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Abstract: Anti-beta 2 glycoprotein 1 (anti-β2GP1) antibodies are commonly found in patients
with autoimmune diseases such as the antiphospholipid syndrome (APS) and systemic lupus
erythematosus (SLE). Their presence is highly associated with increased risk of vascular thrombosis
and/or recurrent pregnancy-related complications. Although they are a subtype of anti-phospholipid
(APL) antibody, anti-β2GP1 antibodies form complexes with β2GP1 before binding to different
receptors associated with anionic phospholipids on structures such as platelets and endothelial cells.
β2GP1 consists of five short consensus repeat termed “sushi” domains. It has three interchangeable
conformations with a cryptic epitope at domain 1 within the molecule. Anti-β2GP1 antibodies against
this cryptic epitope are referred to as ‘type A’ antibodies, and have been suggested to be more strongly
associated with both vascular and obstetric complications. In contrast, ‘type B’ antibodies, directed
against other domains of β2GP1, are more likely to be benign antibodies found in asymptomatic
patients and healthy individuals. Although the interactions between anti-β2GP1 antibodies, β2GP1,
and platelets have been investigated, the actual targeted metabolic pathway(s) and/or receptor(s)
involved remain to be clearly elucidated. This review will discuss the current understanding of
the interaction between anti-β2GP1 antibodies and β2GP1, with platelet receptors and associated
signalling pathways.

Keywords: anti-beta 2 glycoprotein 1 antibodies; beta 2 glycoprotein 1; platelet; antiphospholipid
antibody; antiphospholipid syndrome; systemic lupus erythematosus

1. Introduction

Anti-phospholipid (APL) antibodies are a heterogeneous group of autoantibodies targeting
different phospholipid binding protein antigens. These autoantibodies include lupus anti-coagulant
(LAC), anti-cardiolipin (aCL), anti-beta 2 glycoprotein 1 (anti-β2GP1), and anti-prothrombin
antibodies [1]. APL antibodies dysregulate normal cellular activities and are associated with recurrent
thrombosis (venous, arterial, and microvascular), pregnancy complications (e.g., obstetric failure,
pre-eclampsia and eclampsia), and non-specific manifestations (e.g., thrombocytopenia, heart valve
disease, chorea, livedo reticularis/racemosa, and nephropathy) [2]. APL antibodies are also present in
1%–5% of healthy populations, including children [3,4]. These populations appear to be asymptomatic,
since their autoantibodies are associated with low reactivity [4].

Persistently high levels of APL antibodies, together with specific clinical manifestations, are
required for the diagnosis of antiphospholipid syndrome (APS) [1]. APS can occur in isolation or
in association with underlying autoimmune diseases such as systemic lupus erythematosus (SLE).
The Sydney criteria for the diagnosis of APS recommend that three standard diagnostic assays are
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used to detect APL antibodies [5]. These diagnostic assays include two enzyme-linked immunosorbent
assays (ELISA) that directly detect APL antibodies binding to cardiolipin-β2GP1 complexes, or β2GP1
only. The third is a clotting assay which indirectly detects APL antibodies by measuring their
functional effects on the coagulation system (LAC activity, Table 1) [1,3,6]. Although these assays detect
overlapping subpopulations of autoantibodies, their correlation with the clinical manifestations of APS
can be varied. LAC assays are superior for detecting pathological subpopulations of APL antibodies
when the quality of plasma is maintained [7]. ELISAs for aCL and anti-β2GP1 antibodies, however, are
weakly associated with thrombotic complications. This may be due to poor standardisation of assays,
variable sources and the integrity of β2GPI, the secondary calibration process, and/or the assessment
and derivation of cut-off values [8]. Consequently, a combination of these tests is used to determine the
clinical risk. Patients with persistently high APL antibodies titres (positive in ELISA) and positive LAC
activities on at least two occasions, 12 weeks apart, are at higher risk of thrombosis and/or pregnancy
complications [1].

