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Abstract: The B cell antigen receptor (BCR)-repertoire is capable of recognizing a nearly unlimited
number of antigens. Inevitably, the random nature of antibody gene segment rearrangement, needed
in order to provide mature B cells, will generate autoreactive specificities. Once tolerance mechanisms
fail to block the activation and differentiation of autoreactive B cells, harmful autoantibodies may
get secreted establishing autoimmune diseases. Besides the hallmark of autoimmunity, namely IgG
autoantibodies, IgM autoantibodies are also found in many autoimmune diseases. In addition to
pathogenic functions of secreted IgM the IgM-BCR expressing B cell might be the initial check-point
where, in conjunction with innate receptor signals, B cell mediated autoimmunity starts it fateful
course. Recently, pentameric IgM autoantibodies have been shown to contribute significantly to
the pathogenesis of various autoimmune diseases, such as rheumatoid arthritis (RA), autoimmune
hemolytic anemia (AIHA), pemphigus or autoimmune neuropathy. Further, recent studies suggest
differences in the recognition of autoantigen by IgG and IgM autoantibodies, or propose a central role
of anti-ACE2-IgM autoantibodies in severe COVID-19. However, exact mechanisms still remain to be
uncovered in detail. This article focuses on summarizing recent findings regarding the importance of
autoreactive IgM in establishing autoimmune diseases.
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1. Introduction

Maintaining physiological homeostasis is crucially dependent on a well-balanced
immune system. Integral to that balance is the avoidance of reacting to self-structures,
so-called autoimmune reactions [1,2]. B cells are fundamental players in humoral immunity
by producing antibodies capable of recognizing a nearly unlimited number of antigens [3].
However, the random nature of providing this enormous B cell antigen receptor (BCR), and
thus antibody-repertoire, inevitably leads to the production of self-reactive B cells [3,4]. In
order to provide an extremely divers BCR repertoire, early B cell progenitors undergo anti-
body gene rearrangement (V—variable, D—diversity, J—joining) in the bone marrow [3].
Autoreactive clones recognizing self-structures with a high autoantigen-affinity undergo
either clonal deletion or receptor editing (central tolerance) [5-7]. Nevertheless, autore-
active B cells that circumvent this mechanism and home to the spleen may be subjected
to peripheral tolerance mechanisms, such as the downmodulation of IgM-class BCR ex-
pression and maintenance of IgD-class expression, rendering these B cells unresponsive to
monovalent autoantigens [8-12]. It has been demonstrated that autoreactive IgD* B cells
can get activated when encountering autoantigens in a polyvalent form (complex) [10-12].
Physiologically, B cells co-express IgM- and IgD-class BCRs and cognate antigen induces
a combination of IgM and IgD-mediated signaling but exact mechanisms are yet to be
uncovered in detail [13].

Most mature B cells have been demonstrated to require the engagement of autoantigen
with their BCR in order to reach the periphery [14,15]. Further, we know an enormous
number of autoantibody-mediated autoimmune diseases with a drastically increasing
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prevalence [1,2,16,17]. In particular, autoantibodies are capable of targeting organ-specific
receptors, such as the acetyl choline receptor (AchR), leading to myasthenia gravis [2], or
induce immune complex-mediated systemic inflammation, such as anti-nuclear-antibodies
(ANA), as in systemic lupus erythematosus (SLE) [18,19].

Interestingly, most diagnosis criteria focus on the presence of IgG autoantibodies
ignoring autoreactive IgM [1,18,20,21]. In contrast, patients that are incapable of class-
switching to IgG, thus only able to produce IgM antibodies (hyper-IgM-syndrome [HIGM])
often show severe autoimmunity [22,23]. Here, autoreactive IgM targeting red blood cells
(autoimmune hemolytic anemia (AIHA)) or thrombocytes (idiopathic thrombocytopenia
purpura (ITP)) lead to a drastic autoimmune phenotype [24,25]. This underlines the
importance of autoreactive IgM in autoimmune pathogenesis.

