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Abstract: Simulation of cutting is essential for many applications such as virtual surgical training.
Most existing methods use the same triangle mesh for both visualization and collision handling,
although the requirements for them in the interactive simulation are different. We introduce
visual-collision binding between high-resolution visual meshes and low-resolution collision meshes,
and thus extend the spatially reduced framework to support cutting. There are two phases in our
framework: pre-processing and simulation. In the pre-processing phase, the fvisual-collision binding
is built based on the computation of geodesic paths. In the simulation phase, the cutting paths are
detected on the collision triangles and then mapped to local 2D coordinates systems in which the
intersections between visual mesh and the cutting paths are calculated. Both collision and visual
meshes are then re-meshed locally. The visual-collision binding is updated after cutting, based on
which the collision-simulation and visual-simulation embedding are updated locally. Experimental
results show that our cutting method is an efficient and flexible tool for interactive cutting simulation.
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1. Introduction

Simulation of thin deformable objects has many applications in computer graphics, such as
virtual surgical training. The cutting simulation is an essential part in these applications. For example,
in a typical knee arthroscopy procedure, the surgeon needs to press the meniscus to identify the
torn part before cutting and re-examines the meniscus after that. The simulation of this procedure
involves at least three important models: (1) visual models for the rendering of surface of the meniscus;
(2) collision detection models to handle the interaction between surgical tool and the meniscus, as well
as the interaction between the meniscus and the cartilages; and (3) mechanical models to simulate the
deformation of the meniscus. The cutting simulation affects all the three models, and thus affects the
performance of the whole simulation.

In the past decades, although many methods have been proposed, the simulation of interactive
cutting of deformable objects remains an important research issue. This is due to the computational
complexity and numerical stability of cutting, especially in the applications that require an interactive
rate. Most of the existing methods use the same mesh as visual and collision meshes. In [1], a spatially
reduced framework was proven to be very robust and efficient for handling the collision detection and
response of thin deformable objects. In this framework, the whole model is composed of three meshes
with different resolutions: (1) high-resolution triangle mesh for visualization; (2) coarse resolution
triangle mesh for collision; and (3) another low-resolution volumetric mesh for simulation. However,
they did not provide a cutting scheme in this framework. It is difficult to update the collision and
visual meshes consistently when the resolutions of them are different. If the cutting is performed on
visual and collision meshes separately, it may happen that, while the high-resolution visual mesh
has been cut, the low-resolution collision mesh has not. As a result, these two meshes become
inconsistent. To overcome this issue, we introduce the binding between the visual and collision meshes
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(visual-collision binding). The cutting operation is performed only on the collision mesh, from which
the visual mesh and the simulation mesh are updated, respectively.

The paper is organized as follows. We review related works in Section 2. An overview of our
framework is presented in Section 3. The detailed methods are described in Section 4. In Section 5,
we test and evaluate our cutting method with three different examples following the conclusions made
in Section 6.

2. Related Works

Simulation of cutting involves simulation of deformable bodies, collision detection and response,
as well as topological operations of mesh. Numerous methods have been proposed in the past decades.
An excellent review can be found in [2], while we only cite the most related works.

2.1. Simulation of Deformable Bodies

Since the time of publication of [3], the simulation of deformable bodies remains an important
research topic. The most popular methods are Mass-Spring [4], Finite Element Method (FEM) [5],
and position based methods [6,7]. Our framework is independent of these simulation methods.
We choose Co-rotational linear FEM for our experiments [8], since it is one of the most widely used
methods in surgical training simulation. The integration of our framework with the other simulation
methods will be our future works.

2.2. Collision Handling for Thin Deformable Bodies

Collision detection is essential for many applications, and a good review can be found in [9].
Our framework is compatible with most of the existing collision detection methods. Spillman et al. [1]
proposed a spatially reduced framework, in which a high-resolution triangles mesh was used for
rendering, a coarse resolution triangle mesh with radii was used for the collision handling, and a
coarse volumetric mesh was used for the simulation. The robustness and efficiency for the collision
handling of this framework have been proven by extensive example. However, the cutting simulation
of this framework was left as a future work. We extend this framework by adding visual-collision
binding to handle cutting.

2.3. Cutting for Deformable Objects

There are three models for a deformable body: visual, collision and simulation models.
We categorize the existing cutting methods according to the relation of these models.

