at room 

temperature for 30 min. The reaction was quenched with 1 mM L-cysteine, 0.02 mM EDTA, pH 5.5. 

The scFv'-coupled micelles were inserted into preformed PEGylated liposomes by incubation at 45 °C 

for 2 h (anti-CEA scFv') or at 55 °C for 30 min (anti-EGFR scFv'). Dual targeted immunoliposomes 

were prepared by step-wise post-insertion. Firstly, anti-EGFR scFv'-coupled micelles were inserted at 

55 °C for 30 min afterwards anti-CEA scFv'-coupled micelles were added to the dispersion and again 

incubated at 45 °C for 2 h in a water bath. Unbound scFv molecules were removed by gel-filtration 

using a Sepharose CL4B column (Amersham, Braunschweig, Germany). Liposome size was measured 

using a ZetaSizer Nano ZS (Malvern). To monitor the synchronized post-insertion of two different 

micelle species the Mal-PEG2000-DSPE-micelles were stained either with NBD-DOPE or with 

rhodamine-DPPE as indicated. The fluorescently-labeled phospholipids were added to the  

Mal-PEG2000-DSPE in chloroform before the organic solvent was evaporated.  

2.5. Flow Cytometry Analysis of Cell Binding 

For analyzing the binding of monoclonal antibodies, cells were resuspended to a concentration of 

2.5 × 106 cells/mL in PBA (PBS, 2% FCS, 0.02% sodium azide) containing the diluted primary 

antibody (anti-EGFR: 1:100, anti-CEA: 1:100). After incubation at 4 °C for 1 h in the dark, the plate 

was washed three times with 150 μL PBA. To detect unlabeled primary antibodies 100 μL 1:500 

diluted anti-mouse IgG-FITC was applied to the respective wells and incubated at 4 °C for 45 min in 

the dark. Cells incubated with a fluorescently labeled antibody were resuspended in 100 μL PBA. The 

cells were washed twice in 150 μL PBA, resuspended in 500 μL PBA and transferred into FACS tubes. 

A total of 10,000 cells were analyzed using a Cytomics FC500 (Beckmann Coulter, Krefeld, 

Germany). Analysis of the obtained data was performed using FlowJo 7.6.1 and Microsoft Office 

Excel 2011. Binding of purified scFv' molecules was determined by incubating detached cells with 

antibody molecules in PBA buffer for 1 h at 4 °C. Cells were then washed three times with PBA and 

incubated with FITC-conjugated anti-His-tag antibody diluted 1:200. Binding of liposomes was 

analyzed by incubating cells (2.5 × 105) with DiI-labeled immunoliposomes (1–1,000 nmol lipid) per 

100 µL PBA for 1 h at 4 °C. After washing cells three times with PBA (4 °C) cells were resuspended 

in 300 µL PBA buffer and analyzed by flow cytometry. Data was evaluated with WinMDI, version 2.9. 
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The relative mean fluorescence intensity (MFI) plotted in the binding experiment analysis was 

calculated according to the following formula: relative MFI = MFIsample − (MFInt − MFIcells)/MFIcells. 

2.6. ELISA 

Binding of the immunoliposomes to CEA and EGFR was analyzed by a sandwich ELISA. CEA 

was coated onto a microtiter plate at a concentration of 3 µg/mL. After blocking remaining binding 

sites with MPBS (PBS, 2% skimmed milk powder), liposomes were added at varying concentrations 

and incubated for 1 h. After washing with PBS, an EGFR-Fc fusion protein (10 µg/mL) was added and 

incubated for 1 h. After washing, bound EGFR-Fc was detected with an HRP-conjugated anti-human 

Fc antibody (Sigma-Aldrich) and subsequent addition of TMB substrate. 

2.7. Flow Cytometry Analysis of Liposomes 

The flow cytometer was adjusted for counting small liposomes at a size range between 100–150 nm 

by modifying the voltage of the front and side scatter detectors. Furthermore, the overlapping 

fluorescence signals in fluorescence detector one (FL1) and detector two (FL2) of single fluorescently 

labeled liposomes (NBD-DOPE or rhodamine-DPPE) were compensated for the detection of double 

stained vesicles (NBD-DOPE and rhodamine-DPPE). All liposomes were measured at a phospholipid 

concentration of approximately 1 mM analyzing 10,000 vesicles. 