IgM antibodies either occur in a pentameric state containing a J-chain, or hexam-
eric state not bearing a J-chain and being of very short half-life [26,27]. Since most of
the circulating IgM antibodies do not harbor antigen-affinity increasing mutations by
somatic hypermutation (SHM), the polymeric form compensates a low antigen-affinity
by avidity [26,28]. Further, IgM antibodies are highly potent inflammation drivers due
to the ability of recruiting complement effectively [29-31] (Figure 1). In addition, IgM
antibodies are heavily glycosylated bearing 5 N-linked glycosylation sites with complex or
high-mannose type glycans [32]. In comparison, IgG antibodies only bear one N-linked
glycosylation site at the CH2 domain. Recently, it was shown that the type of glycans
being present is important for the effector function, as anti-T cell IgM severely blocks T cell
proliferation and T cell responses solely when being sialylated [32,33].
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Figure 1. Structure of IgM and IgG antibodies and potential function in autoimmunity. IgM antibody
is shown in a pentameric form containing a J-chain (orange) binding autoantigen (red). IgG monomers
are shown below. N-linked glycosylation sites of antibodies are marked with a blue triangle. Table on
the right shows critical features of antibodies comparing IgM and IgG antibodies.

Taken together, the abundance of autoreactive B cells and unique structure and functions
of IgM antibodies indicate a crucial role in the pathogenesis of autoimmune diseases. The
old IgG autoantibody-centric concept is advancing towards an IgM autoantibody-including
concept considering IgM’s capability of establishing autoimmunity. In this article, we will
discuss recent advances highlighting the role of IgM autoantibodies in autoimmunity.

2. Natural IgM: Self-Reactive House-Cleaning

Autoreactive antibodies that are not directly referred to as harmful autoantibodies
causing autoimmune diseases, are called natural autoantibodies [34]. The most promi-
nent class of natural autoantibodies is represented by natural IgM (nIgM) accounting
for the vast majority of serum IgM [35]. These nIgM antibodies are characterized by a
low antigen-binding affinity as well as strong polyreactivity [36-38]. Interestingly, nigM
antibodies are produced independent of antigen encounter and target mostly harmful
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self-molecules such as advanced glycation end-products (AGE) or oxidized lipids (oxLDL)
in order to limit autoinflammation [30,35,39,40]. This function is important to remove
apoptotic cells and harmful protein aggregates as well as DAMPs (danger-associated molec-
ular patterns) [30,35,39,40]. Further, nIgM antibodies are encoded by limited germline
V(D)J] sequences in the genome of Bl and marginal zone (MZ) B cells [30,39,41,42]. As
mentioned, limitations of the restricted repertoire of nlgM antibodies are overcome by
strong polyreactivity [34]. In contrast, primary IgM occurring in early phases of infections
is thought to be produced by canonical B2 B cells [26].

Several elegant studies have shown that mice lacking nIlgM are highly susceptible to
atherosclerosis, lupus-like syndromes and autoinflammation [30,39,41,42]. In agreement
with mouse data [30], patients suffering from selective IgM deficiency (sigMD) are prone
to develop autoimmune diseases highlighting the importance of nIlgM in homeostasis [43].
In addition, decreased numbers of MZ B cells being the major source of IgM secreting
cells, have been demonstrated to increase the risk for autoimmune diseases most likely by
lowering nIgM titers thus highlighting their importance for homeostasis [44]. Recently, in
a clinically relevant context, it has been demonstrated that nlgM is capable of preventing
thrombosis [45] showing the great therapeutic potential of nigM.

In summary, the absence or dysfunction of nIgM has been demonstrated to be associ-
ated with autoimmune diseases. Importantly, nlgM is not inducible by autoantigens such
as autoreactive primary IgM is, which is specifically targeting self-structures. In contrast to
nlgM, the presence of autoreactive primary IgM (hereafter referred to as autoreactive IgM) is
associated with autoimmune diseases.