The criteria for the diagnosis of APS are well established, yet the interactions between APL
antibodies, targeted antigens, and receptors remain unclear. Anti-β2GP1 antibodies and their target,
β2GP1, have become a focus of research for their potential role in thrombosis and pregnancy
complications [9]. β2GP1-dependent LAC antibodies demonstrate a stronger correlation with
thrombosis compared to β2GP1-independent LAC antibodies [10,11]. Similarly, β2GP1-dependent
aCL antibodies are more highly associated with APL antibodies-related complications compared to
transient β2GP1-independent aCL antibodies induced by infections [12]. Many potential mechanisms
of interaction between anti-β2GP1 antibodies, β2GP1, and cells—e.g., platelets, endothelial cells and
monocytes—have been suggested [13]. However, studies investigating the effects of anti-β2GP1
antibodies and β2GP1 on platelets [14–16] may help lead to an improved understanding of their
interactions, and consequently, their impact on the haemostatic system [17]. Activation of platelet
receptor(s)/metabolic pathway(s) by anti-β2GP1 antibodies and β2GP1 may result in excessive clot
formation and potentially initiate thrombosis and/or pregnancy complications [14–16]. Therefore, this
review discusses the current understanding of the characteristics and interactions between β2GP1 and
anti-β2GP1 antibodies in relation to platelet receptors and function.

Table 1. Detection of anti-phospholipid antibodies and their clinical significance.

Assays Principle of
Detection Antibodies Detected Clinical Significance [5]

LAC Clotting assay
LAC (mainly against

β2GP1 and
prothrombin)

‚ Strong correlation with thrombosis [18] and
pregnancy morbidity [19].

aCL antibody Immunological
assay

aCL antibody
(IgG, IgM, IgA)

‚ Weak correlation with thrombosis and pregnancy
morbidity [5,20].

‚ Possible false positive in IgM assay caused by
rheumatoid factor or cryoglobulins [21,22].

‚ IgA assay only useful to identify patient subgroups
with specific clinical manifestations [5].

Anti-β2GP1
antibody

Immunological
assay

Anti-β2GP1 antibody
(IgG, IgM, IgA)

‚ Independent risk factor for thrombosis [23] and
pregnancy complications [24].

‚ Higher specificity and lower inter-laboratory
variation compared to aCL assay [5].

‚ Clarifies pre-eclampsia and/or eclampsia in
pregnant women with negative aCL [24].

‚ Possible false positive in IgM assay caused by
rheumatoid factor or cryoglobulins [5].

‚ Presence of IgA might not associate with any
clinical manifestation [5].
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Table 1. Cont.

Assays Principle of
Detection Antibodies Detected Clinical Significance [5]

Anti-prothrombin
antibody

Immunological
assay

Anti-prothrombin
and anti-

phosphatidylserine-
prothrombin complex

‚ May serve as a confirmatory assay for LAC [25].
‚ Association with thrombotic risk still needs to be

clarified [5].

Information collated from Miyakis et al. (2006) [5]. Abbreviations: LAC, lupus anti-coagulant; aCL antibody,
anti-cardiolipin antibody; Ig, Immunoglobulin; anti-β2GP1 antibody, anti-beta 2 glycoprotein 1 antibody.

2. β2GP1

APL antibodies were originally thought to bind directly to phospholipids [26]. In the 1990s, three
independent groups demonstrated that APL antibodies actually interacted with phospholipids via
β2GP1 [27–29], significantly raising the interest in this protein. β2GP1 had been discovered earlier
in 1961 [30], and its amino acid sequence determined in 1984 [31]. It was misnamed apolipoprotein
H [32], since it is not an integral part of lipoproteins. Once synthesised in the liver and placenta, β2GP1
circulates in blood at a concentration of approximately 4–5 µM. Blood levels of β2GP1 are higher in
older individuals and in patients with APS, but are lower in pregnant women and patients with stroke
and myocardial infarction [33].

β2GP1 is an evolutionarily conserved single chain anionic phospholipid-binding glycoprotein,
with a molecular weight of approximately 43 kDa [34–36]. It belongs to the complement control protein
superfamily [37] and consists of 326 amino acids that are arranged in five short consensus repeat,
termed “sushi” domains [31,38,39]. The first four domains, each comprising approximately 60 amino
acids, are conserved sequences linked together by two disulfide bridges. The fifth domain (DV),
however, is a modified form with 82 amino acids. It contains a six residue insertion, a 19-amino
acid C-terminal extension and an additional disulfide bond that includes a C-terminal cysteine.
These positively charged lysine-rich amino acids (282–287) determine the affinity of β2GP1 for anionic
phospholipids and negatively charged molecules. DV also adopts a flexible hydrophobic loop (amino
acids 311–317), containing a Trp-Lys sequence which is potentially able to insert into membranes.
β2GP1 has four N-glycosylation sites (Arg143, Arg 164, Arg 174, and Arg 234) located in third domain
(DIII) and fourth domain (DIV). There is also one O-linked sugar on Thr130 in β2GP1 that accounts for
approximately 20% w/w of the total molecular mass [40].