3. Results  

3.1. Expression of EGFR and CEA by Tumor Cell Lines 

A panel of human tumor cell lines was analyzed by flow cytometry for the expression of EGFR and 

CEA (Figure 1). The two human colon carcinoma cell lines LS174T and LoVo showed strong staining 

for EGFR and CEA. Three other cell lines, A549, MCF-7 and SKBR3 showed medium to weak 

expression of the two antigens. The human squamous carcinoma cell line A431 exhibited strong 

expression of EGFR and was negative for CEA. Thus, these cell lines express the two antigens to 

varying extent and should therefore be suitable for the analysis of dual targeting of immunoliposomes. 

3.2. Post-Insertion of Micellar Lipid/Dye Preparations 

For the generation of dual-targeted immunoliposomes we applied the post-insertion of  

Mal-PEG2000-DSPE-micelles conjugated with two scFv' molecules of different specificity. Principally, 

this can be performed with micelles prepared by the simultaneous conjugation of both different 

ligands. Alternatively, the preparation and insertion of individual ligand-coupled micelles can be 

applied, with the insertion performed simultaneously or step-wise. In order to monitor the behavior of 

Mal-PEG2000-DSPE-micelles during the post-insertion into preformed liposomes (plain liposomes), we 

analyzed micelles containing either the fluorescent phospholipid NBD-DOPE (green fluorescence) or 

rhodamine-DPPE (red fluorescence), respectively. During insertion, these lipids will be transferred 

into the liposomes, thus acting as surrogate for the ligand-coupled lipids. Mal-PEG2000-DSPE-micelles 

were prepared containing between 1 to 30 mol% of the fluorescent phospholipid NBD-DOPE  
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(Figure 2a). The size (zeta average) of Mal-PEG2000-DSPE micelles containing 1, 3, 10, and 30 mol% 

NBD-DOPE, respectively, remained stable at around 15 to 18 nm, in accordance with values described 

for PEG2000-DSPE micelles [36]. The size of the plain liposomes was 138 nm with a PDI of 0.11. After 

post-insertion, no micellar structures were detected by dynamic light scattering. The size of the 

liposomes increased slightly to 143–159 nm (Figure 2a). The poly-dispersity index (PDI) of all 

formulations after post-insertion was below 0.2. An increase in fluorescence intensity of the liposomes 

was observed after post-insertion of 1 mol% Mal-PEG2000-DSPE-micelles that directly correlated with 

the amount of dye contained within the micelles (Figure 2b,c). No remaining (free) Mal-PEG2000-

DSPE-micelles were detected via dynamic light scattering implying a complete insertion of micellar 

lipids into the outer layer of the preformed liposomes. 

Figure 1. Flow cytometry analysis of the expression of EGFR and CEA on various tumor 

cell lines (grey filled, cells alone; black line, cells incubated with either anti-EGFR or  

anti-CEA monoclonal antibodies). 

 

Next, we analyzed the effects of inserting two differently labeled micelles (containing 10 mol% 

NBD-DOPE or rhodamine-DPPE, respectively) into preformed liposomes. The post-insertion of 0.03, 

0.1, 0.3, 1 mol% Mal-PEG2000-DSPE-micelles containing either NBD-DOPE or rhodamine-DPPE into 

liposomes caused a concentration-dependent shift in fluorescence intensity (Figure 2d). Thus, insertion 

of NBD-DOPE-labeled micelles caused an increase in green fluorescence and insertion of rhodamine-

DPPE-labeled micelles caused an increase in red fluorescence, respectively. The simultaneous  

post-insertion of both differently labeled Mal-PEG2000-DSPE-micelles into liposomes led to a similar 

concentration-dependent shift of green and red fluorescence intensities. No liposomes exhibiting only 

green or red fluorescence could be detected even at very low concentration of micellar lipid used for 



Antibodies 2012, 1              

 

205

post-insertion (e.g., 0.03 mol% corresponding to approximately 40 to 50 micellar lipids per liposome). 

According to this finding, the post-insertion of differently labeled micelles results in the insertion of 

lipids from both kinds of micelles into one liposome, thus should be applicable for the generation of 

dual-targeted immunoliposomes even at low micelle to liposome ratios.  