3. COVID-19: Autoreactive IgM as Indicator for Disease Severity

The SARS-CoV-2 virus emerging in 2019 that lead to a world-wide pandemic situation
can cause a severe virus-mediated pneumonia (COVID-19) [46]. Further, SARS-CoV-2-
triggered autoimmunity has been intensely debated [47,48]. Several studies found a vast
variety of autoreactive IgG antibodies including ANA-IgG, anti-Ro-IgG or anti-cardiolipin
IgG [49,50]. However, most studies focused on the examination of autoreactive IgG anti-
bodies investigating a potential link of autoantibodies to diseases.

Interestingly, several recent studies linked autoreactive IgM antibodies recognizing
prothrombin [51] or ACE2 [52] directly to COVID-19 disease severity. Emmenegger and
colleagues found that IgM autoantibodies, but not IgG autoantibodies, are associated to
SARS-CoV-2 infection and SARS-CoV-2 antibody response [51]. The study reports IgM
autoantibodies exclusively targeting phosphatidic acid (PA), phosphatidylserine (PS), an-
nexin V (AnV), 32 glycoprotein I (32) and prothrombin (PT). In order to clear damaged
cells, including phospholipid motifs, nIgM is required in sufficient titers. However, since
uninfected subjects did not show anti-phospholipid IgM when compared to SARS-CoV-2
infected individuals, the involvement of nIgM is unlikely. Further, anti-phospholipid IgM
titers correlating with anti-SARS-CoV-2 antibody titers point at infection induced autore-
active primary IgM. Interestingly, anti-prothrombin IgM autoantibodies of SARS-CoV-2
infected individuals do not recognize spike protein since both target proteins share very
limited structural similarities. Thus, cross-reactivity and molecular mimicry can be ex-
cluded, supporting the notion of primary autoreactive IgM. However, anti-PT IgM should
still be able to neutralize PT and thus interfere with blood coagulation contributing to
disease severity.

In summary, the production of autoreactive IgM upon infection that does almost
certainly not belong to the class of nlgM, indicates the presence of an autoreactive canonical
B cell population capable of differentiating into IgM* plasma cells.

However, the exact mechanism of anti-PT IgM generation in SARS-CoV-2 infected
human individuals needs to be uncovered.
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4. TLR7 as an Exemplary Innate Pattern Recognition Receptor for Autoimmune or
Anti-RNA Virus Specific IgM™* B Cell Activation

The unique importance of the IgM BCR signal in triggering an antigen-specific re-
sponse or B-cell lymphoproliferative disorders is well established. In contrast, to what
extent other signal pathways contribute to drive autoreactive IgM* B cells is still not com-
pletely understood. Mounting evidence suggests that in addition to the IgM-BCR itself,
cytokine receptors, receptors mediating cognate T cell-B cell interaction, and last but not
least, innate immune receptors provide the constellation of signals that allow the activation,
survival and expansion of autoreactive B cells [53].

As an example for B cell intrinsic innate immune receptors we will focus on the role
of Toll-like receptor 7 (TLR?). It belongs to the sub-family of innate pattern recognition
receptors that sense nucleic acids. TLR7 has drawn considerable interest because its
ligand (guanosine and ssRNA), its structure and molecular activation mechanisms are
relatively well understood [54]. Recent findings suggest that differences in subcellular
sorting by Unc93b1 and syntenin-1 differentiate an autoimmunity promoting function
of TLR7 from the protective effects of TLRY in murine models [55,56]. New venues of
research to understand its role in autoimmunity have opened by murine models with loss
of function and upregulated TLR7 activity like the yaa model (a chromosomal translocation
that contains the murine TLR7 gene) [57] and most importantly the characterization of a
human TLR7 gain-of-function mutation in a lupus patient and in a mouse strain with the
identical mutation [58]. The patient with lupus symptoms confirms the direct link between
TLR7 and human B cell autoimmunity. The promotion of a lupus phenotype by TLR7
is supported by the fact that a mouse strain with the yaa translocation and therefore an
additional copy of TLR7 developed accelerated symptoms of lupus pathology and anti-
DNA autoantibodies. Consistently, the genetic ablation of TLR7 abolished the development
of spontaneous germinal centers in murine lupus models coinciding with amelioration
of pathogenesis in these models [59]. The new data on the gain-of-function mutation in
the human patient is important because it links pathogenesis with a B cell intrinsic effect
that results in activation of autoreactive B cells in human and mouse. In particular an
experiment where purified B cells (from the gain-of-function TLR7Y24H mice) treated with
BCR crosslinking anti-IgM in vitro react with enhanced survival of B cells is interesting.
It suggests that mutant TLR7 signaling without the addition of TLR7 ligand is directly
enhancing IgM-mediated BCR signaling. The fact that anti-IgM promotes the survival
and induction of genes linked to survival of B cells suggests that in this patient and the
homologous murine model the threshold to autoreactivity in B cells might be overcome by
IgM-BCR signals in conjunction with the enhanced TLR7 signal.