2.3.1. Cutting of Conformal Mesh

Many cutting frameworks use one conformal mesh for visualization, collision and simulation.
Tetrahedral meshes are commonly used. The simulation of deformation is run on tetrahedral meshes
while the outside faces of the meshes are used for visualization. The collision can be handled by the
boundary triangles or the tetrahedral meshes. The cutting operation is performed on the tetrahedral
meshes, while the visual collision mesh is updated accordingly. Many methods have been proposed,
including element removal [10], element refinement [11,12], face-splits [13–15], node snapping [16],
and their combinations [17,18]. The advantages of conformal mesh are that the cutting needs only to
be considered on the tetrahedral mesh, and thus the complexity of updating the embedding between
different meshes can be avoided. The drawbacks of using conformal tetrahedral meshes are that
the resolution of visualization and collision has to be aligned with the resolution of simulation of
deformation. Increasing the resolution of any of the three models directly leads to the resolution
increments of the other two models.
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2.3.2. Cutting of Multi-Resolution Mesh

The multi-resolution simulation framework has been adopted by many researchers. Tetrahedral
meshes were used as simulation meshes in [19–21]. The virtual node method proposed in [19]
generated a well-shaped tetrahedron for each material branch. Although arbitrary cut [20] and
Graphics Processing Unit (GPU)-accelerated simulation [21] can be supported by this method, the
connectivity analysis of tetrahedrons is not very efficient. In our work, hexahedral meshes are adopted
for the simulation, for their regular structures. In addition, these works used the same triangle mesh for
both visualization and collision, while our work supports different resolutions of visual and collision
meshes in cutting simulation.

The idea of composite finite elements (CFEs) was introduced into the computer graphics
community by Nesme et al. [22]. In this simulation framework, a high-resolution visual mesh is
embedded into a fine hexahedral mesh, which is also embedded into a coarse hexahedral mesh. Branch
analysis is performed so that, for each material component, a hexahedron is duplicated and assigned.
Jeřábková et al. [23] simulated the cutting by element removal of the fine hexahedron and the dynamic
branch analysis. Although interactive cutting rate could be achieved, the visual quality and mechanical
accuracy were limited due to the element removal operation.

Based on the octree structure, Dick et al. [24] connected coarse hexahedral mesh to fine hexahedral
mesh. The cutting was simulated by disconnecting the links between fine hexahedral elements.
Wu et al. [25] improved the generation of visual mesh by the dual contour method. They also developed
a method for the collision detection and response for this model [26]. The performance was further
improved by Jia et al. [27] with Central Processing Unit (CPU)–GPU mixed implementation. Therefore,
this model supports not only interactive cutting, but also efficient collision handling. However, both the
cutting operation and the collision detection were relied upon the octree structure. In our cutting
simulation, the cut is introduced on the triangles of the collision mesh, and the visual-collision binding
is independent from the simulation mesh.

Seiler et al. [28] proposed a threefold model for the simulation of deformable objects. In this
model, a high-resolution surface mesh was used for rendering, a mid-resolution tetrahedral mesh
was used for collision detection and response, and a coarse resolution hierarchical hexahedral mesh
was used for deformation. Later on, they developed a cutting method for this model [29] that was
also applied in a data-driven simulation [30]. The cutting operation was simulated by the removal
of tetrahedrons that were intersected by the blade volume. Efficient cutting simulation was achieved
by this method. However, the resolution of the tetrahedral mesh should have been large enough to
represent the shape of the cutting blade, due to the non-split operation they adopted for the cutting.
This compromised the ability of tuning the resolution of collision of this model. The tetrahedral mesh
was no longer used for the collision detection and response in their cutting simulation, and only served
as a material graph. The collision handling was not discussed, and left for a future work. In our
cutting simulation, the split operation on the triangles of the collision mesh is utilized, instead of the
element removal. Therefore, the resolution of our collision mesh is not limited by the geometry of the
cutting blade.

A few cutting methods in the framework of position based dynamics (PBD) was proposed recently.
Pan et al. [31] combined a surface mesh with inner meatballs, while Berndt et al. [7] further discussed
the haptic, electrocautery, and skinning in the cutting simulation. Although efficient cutting has
been achieved, PBD is generally not designed for the surgical simulation due to its accuracy issue.
Manteaux et al. [32] developed a method to interactively cut a thin sheet in detail, the deformation
of which is driven by the frame based simulation. Their method can only cut thin sheets, while our
method supports the cutting simulation of thin deformable volumetric objects.