Figure 2. Postinsertion of dye-labeled Mal-PEG2000-DSPE-micelles into preformed 

liposomes. (a) Particle size distributions (numbers) of Mal-PEG2000-DSPE-micelles 

containing 10 mol% NBD-DOPE (white), plain liposomes before post-insertion (black), 

liposomes after post-insertion (grey); (b) Titration of micellar NBD-DOPE post-inserted 

into plain liposomes. Liposomes were detected using the flow cytometer showing the 

population of vesicles used for the analysis; (c) Liposomal fluorescence intensity after 

post-insertion using 1 mol% Mal-PEG2000-DSPE-micelles containing indicated amounts of 

NBD-DOPE (0 to 30 mol%); (d) Flow cytometry analysis of liposomes after post-insertion 

using indicated amounts of Mal-PEG2000-DSPE-micelles containing 10 mol% dye  

(NBD-DOPE or rhodamine-DPPE). 
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3.3. Antibody Fragments for the Generation of Immunoliposomes 

For the generation of immunoliposomes, we produced two scFv' fragments containing a C-terminal 

cysteine for side-directed coupling. ScFv' hu225 is directed against human EGFR and scFv' MFE23 is 

directed against human CEA. Both antibody fragments were produced in E. coli and purified from the 

periplasm with yields in the range of 0.2–0.5 mg/L. In SDS-PAGE, the molecules migrated with an 

apparent molecular mass of 30–35 kDa under reducing conditions. Under non-reducing conditions, an 

additional band of approximately 55–60 kDa was visible, indicating the formation of disulfide-linked 

dimers (Figure 3a). Thermal stability of the antibody fragments was determined by dynamic light 

scattering, which revealed a melting point of approximately 62 °C for scFv' hu225 and of 48 °C  

for scFv' MFE23 (Figure 3b). Both antibody fragments were capable of binding to EGFR- and  

CEA-expressing tumor cell lines (LS174T, A549) in a concentration-dependent manner with EC50 

values of 0.3–1 nM for scFv' hu225 and 3–10 nM for scFv' MFE23 (Figure 3). 

Figure 3. Characterization of scFv'-fragments targeting EGFR- or CEA-expressing tumor 

cells. (a) SDS-PAGE analysis of purified anti-EGFR scFv' hu225 and anti-CEA scFv' 

MFE23 analyzed under reducing (red.) or non-reducing (nr) conditions; (b) Thermal 

stability of scFv' hu225 and scFv' MFE23 analyzed by dynamic light scattering; (c) Flow 

cytometry analysis of binding of the two scFv fragments to LS174T and A549 cells. 

 



Antibodies 2012, 1              

 

207

3.4. Immunoliposomes 

In order to determine the amount of scFv-coupled micellar lipids required for a strong 

immunoliposomal binding to target cells, we generated immunoliposomes by inserting between  

0.01 mol% and 1 mol% of scFv-MalPEG2000-DSPE-conjugates. Coupling efficiencies to Mal-PEG2000-

DSPE were approximately 95% for scFv' hu225 and 50% for scFv' MFE23 as determined by  

SDS-PAGE (Figure 4a). Hu225-ILs were generated by post-insertion at 55 °C for 30 min and MFE23-

ILs were generated performing the post-insertion step at 45 °C for approximately 2 h. Both types of 

immunoliposomes (hu225-IL, MFE23-IL) showed a concentration-dependent binding to EGFR- and 

CEA-positive tumor cell lines analyzed by flow cytometry (Figure 4b). For hu225-IL, strongest signals 

were observed using 0.1 to 0.3 mol% inserted lipid. MFE23-ILs showed strong binding with 0.03 to 

0.1 mol% inserted lipid. 

Figure 4. Generation and analysis of monospecific immunoliposomes. (a) Coupling 

efficiency of scFv' hu225 and MFE23 to Mal-PEG2000-DSPE was analyzed by SDS-PAGE 

under reducing conditions. 1, scFv' MFE23; 2, scFv' MFE23 coupled to Mal-PEG2000-

DSPE micelles; 3, scFv' hu225; 4, scFv' hu225 coupled to Mal-PEG2000-DSPE micelles; 

(b) Binding of hu225-IL and MFE23-IL to A549 and LS174T cells. 
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3.5. Dual-Targeted Immunoliposomes 

Because the two scFv' molecules showed different thermal stability, we established a two-step  

post-insertion protocol for the generation of dual-targeted immunoliposomes, which also allowed to 

use different amounts of the two antibody-coupled micellar lipids for insertion (Figure 5). 