The interplay between BCR and TLR?7 signaling is complex and needs more research
efforts to further our understanding. For example, genetic BCR ablation impairs the capacity
of B cells to proliferate to TLR4 [60,61]; whether TLR? ligand driven proliferation is equally
affected is unknown. Although a role of a MyD88-independent signaling pathway for TLR4
via SYK-AKT-ERK has been established, no information exists if TLR7, which is believed to
exclusively signal through MyD88, is actually behaving similarly.

The other way round, namely the influence of TLR7 towards the BCR signal, is
even less well understood. Interestingly, the TLR7Y?%*H mutant results in increased IgM-
mediated proliferation in vitro, without TLR7 ligand engagement [58]. It is possible that
a higher sensitivity of mutant TLR7 to recognize guanosine or endogenous RNA species
might result in an elevated cooperative signal with IgM.

With regard to the role of IgM™ B cell response and TLR7 in SARS-CoV-2 infection, new
aspects came recently into focus. The question needs to be addressed whether autoreactive
IgM is part of the pathology of COVID-19 or long covid symptoms, which affect between
5.8 (vaccinated) and 7% (not-vaccinated) of infected patients. Surprisingly, genetic analysis
of young brothers who developed severe COVID-19 identified for the first-time humans
with TLR7-deficiency [62]. At present, it is not clear whether the TLR? loss of function
results in a pleiotropic immunodeficiency or is dominated by a B cell intrinsic effect of
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TLR7. However, various RNA-virus models of TLR7-deficient mice, including murine
endogenous retrovirus, demonstrated that TLR7 is absolute essential to mount a RNA-virus
specific B cell response [63]. It would be interesting if the severe COVID-19 outcome of
TLR7-deficient human patients is due to an impaired anti-SARS-CoV-2 B cell response.

5. Autoreactive IgM: First Step in Establishing Autoimmune Diseases?

For decades, diagnosing autoantibody-borne autoimmune diseases was focused
on detecting certain autoreactive IgGs (see above) [1,2]. However, several recent stud-
ies supported a drastic shift in the view of the involvement of IgM autoantibodies in
autoimmune diseases.

An example is the current view of the pathogenesis of bullous pemphigoid disease,
which was thought to be exclusively restricted to IgG autoantibodies [64]. In brief, bullous
pemphigoid is characterized by skin lesions and itchy bullae caused by autoantibodies tar-
geting components of hemidesmosomes [64]. However, Hirano et al. recently showed that
bullous pemphigoid can be exclusively caused by autoreactive IgM [65]. By using super-
resolution imaging, the authors detected BP180 as the cognate autoantigen of the reported
IgM autoantibodies. Further, histological analyses confirmed the notion of anti-BP180 IgM
being involved in bullae formation. Thus, anti-BP180 IgM is capable of binding its autoanti-
gen with sufficient affinity and avidity sterically hindering hemidesmosome formation.
This fact opens up speculations about the origin of anti-BP180 IgM that possibly under-
went affinity maturation during germinal center reaction, or at extrafollicular sites [66-70].
Further, the efficient recruitment of complement by IgM could further promote skin inflam-
mation more drastically than IgG autoantibodies. Consequently, the authors suggest a new
sub-class of pemphigoid disease, namely IgM pemphigoid, further supporting a shifting of
the view towards autoreactive IgM causative for autoimmune diseases.