A multi-model framework is supported by the Simulation Open Framework Architecture
(SOFA) [33], which allows the deformation of an object with different resolutions for the visualization,
collision and simulation. The flexible architecture and extensive components provided by SOFA make
it very suitable for testing new algorithms. Therefore, we implement our cutting method based on
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SOFA. At the same time, since the cutting of multi-resolution model is not directly provided by SOFA
currently, our implementation enriches its cutting components.

3. Research Hypothesis and Overview

Our framework is composed of three different models for visualization, collision, and simulation
(see Figure 1). A high-resolution triangular mesh is used for the rendering, while a coarse triangular
mesh with a certain thickness is used to represent the inner part of thin objects. Finally, a coarse
hexahedral mesh is used for the simulation. The collision detection and response computation are
handled by the collision mesh, while the force is mapped to the hexahedral mesh. The resolution of
the hexahedral mesh should be close to the resolution of the collision mesh, since lower resolution
could not resolve all the forces from the collision detection, while a higher resolution would waste the
computational time. The physically based simulation is performed on the hexahedral mesh, and the
deformation is mapped to both the collision and the visual meshes.
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Figure 1. Framework of the cutting simulation. (a) three different meshes and their relations; (b) an
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their faces.

Our research hypothesis is that, by adding the visual-collision binding, the thin deformable
volumetric objects with different resolutions can be cut consistently and interactively. Our cutting
framework is composed of two phases: pre-processing and simulation phase. Before the simulation,
the visual mesh is bound to the collision mesh by using the geodesic paths on the visual mesh and
triangle splitting.

In the simulation phase, the cutting is performed on the collision mesh. Then, the hexahedral
mesh adapts to the cutting by duplicating the elements. The relation between these models is
updated, including the embedding between the collision and simulation meshes (collision-simulation
embedding), the embedding between the visual and the simulation meshes (visual-simulation
embedding), and the visual-collision binding, respectively. Our cutting simulation includes the
following steps:

1. Cutting of collision mesh. The cutting blade is intersected with the collision mesh. The triangles are
split along the path of the blade.

2. Cutting of visual mesh. Based on the visual-collision binding, the visual mesh is cut in the rest
configuration using local 2D coordinates. Then, the visual-collision binding is updated.

3. Simulation mesh adapting to the cut. The branches of the collision mesh contained in the elements
of the simulation mesh are analyzed. The elements are duplicated for each branch. The collision-
simulation embedding is updated.

4. Updating the visual-simulation embedding. According to the visual-collision binding, the visual-
simulation embedding is updated.
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4. Method

Our cutting framework includes two phases: pre-processing and simulation. The pre-processing
phase is run before the simulation, and the processing time is not critical. In the pre-processing phase,
we build the visual-collision binding. In the simulation mesh, we locally cut the collision and visual
meshes and update the binding.

4.1. Pre-Processing Phase

Given a visual mesh of a thin volumetric object, we build the collision mesh interactively using
3dsMax. Automatic generation of a reduced collision mesh will be done in our future work. As long
as the collision mesh is built, the visual-collision binding will be calculated automatically. To keep the
consistency in the cutting operation, we need to bind the fine visual mesh to the coarse collision mesh
such that, when a triangle on the collision mesh is split by the cutting trajectory, the visual triangles
bound to the collision triangle will be cut by the same cutting path. A visual vertex is either bound to
the vertex, the edge or the triangle of collision mesh.

4.1.1. Bind Visual Vertices to Collision Vertices

For each vertex of the collision mesh, we search it to find the closest visual vertices (see Figure 2).
If the vertex is on the border of the collision mesh, we find the closest vertex on the visual mesh with
respect to this vertex. If the vertex is inside the collision mesh, we find the closest vertex along the
normal built on this vertex to both sides of the visual mesh. Since the number of the visual vertices
is larger than the number of the collision vertices, after this step, every collision vertices have their
bound visual vertices. A necessary constraint here is that one visual vertex cannot be bound to two
collision vertices.
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Figure 2. Visual vertices are bound to collision vertices. The visual mesh is black, while the orange one
is the collision mesh. The red vertices are collision vertices, the blue vertices are visual vertices, and the
green lines indicate their connections. Each collision vertex on the border is paired with one visual
vertex. Each inside collision vertex is paired with two visual vertices: one is on the positive normal
direction while another one is on the negative normal direction.