2.1. Conformations of β2GP1

β2GP1 adopts many post-translational modifications which alter the structure and function
of the molecule and the exposure of the cryptic epitope [41]. Among them, three interchangeable
conformations are more commonly reported (Figure 1). The first conformation was reported by two
groups [38,42] based on the crystal structure of the protein. In this conformation, first four domains
are stretched with DV at a right angle to the other domains, resembling a J-shape, fish-hook or ‘hockey
stick’ conformation. The second reported conformation is S-shaped, as demonstrated using small-angle
X-ray scattering [43]. This conformation contains carbohydrate chains from DIII–IV that are twisted
and positioned on DI. The third conformation is a common ‘closed’ circular formation present in
plasma where DI interacts with DV. This circular formation was initially proposed by Koike et al.
in 1998 [44], and later directly visualised by Agar et al. (2010) using electron microscopy [41].
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Figure 1. The interchangeable conformations of beta-2-glycoprotein 1 (β2GP1). β2GP1 is able to 
transform between three conformations: J-shaped, S-shaped, and circular β2GP1. Cryptic epitopes in 
S-shaped are shielded by carbohydrate chains [43]. Whereas, cryptic epitopes in circular β2GP1 are 
shielded by both carbohydrate chains and domain V [41,44]. Binding of domain V positively charged 
amino acids and hydrophobic loop to phospholipid membrane breaks the shield on domain I [41]. 
This exposes the cryptic epitope and allows the binding of clinically significant anti-domain-I-β2GP1 
antibody. 

2.1.1. Transformation between β2GP1 Conformations 

The discovery of three interchangeable β2GP1 structures led to increased understanding of the 
interaction between anti-β2GP1 antibodies and β2GP1. These conformational alterations determine 
the exposure of the cryptic epitope which includes arginine 39–arginine 43 (R39–R43), DI–II 
interlinker, and possibly aspartic acid residues at positions 8 and 9 [45]. Anti-domain-I-β2GP1 (anti-
DI-β2GP1) antibodies targeting this discontinuous epitope are highly associated with APL antibodies-
related clinical manifestations [46,47]. 

β2GP1 is suggested to circulate in an S-shaped or a circular conformation, with less than 0.1% of 
β2GP1 in circulation present in the J-shaped conformation [41,47]. The cryptic epitope in both S-
shaped and circular β2GP1 is shielded by carbohydrate chains positioned on top of DI [43,48]. In 
circular β2GP1, these negatively-charged carbohydrate chains are also proposed to neutralise the 
positively-charged DI, allowing the binding of DV [47]. Therefore, S-shaped β2GP1 may represent an 
intermediate form of the molecule as it transforms from a circular to J-shaped conformation [47]. 
When positively charged amino acids and hydrophobic loop in DV interact with anionic surfaces, 
β2GP1 opens out to the J-shaped conformation, breaking the shield on DI and exposing the cryptic 
epitope [41]. 

2.1.2. Factors Affecting β2GP1 Conformation 

The conformation of β2GP1 is dependent on its interaction with anionic surfaces. Its affinity 
decreases in the presence of ethylene-diamine-tetra-acetic acid (EDTA) [49], and high concentrations 
of bivalent cations—e.g., calcium and magnesium ions [50]. β2GP1 that has been cleaved at DV is also 
known to have lower affinity [51]. Conversely, dimerisation [52] and increasing β2GP1 concentration 

Figure 1. The interchangeable conformations of beta-2-glycoprotein 1 (β2GP1). β2GP1 is able to
transform between three conformations: J-shaped, S-shaped, and circular β2GP1. Cryptic epitopes
in S-shaped are shielded by carbohydrate chains [43]. Whereas, cryptic epitopes in circular β2GP1
are shielded by both carbohydrate chains and domain V [41,44]. Binding of domain V positively
charged amino acids and hydrophobic loop to phospholipid membrane breaks the shield on
domain I [41]. This exposes the cryptic epitope and allows the binding of clinically significant
anti-domain-I-β2GP1 antibody.

2.1.1. Transformation between β2GP1 Conformations

The discovery of three interchangeable β2GP1 structures led to increased understanding of the
interaction between anti-β2GP1 antibodies and β2GP1. These conformational alterations determine
the exposure of the cryptic epitope which includes arginine 39–arginine 43 (R39–R43), DI–II interlinker,
and possibly aspartic acid residues at positions 8 and 9 [45]. Anti-domain-I-β2GP1 (anti-DI-β2GP1)
antibodies targeting this discontinuous epitope are highly associated with APL antibodies-related
clinical manifestations [46,47].