Figure 5. Schematic presentation of the generation of dual-targeted immunoliposomes 

applying a two-step post-insertion approach. 

 

In a first step, 0.3 mol% scFv' hu225-coupled lipids were inserted into preformed liposomes at  

55 °C for 30 min. In a second step, 0.03 mol% scFv' MFE23-coupled lipids were then inserted into 

these immunoliposomes at 45 °C for approximately 2 h. Bispecificity of the dual-targeted ILs was 

confirmed by ELISA. CEA was immobilized onto microtiter plates and subsequently incubated with 

liposomes followed by soluble EGFR-Fc fusion protein, which was then detected with an anti-Fc 

antibody (Figure 6). Thus, only liposomes containing anti-CEA and anti-EGFR scFvs in their lipid 
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bilayer are capable of binding both antigens. Accordingly, anti-EGFR-ILs (hu225-IL), anti-CEA-ILs 

(MFE23-IL) as well as non-targeted liposomes (nt) gave no signals in ELISA, while dt-ILs caused a 

concentration-dependent increase in ELISA signal.  

Figure 6. ELISA analyzing the binding of monospecific ILs (hu225-IL, MFE23-IL),  

dual-targeted immunoliposomes (dt-ILs) as well as non-targeted liposomes (nt) to 

immobilized CEA and detection of bound liposomes by incubation with EGFR-Fc and an 

anti-Fc antibody. Only the dt-ILs caused a signal confirming bispecificity. 

 

The dt-ILs as well as the monospecific ILs were then tested for binding to a panel of different tumor 

cell lines (Figure 7). Binding of the monospecific ILs correlated with expression of EGFR and CEA on 

these cell lines. Thus, MFE23-ILs showed strong binding to LS174T, LoVo and A549 cells, while 

weak binding was seen with MCF-7 and no binding with A431 and SKBR3 cells. Hu225-ILs showed 

strong binding to all cell lines except MCF-7 for which only a weak binding was observed. 

Interestingly, the dt-ILs combined the binding activities of the monospecific ILs. Thus, strong binding 

was observed with all cell lines tested. Signals obtained with the dt-ILs were also concentration-

dependent and always similar or slightly better than the signals observed for either hu225-ILs or 

MFE23-ILs alone.  

4. Discussion 

The attachment of two different ligands to nanoparticles offers the possibility to combine two target 

cell specificities within one carrier system. This allows to broaden the specificity for different target 

cells, thus addressing the inter- but also intratumoral heterogeneity, and to improve delivery of a 

payload into the tumor. Here, we adopted the post-insertion method routinely used to generate 

immunoliposomes for the generation of dual-targeted immunoliposomes. The two-step protocol allows 

to vary the coupling and insertion conditions as well as adapting the amount of inserted antibodies for 

each specificity. We found that the two antibody fragments used in this study exhibit different thermal 

stability. Routinely, post-insertion is performed for 30 to 60 min at 55 °C or even higher temperatures, 
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parameters that are mainly influenced by the lipid composition and the phase transition temperature of 

the preformed liposomes [17,20,37,38]. However, this requires that the ligands are stable under these 

conditions. Recently, we found that scFv' molecules with melting points below 50 °C can be inserted 

into PEGylated EPC/Chol liposomes at lower temperatures (37–45 °C) using an extended insertion 

time of 2 to 24 h. Consequently, we performed insertion of the first scFv' molecule (hu225) at 55 °C 

for 30 min followed by insertion of the second scFv' (MFE23) at 45 °C for 2 h. Binding experiments 

confirmed transfer of the scFv molecules into liposomes retaining antigen-binding activity. 

Figure 7. Flow cytometry analysis of binding of monospecific (hu225-IL, MFE23-IL) and 

dual-targeted immunoliposomes (dt-IL) to various tumor cell lines (n = 3). Non-targeted 

(nt) liposomes were included as negative control. 
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Binding experiments performed with the monospecific immunoliposomes revealed that antigen 

binding is dependent on the amount of liposomes but also the amount of inserted antibody molecules. 