4.1.2. Calculate Geodesic Paths between the Bound Visual Vertices

For each edge of the collision mesh, its two end vertices are paired with the visual vertices,
respectively. Since each collision edge is a straight line, i.e., the shortest path between two collision
vertices, we want to find the shortest path between its two paired visual vertices. An ideal choice for
this purpose is the geodesic path, since it is the shortest path on the surface between two vertices.
We calculate the geodesic paths between these vertices on the visual mesh, according to the edges of
the collision mesh (see Figure 3). There are many existing methods for the calculation of a geodesic
path. We use the method proposed by Xin et al. [34], since it calculates the exact geodesic path that
guarantees the non-intersection between each path. Although all these geodesic paths do not intersect
with each other, they may have common points.
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Figure 3. Geodesic paths are calculated between the visual vertices that are bound to collision vertices.
(a) the orange lines are the edges on the collision mesh, while blue lines are its relevant geodesic paths.
The red points are the intersections between the geodesic paths and the visual mesh. The green arrows
indicate the binding direction. Each collision edge is related with one or two geodesic paths; (b) the
geodesic paths for all the collision edges are visualized on top of the original visual mesh.

4.1.3. Re-Meshing of the Visual Mesh

With reference to Figure 4, we add new visual vertices along all the geodesic paths. Then, we split
the triangles that are intersected by these new visual vertices and re-mesh the whole visual mesh.
The result is a new surface mesh that is geometrically identical to the original visual mesh. All the
visual vertices on the paths are bound to the edges on the collision mesh, respectively. The visual mesh
is divided into several regions with respect to the triangles on the collision mesh (collision triangles).
For all the visual vertices that have not yet been assigned to the collision vertices and edges, we assign
them to the collision triangles. This is achieved by the local Depth First Search (DFS) algorithm based
on the topology of visual mesh. After this step, all the visual vertices are bound to either vertices or
edges or triangles on the collision mesh (see Figure 5).
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Figure 4. The visual triangles intersected by the geodesic paths are split. (a) some of the visual triangles
are intersected by the geodesic paths. The light blue lines are geodesic paths, while the red points are
the intersections points between the geodesic paths and the visual edges; (b) all the visual triangles
intersected by the geodesic paths are split, and a new visual mesh is generated.
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Figure 5. All the visual vertices are bound to the collision triangles. (a) the orange triangle is the
collision triangle, while the blue triangles are visual triangles. The arrows indicate the binding direction:
green for the visual vertices bound to the collision vertices, blue for the visual vertices bound to the
collision edges, and red for the visual vertices bound to the collision triangles; (b) the calculation of the
binding parameters for the visual vertices bound to the collision edges; (c) visual vertex pc is bound to
vc on the collision triangle.
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4.1.4. Assigning Local Parameters to the Visual Vertices

We assign local parameters to all the visual vertices. For each visual vertex that is bound to a
collision edge, we assign its parameter by their accumulated length, which can reflect the distances
between the neighboring vertices. With reference to Figure 5b, suppose visual vertices p1 and p2 are
bound to the collision vertices v1 and v2, respectively, and pa and pb are bound to the collision edge
(v1, v2). Let L1, L2 and L3 be the lengths of the visual edges (p1, p2) in the reference configuration (pa, pb)
and (pb, p2). Then, the binding parameters for pa and pb are ( L1

L1+L2+L3
, 1− L1

L1+L2+L3
) and ( L1+L2

L1+L2+L3
,

1− L1+L2
L1+L2+L3

), respectively. With the above parameters, we can calculate the projected points va of pa as

va =
L1

L1+L2+L3
× v1 +

(
1− L1

L1+L2+L3

)
× v2, and vb of pb as vb = L1+L2

L1+L2+L3
× v1 +

(
1− L1+L2

L1+L2+L3

)
× v2.