Another autoimmune disease where autoreactive IgG is a hallmark for diagnosis is
resembled by rheumatoid arthritis (RA) [71]. Here, IgG autoantibodies binding to citrul-
linated (ACPA), acetylated or carbamylated self-antigens are classified as anti-modified
protein antibodies (AMPA) [72]. Whether AMPA IgG require excessive somatic hyper-
mutation (SHM) in order to bind modified proteins in a cross-reactive manner has been
debated intensely. Interestingly, Reijm et al. [73] have suggested that AMPA IgG might
originate from AMPA IgM possessing germline configuration. The authors further show
that AMPA IgM detected in RA patients can readily bind modified self-proteins and thus
induce pathology. In addition, when expressing AMPA IgM as AMPA IgG, modified
self-protein binding was lost, indicating a crucial role of the pentameric structure of AMPA
IgM. Together, these results imply that AMPA IgM occurs early in RA development leading
to joint damage, thus establishing the disease whilst further autoreactive B cells switch to
IgG and perform SHM and eventually secrete AMPA IgG.

The concept of IgM autoantibodies as pathogenic and causative drivers of autoimmune
diseases is further supported by a recent study reporting on therapeutic plasma exchange
in patients suffering from autoimmune neuropathy [74]. In this study, a group of small fiber
neuropathy (SNF) patients associated with trisulfated heparan disaccharide (TS-HDS) IgM
autoantibodies were treated by plasma exchange. Strikingly, the depletion of TS-HDS IgM
autoantibodies in these patients lead to a reduction of symptoms such as lower extremity
parasthesia by over 70%. Thus, the results of Olsen et al. [74] indicate that TS-HDS IgM is
responsible for symptoms observed in SNF.

Furthermore, Kawakami and colleagues [75] recently tested if anti-phosphatidyl-
serine/prothrombin complex (PS/PT) IgM autoantibodies are capable of causing cuta-
neous ulcers in patients with cutaneous vasculitis. The authors demonstrated that rats
injected with anti-PS/PT IgM developed cutaneous vasculitis showing that anti-PS/PT
IgM autoantibodies as direct cause for disease.

In addition to studies showing autoantigen-specific [gM causative for pathology in
certain autoimmune diseases, patients suffering from HIGM are also prone to developing
autoimmune diseases. In particular, HIGM patients only possess polyreactive IgM being



Antibodies 2023, 12, 4

60f 11

incapable of removing potential autoreactivity by SHM. For instance, recent studies have
shown that HIGM patients can develop primary biliary cholangitis (PBC) caused by anti-
MIT3-IgM autoantibodies not present in healthy subjects [76,77].

In sum, several recent studies showing that autoreactive IgM can be the first step in
establishing autoimmune diseases highlight the opportunity of early screening by using au-
toreactive IgM as a diagnostic marker. Consequently, testing patients with mild symptoms
in early disease phases for autoreactive IgM, that would normally not receive treatment
due to the lack of IgG autoantibodies, could open up a therapeutic intervention window.

6. Conclusions and Outlook

The beneficial effects of nIlgM targeting harmful and altered self-molecules, such as
oxidized lipids, have been studied extensively [35]. For instance, nlgM has been shown to
protect from thrombosis or atherosclerosis [41,45]. Importantly, nIlgM is produced antigen
encounter-independently and possesses a strong polyreactivity being capable of binding
dsDNA [30,36].