Of note, we found that especially at higher lipid concentrations (>100 to 1,000 µM) increased binding 

was observed using lower antibody concentrations, indicating an optimum antibody concentration in 

respect to target cell binding. For the two antibody molecules used in this study, this concentration was 

in the range of 0.03 to 0.3 mol% of inserted scFv-coupled lipid, corresponding to approximately 8 to 

80 scFv molecules per liposome (assuming 100% coupling). In the present study, we used different 

amounts for insertion of the two antibodies, which can be easily adapted by the two-step post-insertion 

protocol. In our experiments with fluorescent-labeled micelles, we found that even at low ratios of 

micellar to liposomal lipids, i.e., 0.03 mol% corresponding to approximately 40–50 micellar lipids, the 

dyes from two different micelles insert into one liposome resulting in liposomes containing both dyes. 

Assuming an aggregation number of approximately 90 [36,39], this indicates that lipids from one 

micelle insert into several liposomes. 

The prepared dual-targeted immunoliposomes exhibited specific binding to cells expressing either 

EGFR or CEA, or both antigens. Interestingly, a comparison of the dual-targeted immunoliposomes 

with the monospecific immunoliposomes did not indicate synergistic or additive binding effects by the 

presence of both antibodies on one liposome. However, the dual-targeted immunoliposomes always 

showed the same or a slightly better binding than either one of the monospecific immunoliposomes. 

This finding clearly shows that the dual-targeted immunoliposomes combine the binding activities of 

the monospecific immunoliposomes within one liposome. Thus, these dual-targeted immunoliposomes 

might be suitable to deliver therapeutic payloads to a panel of different tumor cells expressing EGFR 

and/or CEA. Furthermore, the modular composition and preparation methods allows to use antibodies 

or other ligands against other targets, for example, receptors and cell adhesion molecules on tumor 

cells, cancer stem cells, and cells of the tumor microenvironment [40–42]. Recently, dual-targeted 

liposomes were described using folate and the anti-EGFR monoclonal antibody C225 [31]. These  

dual-targeted liposomes were prepared by a sequential process of DSPE-PEG3350-folate insertion into 

preformed liposomes followed by coupling of the thiolated anti-EGFR IgG to free maleimide groups 

of the Mal-PEG2000-DSPE contained within the liposomes. An enhanced targeting selectivity of the 

dual-targeted liposomes against a cell line expressing EGFR and the folate receptor was reported. In 

another study, dual-targeted immunoliposomes were generated coupling anti-VCAM1 and anti-E-

selectin antibodies to the surface of preformed liposomes [43]. These liposomes demonstrated 

complementary targeting to activated endothelial cells via IL-1 and TNF-induced transient expression 

of VCAM1 and E-selectin. Interestingly, in this study an increased binding of the dual-targeted 

immunoliposomes was observed at a 1:1 ratio of both antibodies, while the attachment of 4- or 8-fold 

amounts of the anti-E-selectin antibody reduced the binding activity to that observed for the 

monospecific immunoliposomes. Similar findings were described for dual-targeted immunoliposomes 

directed against ICAM and ELAM [44]. In this study, it was shown that fluidity of the liposomal 

membrane influences target cell binding. In another study by the same group using liposomes targeting 

the cell adhesion molecules ICAM and E-selectin, it was revealed that cooperative binding was also 

dependent on co-localization of the two cell adhesion molecules within lipid rafts [45]. These findings 

indicate that several parameters including the ratio and mobility of the two ligands present on  

dual-targeted liposomes but also the choice and localization of the antigen on the target cells influence 
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cooperative binding and, thus represent parameters for further development and optimization of  

dual-targeted liposomes. 

5. Conclusions 

Dual-targeted immunoliposomes directed against two tumor-associated antigens can be generated 

using recombinant single-chain Fv fragments and applying the post-insertion method to incorporate 

scFv-coupled PEGylated lipids into preformed liposomes. The step-wise insertion allows to adapt the 

insertion conditions to the thermal stability of the scFv fragments and to adjust the inserted amounts of 

antibody for optimal binding. The dual targeted immunoliposomes combine the antigen specificities of 

the two antibodies allowing targeting of tumor cells expressing either one or both antigens, thus 

broaden the applicability of immunoliposomes for targeting of different tumor cell types and subtypes.  
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