β2GP1 is suggested to circulate in an S-shaped or a circular conformation, with less than 0.1%
of β2GP1 in circulation present in the J-shaped conformation [41,47]. The cryptic epitope in both
S-shaped and circular β2GP1 is shielded by carbohydrate chains positioned on top of DI [43,48].
In circular β2GP1, these negatively-charged carbohydrate chains are also proposed to neutralise the
positively-charged DI, allowing the binding of DV [47]. Therefore, S-shaped β2GP1 may represent
an intermediate form of the molecule as it transforms from a circular to J-shaped conformation [47].
When positively charged amino acids and hydrophobic loop in DV interact with anionic surfaces,
β2GP1 opens out to the J-shaped conformation, breaking the shield on DI and exposing the cryptic
epitope [41].

2.1.2. Factors Affecting β2GP1 Conformation

The conformation of β2GP1 is dependent on its interaction with anionic surfaces. Its affinity
decreases in the presence of ethylene-diamine-tetra-acetic acid (EDTA) [49], and high concentrations
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of bivalent cations—e.g., calcium and magnesium ions [50]. β2GP1 that has been cleaved at DV
is also known to have lower affinity [51]. Conversely, dimerisation [52] and increasing β2GP1
concentration [50] elevate its affinity. Besides exposure to anionic surfaces, alternations to pH and salt
concentration in vitro allow structural transformation of β2GP1 [41]. High pH and salt concentrations
convert circular β2GP1 into the J-shaped conformation, and vice versa at a low pH and salt concentration.
It has also been speculated that these alterations in pH and salt concentration possibly affect the
hydrophilic interaction that may be present between DI and DV [41].

APS patients have been proposed to have higher oxidative stress compared to healthy
individuals [53]. Oxidative stress favours disulfide bonding between Cys32 and Cys60 (located
at DI) and within Cys288 and Cys326 (located at DV) of β2GP1. These bonds potentially encourage the
binding of anti-β2GP1 antibodies to β2GP1, and might lead to thrombus formation. Oxidation and
biotinylation of β2GP1 glycan chains also induce β2GP1 dimerisation, which raises β2GP1 affinity [54].
Additionally, it is speculated that the intramolecular interaction and conformation of β2GP1 can be
affected by increased sialylation of β2GP1 glycan structures [55].

Lastly, the structure of β2GP1 can be inherently diverse. Among the four allelic variants, β2GP1
Val/Val genotypes were frequently found to co-exist with anti-β2GP1 antibodies [56]. It has also
been proposed that the Val247 variant of circular-β2GP1 is easier to transform into J-shaped β2GP1
after losing the electrostatic interaction between Glu228 (located in DIV) and Lys308 (located in
DV) [57]. Thus, this transformation exposes the cryptic epitope for antibody binding and raises the
risk of thrombosis.

2.2. Physiological Role(s) of β2GP1

The precise physiological role of β2GP1 is unknown. β2GP1-deficient individuals appear to be
healthy, suggesting that β2GP1 function might not be essential for life [58]. However, the disulphide
bonds and phospholipid binding sites in β2GP1 are highly conserved across the animal kingdom [36].
Therefore, it is very unlikely that this abundant and well-conserved molecule exists without a function.

Although β2GP1-deficient individuals do not have an associated haemostatic abnormality, many
functions in the regulation of haemostasis have been attributed to β2GP1. First, β2GP1 has been
demonstrated to inhibit adenosine diphosphate (ADP)-mediated platelet aggregation and serotonin
secretion [59,60]. Second, β2GP1 might be a mediator for von Willebrand factor (vWF) activation
and clearance. β2GP1 has been reported to bind to the A1-domain of vWF, preferably vWF in
a glycoprotein (GP) Ib-binding conformation. This low affinity binding allows the formation of
disulfide bridges between β2GP1 and vWF. Thus, the disulfide bridges prevent vWF-mediated platelet
activation [15] and potentially protect the cleavage of vWF by the vWF protease, a disintegrin and
metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) [61]. Thirdly, β2GP1
has also been demonstrated to be involved in several coagulation pathways, yet these effects remain to
be elucidated [60].