For each visual vertex that is bound to a collision triangle, we parameterize it by the mean value
coordinates [35], since this parameterization has a good quality and is widely used in many geometric
applications. With reference to Figure 5c, suppose visual vertex pc is bound to the collision triangle
(v1, v2, v3). Let (a, b, c) be the binding parameter of pc, then the projected point vc of it can be
calculated by

vc = a× v1 + b× v2 + c× v3. (1)

Since each visual vertex that is bound to the collision vertex is shared by its one-ring surrounding
collision triangles, the parameter of this visual vertex is defined by the specific collision triangle.
Fo examples, in Figure 6, the parameter of v1 in the triangle (v1, v2, v3) is (1,0,0) while the parameter of
v1 in the triangle (v5, v6, v1) is (0, 0, 1). Similarly, since each visual vertex that is bound to the collision
edge is shared by two collision triangles, the parameter of this visual vertex is then defined by the
specific collision triangle. With reference to Figure 6, suppose v is a projected point on the edge (v1, v2)
with the parameter (a, b). Then, for the collision triangle (v1, v6, v2), the parameter of v is (a, 0, b), while
for the collision triangle (v1, v2, v3), the parameter of v is (a, b, 0). Thus, the local parameters of the
visual vertices that are bound to the collision edges will be defined in the simulation phase according to
the specific collision triangle. Therefore, for each given collision triangle, the coordinates of the visual
vertices bound to it can be uniformly written as in Formula (1), no matter what visual vertices are
bound to the collision vertices, edges, or triangles. In the above, we only discussed the visual vertices
in the positive normal direction (positive visual vertices) of the collision triangles. It can be handled
similarly for all the visual vertices in the negative normal direction (negative visual vertices) of the
collision triangles. In Figure 7, we visualize the parameterization on top of the collision triangle. All the
parameters are needed to be calculated only once at the pre-processing phase. In the simulation phase,
the parameters of the new visual vertices can be interpolated or transformed from the parameters of
the original visual vertices.
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Figure 6. The definition of local parameters for the visual vertices bound to collision edges. Visual
vertex v is bound to collision edge (v1, v2), its parameters in collision triangle (v1, v6, v2) and (v1, v2, v3)
are different.



Symmetry 2018, 10, 17 8 of 22
Symmetry 2018, 10, 17 8 of 22 
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4.2. Simulation Phase 

4.2.1. Cutting the Collision Mesh and Updating the Collision-Simulation Embedding 

We perform cutting of the collision mesh by the method of elements splitting that is similar to 

works [13–15]. We detect the intersection between the triangles of swiping blade and the edges of the 

collision mesh. If two edges of the collision triangle intersect with the blade, the triangle will be split 

into three triangles (see Figure 8). 

 

Figure 8. The process of cutting the collision mesh. The hexahedra are illustrated in 2D as the 

quadrangles with black edges; the orange edges are the collision edges; the orange points are the 

collision vertices; the red points and lines are the cutting points and paths respectfully; the dark blue 

points are the visual vertices bound to the collision triangle. (a) the mesh before cut; (b) a triangle is 

cut by two intersection points and split into three triangles. Since the first hexahedron still has only 

one branch, the hexahedron remains unchanged; (c) the second triangle is cut. The first hexahedron 

needs to be duplicated because it has two branches. 

After cutting of the collision mesh, we apply a method that is similar to the method published 

in [23,32] to update the hexahedral mesh to adapt to the cut (see Figure 9). We perform elements 

analysis on the relevant hexahedra. The hexahedral mesh is adapted to the cut by duplicating the 

elements of the hexahedra, such that, for each branch within the original hexahedron, a copy of the 

hexahedron is made. The hexahedra are connected according to the branch analysis, which is 

performed based on the topology of the new collision mesh. Since the cutting is locally performed, 

the branch analysis is also performed locally on a few hexahedra. 

Figure 7. Local parameterization of the visual vertices. (a) blue visual vertices are bound to the orange
collision triangle, including the visual vertices on the positive and negative normal directions of this
triangle. The green arrows indicate the binding direction; (b) each visual vertex on the positive normal
direction is parameterized. The parameterization is visualized by overlapping with the collision
triangle; (c) each visual vertex on the negative normal direction is parameterized.