However, in healthy individuals the nIgM repertoire is devoid of specificities that
specifically target cell surface receptors. Autoreactive IgM antibodies that bind for in-
stance BP-180 as in pemphigus [65], are referred to as acquired autoreactive IgM and do
not belong to the nlgM compartment. This class of antibodies binds autoantigens and
consequently affects its functions or leads to cell elimination [26]. Several recent studies
have demonstrated that autoreactive IgM can be causative for autoimmune symptoms as
anti-BP180 IgM leads to IgM pemphigoid [65], anti-PT IgM antibodies interfere with blood
coagulation in severe COVID-19 patients [51,78], or AMPA-IgM as disease driver in RA [73].
In conclusion, these studies and others indicate that autoreactive IgM is capable of causing
autoimmune diseases in the absence of IgG autoantibodies (Figure 2). Thus, assessing IgM
autoantibody titers in patients presenting with autoimmune symptoms might help to find
an adequate treatment faster.
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Figure 2. Autoreactive IgM in establishing autoimmunity. Model of how initial TLR7 signals induce
autoreactive B cell activation of self-reactive B cells. In a subsequent first wave, autoreactive B cells
produce IgM autoantibodies binding to self-antigens thereby inducing neutralization of targets or
tissue damage. Consequently, tissue damage establishes an inflammatory environment leading to
the activation of further self-reactive B cells. In the end, autoreactive IgM is capable of causing
autoimmune diseases without the presence of IgG autoantibodies.

If the hypothesis holds water that IgM* B cells are involved in the primary step to
autoimmunity, and their activation is dependent on TLR7 ligands conveying an aberrant
signal to these cells, pharmacological suppression could be beneficial for the plethora of
IgM mediated autoimmune diseases discussed. At present, at least three independent
research groups came up with antagonistic/inhibitory small molecules and a TLR7 specific
monoclonal antibody to suppress TLR7 activation [79-81]. It would be most informative to
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analyze IgM autoantigen levels in autoimmune models and patients undergoing treatment
with this TLR7 inhibiting reagents.

Since it has been shown that TLR7 gain-of-function mutations [58] lead to lupus-like
diseases in humans and mice, it is conceivable that TLR7 together with BCR signaling
initiate the activation of autoreactive B cells and differentiation into short-lived IgM*
autoreactive plasma cells (SLPC). In early disease phase, the rapid and strong activation of
autoreactive B cells and the possible absence of T cell help prior to GC-entry [82,83], might
result in a massive production of autoreactive IgM. Depending on the autoantigen targeted
by autoreactive IgM, these autoantibodies could act by different effector mechanisms.

The mechanisms by which IgM autoantibodies induce pathology might differ from
effects that IgG autoantibodies with identical specificities exert on targets. First, the pen-
tameric structure of IgM and the lack of Fab flexibility, compared to the highly flexible
hinge region of IgG [84], could alter the mobility of cell surface receptors bound by anti-
bodies. For instance, IgM autoantibodies binding to components of tight junctions as in
pemphigus, could block cell-cell interactions more efficiently than IgG autoantibodies due
to its relative stiffness.

Second, IgM antibodies are efficient in forming immune complexes due to their pen-
tameric structure and often polyreactivity. This feature might be particularly relevant when
targeting soluble autoantigens, such as PT or PA, as described in COVID-19 patients [51].
In particular, anti-PT/PA IgM autoantibodies might be capable of binding high numbers of
self-molecules at once, form immune complexes efficiently and deplete the self-molecules
from circulation via uptake by macrophages [85]. Thus, COVID-19 patients could lose
enormous numbers of PT molecules rapidly leading to severe effects on blood coagulation.

Third, IgM has been shown to recruit complement more efficiently compared to
IgG [26,86]. Thus, complement-mediated tissue damage might be enhanced when IgM is
the isotype of autoantibody present.

Since the effects of IgM autoantibodies are yet poorly understood, several questions
besides disease-specific mechanisms arise:

(1) Do all antibody-mediated autoimmune diseases that get diagnosed by the presence of
IgG autoantibodies show early phases of IgM autoantibodies?

(2) Do IgM autoantibodies showing identical specificity as IgG autoantibodies induce
different symptoms?

(3) How are IgM* B cells allowed to differentiate into IgM-secreting plasma cells?

(4) What is the role of TLR7 in the activation of autoreactive B cells eventually secreting
IgM autoantibodies?

In sum, there is a growing body of evidence suggesting that TLR7 is capable of
controlling the activation of autoreactive IgM* B cells. Further, autoreactive B cells that
differentiate into IgM autoantibody-secreting plasma cells might cause a vast variety of
autoimmune diseases via pathogenic IgM autoantibodjies.
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