β2GP1 has been suggested to be a general scavenger in circulation [62,63]. During apoptosis or
cellular activation, the reorganisation of the plasma membrane exposes phosphatidylserine on the cell
surface. β2GP1 binds to phosphatidylserine expressed on these apoptotic cells [62], as well as platelet
microparticles [63], to assist their phagocytosis by macrophages. In addition, β2GP1 is also involved in
innate immunity as demonstrated by the insertion of DV of β2GP1 into bacterial membranes that can
lead to cytosol leakage and death of bacteria [64]. β2GP1 also changes its conformation while binding
to lipopolysaccharide on Gram-negative bacteria, forming a complex which allows recognition and
clearance by monocytes [65]. Finally, β2GP1 might be important in embryonic development, as the
percentage of null offspring born in β2GP1 knock-out mice is lower than expected [66].

In summary, β2GP1 has been proposed to be involved in a range of physiological processes,
including clot formation, fibrinolysis, cell activation, immune responses, atherosclerosis, apoptosis,
angiogenesis, and fetal loss [60]. Further research is clearly warranted to determine the precise
physiological role(s) of β2GP1.
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3. Anti-β2GP1 Antibodies

By itself, β2GP1 has no deleterious effect on normal cellular function, but rather interferes with
the physiological function of cells following binding with anti-β2GP1 antibodies. Therefore, it has
been proposed that anti-β2GP1 antibodies induce a new function for β2GP1 [67]. The affinity of
β2GP1 is low and only binds to anionic phospholipids below a certain concentration [41,48]. Upon
binding with anionic phospholipids, it transforms into the J-shaped conformation and exposes the
cryptic epitope located at DI which enables antibodies to bind. When the amount of β2GP1 bound to
anionic phospholipid membrane reaches a certain density, antibodies dimerise the adjacent β2GP1
molecules [48]. This dimerisation forms a high affinity anti-β2GP1-β2GP1 complex, activating targeted
cells and causing APL antibodies-related manifestations.

3.1. Clinical Significance of Anti-β2GP1 Antibodies

The presence of anti-β2GP1 antibodies, especially those with LAC activity, is highly associated
with increased thrombotic risk compared to other APL antibody subgroups [10,11]. APS patients
have higher levels of platelet activation as reflected by raised urinary thromboxane metabolites [68].
Moreover, the co-existence of J-shaped β2GP1 and anti-β2GP1 antibodies prolongs the activated partial
thromboplastin time of normal plasma, compared to J-shaped β2GP1 alone [41], suggesting that
anti-β2GP1 antibodies also affect secondary haemostasis. Conversely, 40% of APS patients have a
prolonged bleeding time without an accompanying bleeding tendency [69]. Although there is no
clear explanation for these contradictory findings, it suggests that anti-β2GP1 antibodies affect normal
haemostatic function.

The contribution of anti-β2GP1 antibodies to placental-related pregnancy complications remains
controversial. A systematic review and meta-analysis reported that there were insufficient data to
support an association between anti-β2GP1 antibodies and pregnancy complications [70]. However, an
in vitro study demonstrated that anti-β2GP1 antibodies stimulate trophoblasts to increase secretion of
vascular endothelial growth factor, placental growth factor, and soluble endoglin, leading to a higher
risk of obstetrical complication [71]. Furthermore, anti-β2GP1-β2GP1 complexes have been suggested
to disrupt the anticoagulant shield formed by annexin A5 on vascular cells [72]. Thus, patients could be
predisposed to placental thrombosis that may result in fetal growth restriction and/or pregnancy loss.

3.2. Etiology of Anti-β2GP1 Antibodies

The etiology of anti-β2GP1 antibodies remains unclear. Both genetic and environmental factors
may contribute to their production [2,73]. Various animal models and family/population studies
have indicated that several human leukocyte antigen genes are associated with the occurrence of
APL antibodies and the development of thrombosis [74–76]. These pathogenic antibodies are thought
to be produced by activated auto-reactive T and B cells due to the similarity between foreign and
self-protein/peptide sequences (molecular mimicry) [77]. Viruses, bacteria, mycoplasma and parasites
with the same amino acid sequences can also initiate antibody production [78]. However, this
theory is unable to clearly explain the etiology, as antibodies are also produced by injecting anionic
phospholipids such as cardiolipin, phosphatidylserine, or lipopolysaccharide into animals [79,80].