4.2. Simulation Phase

4.2.1. Cutting the Collision Mesh and Updating the Collision-Simulation Embedding

We perform cutting of the collision mesh by the method of elements splitting that is similar to
works [13–15]. We detect the intersection between the triangles of swiping blade and the edges of the
collision mesh. If two edges of the collision triangle intersect with the blade, the triangle will be split
into three triangles (see Figure 8).
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Figure 8. The process of cutting the collision mesh. The hexahedra are illustrated in 2D as the
quadrangles with black edges; the orange edges are the collision edges; the orange points are the
collision vertices; the red points and lines are the cutting points and paths respectfully; the dark blue
points are the visual vertices bound to the collision triangle. (a) the mesh before cut; (b) a triangle is cut
by two intersection points and split into three triangles. Since the first hexahedron still has only one
branch, the hexahedron remains unchanged; (c) the second triangle is cut. The first hexahedron needs
to be duplicated because it has two branches.

After cutting of the collision mesh, we apply a method that is similar to the method published
in [23,32] to update the hexahedral mesh to adapt to the cut (see Figure 9). We perform elements
analysis on the relevant hexahedra. The hexahedral mesh is adapted to the cut by duplicating the
elements of the hexahedra, such that, for each branch within the original hexahedron, a copy of
the hexahedron is made. The hexahedra are connected according to the branch analysis, which is
performed based on the topology of the new collision mesh. Since the cutting is locally performed,
the branch analysis is also performed locally on a few hexahedra.
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Figure 9. Duplication of the hexahedron. The red points and lines are the new added collision vertices
and edges as the result of the cut. (a) duplication of the hexahedron such that each copy has one
branch of the collision vertices; (b) each copy of the hexahedron is connected with its surrounding
hexahedra according to the topology of the collision mesh; and (c) snapshot of simulation of cutting
the collision mesh.

4.2.2. Cutting the Visual Mesh

Based on the visual-collision binding that we built on the pre-processing phase, the cutting of
the visual mesh is performed in the rest configuration of the collision mesh (see Figures 10 and 11).
With reference to Figure 10a, suppose p1, p2 and p3 are the coordinates in the rest configuration,
and they are bound to the collision vertices v1, v2 and v3, respectively. Now that a cut is introduced
to this collision triangle (v1, v2, v3) (see Figure 10b), vertices v1, v2 and v3 define a plane. We assign
2D coordinates to these vertices in such a way that it keeps the angles between the edges (v1, v2),
(v2, v3) and (v1, v3). We also keep the lengths between the above three vertices (see Figure 11a). Then,
we transform all the visual vertices onto this plane and get their 2D coordinates. This is achieved by
Formula (1) since all the binding parameters of the visual vertices have already been assigned in the
pre-processing phase. Two cut points on the collision triangle are also transformed in the same way
(see Figure 11b). The intersection points between the cut path and the visual edges are then calculated
by their 2D coordinates on this plane. With reference to Figure 11c, we apply a standard method [36] to
compute the intersection points between the cutting lines and the visual edges. All the parameters of
the intersection points are then calculated by interpolating from the parameters of the end points of the
edge. For examples, in Figure 11c, suppose v3 and va are two of the transformed visual vertices. After
the computation of intersections, we get the parameters (c1, c2) for the intersected point v such that
v = c1 × v3 + c2 × va. Then, we get an intersected point p on the visual mesh by p = c1 × p3 + c2 × pa

(see Figure 10d or Figure 11c). After that, all the new visual points are added to the original visual
mesh. The visual triangles that are intersected by these new visual edges are split and re-meshed
(see Figure 10e). Therefore, we get a new visual mesh after cut.

4.2.3. Updating the Visual-Collision Binding

After the cutting, we need to update the visual-collision binding for all the new collision triangles.
With reference to Figure 11b, suppose the original collision triangle (v1, v2, v3) is split into three new
collision triangles (v1, v2, v4), (v2, v5, v4) and (v3, v4, v5). For the binding of these collision vertices,
we take v4, for example (see Figure 10e). The new added visual vertex p4 is bound to it. The updating
of its binding parameter is not necessary, since the parameter is only defined by the specific collision
triangle. For the binding of the intersection points, we take v, for example, (see Figure 10d). Its relevant
new added visual vertex p is bound to the collision edge (v4, v5), the binding parameter of which is
calculated by the accumulated length as in the pre-processing phase. For the binding of the original
visual vertices that are bound to the collision triangle (see Figure 10d or Figure 11c), we take va,
for example. Here, we already know the binding parameter of va with respect to the collision triangle
(v1, v2, v3). Let this parameter be (a, b, c). We want to calculate the binding parameters of va with
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respect to the collision triangle (v2, v5, v4). Let this parameter be (a′, b′, c′). We also know the binding
parameters of the visual vertices v2, v4 and v5 with respect to the collision triangle (v1, v2, v3). Thus,
we know the 3 × 3 matrix M, such as:  v2

v4

v5

 = M

 v1

v2

v3

.