Anti-β2GP1 antibodies might be naturally occurring antibodies, as benign and low affinity APL
antibodies are found in 1%–5% of healthy individuals [3,81]. The mechanism(s) of transition of
anti-β2GP1 antibody from benign to pathogenic are unknown, however there is evidence to suggest
that this may be induced by infection. β2GP1 binds to pathogenic phospholipids such as protein H
from Streptococcus pyogenes [82], causing conformational change, exposure of the cryptic epitope, and
inducing production of pathogenic anti-DI-β2GP1 antibodies. The conformation of β2GP1 is also
susceptible to many factors and may trigger the synthesis of antibodies. Similarly, antibody production
can be prompted by ageing, vaccination, drugs, and malignancies. Their association with clinical
manifestations, however, requires further investigation [2,73].
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3.3. The Two Hit Hypothesis

The detection of anti-β2GP1 antibodies in healthy individuals [3,4], APS, and SLE patients without
complications [83] indicates that the antibody alone is insufficient for the pathogenesis of APS. It is
proposed that a “first-hit” injury primes the endothelium, and a “second-hit” injury triggers thrombus
formation. Studies have shown that anti-β2GP1 antibodies infused into mice only initiate thrombus
formation following vessel-wall injury [84,85]. Endothelium priming involves vessel-wall injury,
infection, recent surgery [86], and rarely, the disturbance of redox balance in the vascular milieu [53].
Once primed, the “second-hit” injury, such as smoking, immobilisation, pregnancy, malignancy, etc.,
stimulates the development of thrombosis [87].

3.4. Types of Anti-β2GP1 Antibodies

The two hit hypothesis has been proposed to be a good model for the pathogenesis of APS [4].
Yet, it cannot clarify why APL antibodies present in healthy individuals are not pathogenic. Some
studies suggest that this could be due to differences in the targeted epitope [10,48] and the structure of
anti-β2GP1 antibodies [4]. Anti-β2GP1 antibodies isolated from primary APS patients are considered
to be poly-reactive, as they have been found to react against several domains of β2GP1, such as DV
(52.9%–64.6%), DIV (45.8%), DI–II (33.1%), and DIII (20.5%) [88]. Anti-DI-β2GP1 antibodies recognising
the cryptic epitope of DI (Type A) in symptomatic APS patients are strongly associated with thrombotic
history and positive LAC activity [10]. Conversely, antibodies that are directed against other domains
(Type B) in healthy populations are weakly correlated with thrombosis. These more benign type B
antibodies also have lower avidity compared to those pathogenic type A antibodies [89].

Besides binding epitopes, anti-β2GP1 antibodies can be classified according to immunoglobulin
(Ig) isotype; i.e., IgG, IgM, and IgA. Among these, anti-β2GP1 IgG antibodies are more strongly
associated with the manifestations of APS [1]. Furthermore, different subclasses of anti-β2GP1 IgG
antibodies, predominantly IgG2 and IgG3, have also been identified in APS patients and healthy
children, respectively [4]. IgG3 is the most effective activator for the classical complement pathway,
hence leading to increased C3c (a complement component) activation and binding to anti-β2GP1
IgG3 antibodies in healthy children [4]. Complement activation normally triggers platelet activation,
which is related to the pathogenesis of APS [90,91]. However, C3c is an opsonin to improve the
clearance of the bound target [92]. Instead of activating platelets, C3c binding enhances the clearance
of pathogenic anti-β2GP1 immune complexes and protects healthy children from complications.
Moreover, anti-β2GP1 antibodies in healthy and asymptomatic individuals are highly sialylated
compared to symptomatic patients [4]. These sialylated anti-β2GP1 antibodies have been found to
have protective roles for healthy individuals because of their inability to bind and activate platelets.

3.5. Anti-DI-β2GP1 Antibodies as a Diagnostic Tool

Anti-DI-β2GP1 antibodies are highly associated with both vascular and obstetric complications,
compared to antibodies against other domains of β2GP1 [10]. Anti-DI-β2GP1 antibodies are regularly
isolated from APS patients compared to those with infection-induced transient APL antibody
positivity. APS patients at higher risk of complications (triple APL positivity) also have higher
titres of anti-DI-β2GP1 antibodies [93], suggesting that the specificity of diagnosis of APS may increase
when anti-DI-β2GP1 antibodies are included. However, assays that detect anti-DI-β2GP1 antibodies
have lower sensitivity compared to those that detect the whole β2GP1 molecule, as patients might
produce clinically significant antibodies against other epitopes [46]. Currently, commercially available
kits are not available for the detection of anti-DI-β2GP1 antibodies. Instead, research assays with
different sensitivities have been reported, such as ELISAs that use N-terminally biotinylated DI on
streptavidin plates [94] and a β2GP1-DI chemiluminescence immunoassay (CIA, INOVA Diagnostic,
San Diego, CA, US) [95]. Further studies are warranted to determine the diagnostic and prognostic
value of assays that detect anti-DI-β2GP1 antibodies.
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4. Anti-β2GP1-β2GP1 Complexes and Platelets