Therefore, we have (
a′, b′, c′

)
= (a, b, c)×M−1. (2)

However, we do not know which new collision triangle va is bound to. Thus, for va, we calculate
(a′, b′, c′) for all the three new collision triangles by Formula 2. We bind va to the collision triangle such
as 0 ≤ a′ ≤ 1, 0 ≤ b′ ≤ 1 and 0 ≤ c′ ≤ 1. Finally, all the visual vertices are bound to the new collision
triangles, respectively.
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Figure 10. The process of cutting the visual mesh. The dark blue points are the visual points; while the
orange points are their parameters on the collision triangle in rest configuration. (a) the visual vertices
have already been bound to the collision triangle in the pre-processing phase. The green arrow shows
the binding direction; (b) the collision triangle is cut by the blade surface; (c) the intersection points
are calculated; (d) new visual vertices are added according to the intersection points on the collision
triangle. The green arrow shows the mapping direction; (e) The visual triangles are re-meshed to adapt
to the new visual vertices.
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Figure 11. Calculation of the intersection points on the plane defined by the collision triangle in the
rest configuration. The orange points are the parameters of the visual vertices, while the red points
are the intersection points. (a) the 2D coordinates are assigned for the visual vertices bound to the
collision triangle that is cut; (b) the cut points are transformed to the rest configuration and assigned
2D coordinates; (c) the intersection points are calculated.

4.2.4. Handling the Cut Surface Mesh

After cutting of the visual mesh, we need to generate the cut surface mesh to keep the visual
look of the objects as a water-tight surface. Since the visual mesh in our simulation will not be used
for collision handling and simulation, the quality of the cut surface mesh is not very important and
even ill-shaped triangles can be accepted. Therefore, there are many ways to generate the cut surface
mesh for our simulation. For each cut collision edge, we generate the cut surface by connecting the
positive and negative visual vertices bound to this edge (see Figure 12). In [31], the cut surface is
generated by down-sampling the related visual vertices in order to lower the data size of the new
mesh. We up-sample the related visual vertices since the visual mesh in our simulation will not
be involved in collision handling. This can be achieved by merging the parameters of positive and
negative visual vertices that are bound to the cut collision edge. With reference to Figure 12b, suppose
the parameters for v1, v2 and v3 are (0.7, 0.3), (0.2, 0.8) and (0.4, 0.6), respectively. After the up-sampling,
the parameters for v2 and v3 remain unchanged, while the parameters for v4, v5 and v6 are (0.4, 0.6),
(0.7, 0.3) and (0.2, 0.8), respectively. After the generation, the cut surface vertices are then bound to the
cut collision edge, and their binding parameters are assigned according to the relevant positive and
negative visual vertices. With reference to Figure 12c, for example, cut surface vertices p1, p2, p3 and
p4 are assigned the same parameter (0.7, 0.3) according to the parameter of v1.
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Figure 12. Generating the cut surface mesh. The dark blue points are the visual vertices; the orange
triangle is the collision triangle; the green arrows show the binding directions; the red points are the
cut surface vertices. (a) before the generation, the positive and negative visual vertices are bound
to the cut collision edge; (b) up-sampling the positive and negative visual vertices and connecting
these vertices to form a cut surface; (c) different resolutions of cut surface can be generated by adding
different resolutions of in-between visual vertices.
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If the collision edges are cut again (see Figure 13), the cut surface is cut simply by comparing the
parameters between the cut surface vertices and the cut points on the collision edge. The cut surface
mesh is cut and separated by introducing new vertices according to the parameter of the cut points.
All these new vertices are then bound to the new collision edges, respectively. Since the calculation
of the interactions between the cut path and the cut surface mesh is not required, high-resolution cut
surface mesh is supported by our cutting simulation.
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Figure 13. Cutting of the surface mesh. (a) the orange triangle is the collision triangle, while the black
dash line is the cut path on it. The red mesh is the cut surface mesh; (b) the blue points are the new
added vertices on the cut surface.