Although there is consensus that β2GP1 interacts with anti-β2GP1 antibodies to form
anti-β2GP1-β2GP1 complexes with high affinity to anionic phospholipids [41,48], the affected
pathway(s) remains unclear. Potential mechanisms by which APL antibodies might increase the
risk of vascular and obstetric complications are reviewed elsewhere [13]. In this review, we have only
focused on the effects of anti-β2GP1 antibodies and β2GP1 on platelets (Figure 2).
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and transforms into J-shaped β2GP1. This allows the anti-domain 1-β2GP1 antibody to bind and to
form the anti-β2GP1-β2GP1 complex. The anti-β2GP1-β2GP1 complex has been proposed to interact
with glycoprotein (GP) Ib of GPIb/V/IX [14] and apolipoprotein E receptor 2 (ApoER2) [96–98].
In our group, we propose that the complex might trigger adenosine diphosphate (ADP) and
collagen-mediated pathways via guanine nucleotide-binding protein coupled receptor (GPCR) and
GPVI, respectively [99,100]. Yet, further studies are needed to clarify the variability of results.
The binding of the complex with receptors leads to the activation of protein kinase B (Akt)-mediated
and/or common pathways, causing granules secretion, thromboxane A2 (TXA2) synthesis, integrin
activation, and subsequently, clot formation. The platelet factor 4 (PF4) from secreted α-granules
have also been showed to interact with the anti-β2GP1-β2GP1 complex [101] Abbreviations: β2GP1,
beta-2-glycoprotein 1; GP, glycoprotein; ApoER2, apolipoprotein E receptor 2; ADP, adenosine
diphosphate; GPCR, guanine nucleotide-binding protein coupled receptor; TXA2, thromboxane A2;
PF4, platelet factor 4; Akt, protein kinase B.

Platelets are a crucial component of haemostasis, a physiological process that forms a localised
clot at the vessel injury site to limit blood loss while maintaining normal blood circulation [17,102].
Activation of platelet receptors leads to platelet adhesion, aggregation, activation of the protein
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kinase B-mediated and/or common pathways, secretion of granules, integrin activation, synthesis
of thromboxane A2, and finally, clot formation [17,103]. In the patients with autoimmune diseases,
circular β2GP1 transforms into the J-shaped conformation after binding to the phospholipid membrane
of platelets, allowing anti-β2GP1 antibodies to bind and form anti-β2GP1-β2GP1 complexes [48]
(Figure 2). In turn, these complexes are proposed to activate platelet receptor(s)—e.g., glycoprotein
(GP) Ib [14], apolipoprotein E receptor 2 (ApoER2) [16], guanine nucleotide-binding protein-coupled
receptors-(GPCR) [100], and GPVI [99]. Furthermore, these complexes have also been suggested to
affect other pathway(s) by inhibiting β2GP1 binding to vWF [15] and by interacting with platelet
factor 4 (PF4) secreted from platelets [101]. The activation of platelet receptor(s) by these mechanisms
potentially results in excessive clot formation and/or pregnancy complications [14–16]. Therefore,
understanding the effects of anti-β2GP1-β2GP1 complexes on platelets is important not only to
determine the mechanism(s) of interaction, but to also potentially assist in the development of novel or
improved treatments for patients with autoimmune diseases.

It has been reported that β2GP1 directly binds to GPIb of the GPIb/V/IX receptor via DII–V [14].
The presence of anti-DI-β2GP1 antibodies potentially dimerises β2GP1 and inappropriately initiates
GPIb-mediated platelet adhesion and aggregation [14,104]. This activation by anti-β2GP1-β2GP1
complexes may explain the increased thrombotic risk in APS patients [14].

Besides the GPIb receptor, DV of β2GP1 has been shown to dimerise and interact with the A1
portion of ApoER2 [96–98]. ApoER2, also known as low-density lipoprotein receptor-related protein 8,
is the only low-density lipoprotein family receptor found on platelets [96]. This receptor is recognised to
be targeted by the anti-β2GP1-β2GP1 complex, as the blockage of ApoER2 by its antagonist diminishes
the effect of the anti-β2GP1-β2GP1 complex to increase the adhesion of platelets to collagen [105].
It has also been established that the interaction of anti-β2GP1-β2GP1 complexes with ApoER2 activates
platelet analogously to GPIb-mediated platelet activation [16]. Recently, a dimer composed of two
A1 portions of ApoER2 joined by a flexible link has been created [98]. This dimer is able to inhibit
anti-β2GP1-β2GP1 complexes from binding to negatively-charged phospholipids and ApoER2 [98],
reflecting another possible treatment option for patients with APS.

Anti-β2GP1-β2GP1 complexes may also affect GPCR and GPVI-mediated platelet activation
pathways. Anti-β2GP1 antibodies from different origins have recently been reported to exhibit diverse
effects on in vitro platelet aggregation. Affinity purified rabbit [99] and SLE patient-derived anti-β2GP1
antibodies [100] demonstrated inhibitory and enhancement effects, respectively, on ADP-induced
platelet aggregation. When collagen was used, affinity purified rabbit anti-β2GP1 antibodies [99]
enhanced platelet aggregation. However, no effect was demonstrated using patient-derived IgG
fractions (containing aCL and anti-β2GP1 antibodies) [106] and affinity-purified goat anti-β2GP1
antibodies [107]. Based on these results, it is difficult to arrive at a consensus due to the variable effects
possibly caused by anti-β2GP1 antibodies with different structure and binding specificities. Thus,
further research is needed to elucidate the variable effects of anti-β2GP1-β2GP1 complexes on GPCR-
and GPVI-mediated pathways.

As described above, β2GP1 binds with vWF to prevent platelet activation. It has been suggested
that anti-β2GP1 antibodies in APS patients can neutralise this inhibitory effect, potentially leading
to thrombosis and consumptive thrombocytopenia [15]. Furthermore, PF4, a pro-coagulant factor
secreted from the α granules of platelets, has also been demonstrated to interact with β2GP1 [101]. PF4
is proposed to dimerise and stabilise β2GP1 on phospholipids, ensuring that β2GP1 is easily recognised
by anti-β2GP1 antibodies. The formation of anti-β2GP1-β2GP1-PF4 complexes may activate platelets,
leading to the development of thrombosis in APS patients [101].

5. Conclusion and Further Research

There is substantial literature available on the interaction between three interchangeable β2GP1
structures and anti-β2GP1 antibodies. The transformation of S-shaped or circular β2GP1 to J-shaped
β2GP1 exposes the cryptic epitope in DI, enabling the binding of anti-β2GP1 antibodies, particularly
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those to DI of β2GP1. The formation of the anti-β2GP1-β2GP1 complex is thought to be responsible
for the increased risk of thrombosis and/or pregnancy complications in patients with autoimmune
diseases. Although numerous mechanisms of interaction between anti-β2GP1-β2GP1 complex and
receptors/components have been proposed, the actual affected physiological pathway(s) remain
unclear. One of the possible explanations for these ambiguities is the use of anti-β2GP1 antibodies
with different structures and binding specificities from patient- and animal-derived origins across
different studies. Therefore, further research is required to better clarify and categorise the type of
antibodies used. This approach will in turn facilitate studies that will lead to increased understanding
of the interactions between these antibodies and platelets.

In conclusion, the standardisation and development of methods, such as anti-DI-β2GP1
antibody ELISAs, are required to differentiate between the types and pathogenicity of anti-β2GP1
antibodies. This will allow more meaningful interpretation of laboratory- and clinic-based findings,
which will potentially lead to the elucidation of the mechanism(s) of interaction between β2GP1,
anti-β2GP1 antibodies and platelets. In combination, these further developments can help to
improve the diagnostic and therapeutic techniques for patients with APS, and perhaps more widely,
autoimmune diseases.
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APL Anti-phospholipid
LAC Lupus anti-coagulant
aCL Anti-cardiolipin
Anti-β2GP1 Anti-beta 2 glycoprotein 1
APS Antiphospholipid syndrome
SLE Systemic lupus erythematosus
ELISA Enzyme-linked immunosorbent assays
D Domain
Anti-DI-β2GP1 Anti-domain I-beta 2 glycoprotein 1
EDTA Ethylenediaminetetraacetic acid
ADP Adenosine diphosphate
VWF Von Willebrand factor
GP Glycoprotein
ADAMTS13 vWF protease
Ig Immunoglobulin
ApoER2 Apolipoprotein E receptor 2
GPCR Guanine nucleotide-binding protein-coupled receptors
PF4 Platelet factor 4
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