4.2.5. Updating the Visual-Simulation Embedding

Once the collision-simulation embedding and visual-collision binding have been built, the visual-
simulation embedding can be built accordingly. For each new triangle generated by cutting, we find
the hexahedra containing their three vertices. Then, for all the visual and cut surface vertices bound to
this triangle, we find and calculate the barycentric coordinates with these containing hexahedra. With
reference to Figure 9, the green points represent visual vertices bound to the collision triangles. After
the cutting, all these visual vertices are to be re-bound to new collision triangles and then re-embedded
to the hexahedra according to the collision-simulation embedding.

5. Experimental Results

In this section, we test our framework on three different models and present the detailed
experimental results. All the examples are run on a desktop PC equipped with Intel i7-4770 (Intel,
Singapore) 3.40 GHz, 16 GB of RAM, and NVIDIA GeForce GTX 750Ti (NVIDIA Corporation,
Singapore). All the simulations are implemented on the software platform called SOFA [33]. We use
co-rotational linear FEM on hexahedral meshes as simulation meshes. The link to the accompanying
videos of the examples can be found in the supplementary materials.

5.1. Cutting of a Steak

The first example is the cutting of a steak. The visual mesh of the steak is used as a de-facto
standard test provided by SOFA for testing elastic object deformations and used by authors of several
papers [22,31,33,37]. With reference to Figure 1b, the visual mesh of the steak has 2641 vertices and
5278 triangles. The simulation is run on the hexahedral mesh with 190 degree of freedoms (DOFs)
and 76 hexahedra. We couple the above visual and simulation mesh with two collision meshes of
different resolutions. Figure 14 shows the collision and hexahedral meshes, as well as the visual
collision binding, respectively. Figure 15 shows the cutting of a steak with different collision meshes.
For the real-time record of the interactive cutting of the steaks with different collision meshes, we refer
the readers to the accompanying videos. Table 1 collects the performance data of the implementation
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of the pre-processing phase. The average preprocessing time of these two models are 5.1 s for model
No. 1 and 10.2 s for model No. 2. This is because the bigger collision mesh requires more computation
time to obtain the geodesic paths. Since the preprocessing is run before the simulation loop, time is not
important. In our implementation, we only do the preprocessing once and then store the data, which
will be loaded before every simulation. Table 2 collects the performance data of the implementation of
the simulation phase. In the simulation, the time for cutting of model No. 1 is generally longer than
the time for model No. 2. This is because model No. 1 has a coarser collision mesh, and thus has more
visual points mapped to each collision triangle. More visual points to handle for each cut require more
time. The time for intersection detections and for visual and collision re-meshing increases slightly,
while the time for updating the binding increases significantly.

Symmetry 2018, 10, 17 13 of 22 

 

10.2 s for model No. 2. This is because the bigger collision mesh requires more computation time to 

obtain the geodesic paths. Since the preprocessing is run before the simulation loop, time is not 

important. In our implementation, we only do the preprocessing once and then store the data, which 

will be loaded before every simulation. Table 2 collects the performance data of the implementation of 

the simulation phase. In the simulation, the time for cutting of model No. 1 is generally longer than the 

time for model No. 2. This is because model No. 1 has a coarser collision mesh, and thus has more visual 

points mapped to each collision triangle. More visual points to handle for each cut require more time. 

The time for intersection detections and for visual and collision re-meshing increases slightly, while the 

time for updating the binding increases significantly. 

 

Figure 14. Collision meshes with different resolutions and the visual collision binding after pre-

processing. (a) the orange meshes are the collision meshes. From left to right, the resolution of collision 

is increased while the resolutions of visual and simulation meshes are fixed; (b) the close-up view of 

visual collision binding for different collision meshes, respectively, after the pre-processing. 

 

Figure 15. Cutting of a steak with different collision meshes. (a) the visual mesh after cut; (b) the 

collision mesh after cut. There are 85 vertices and 137 triangles for the collision mesh of this model; 

(c) there are 50 vertices and 67 triangles for the collision mesh of this model. 

 

Table 1. Performance of the pre-process phase of cutting a steak. 

Figure 14. Collision meshes with different resolutions and the visual collision binding after
pre-processing. (a) the orange meshes are the collision meshes. From left to right, the resolution
of collision is increased while the resolutions of visual and simulation meshes are fixed; (b) the close-up
view of visual collision binding for different collision meshes, respectively, after the pre-processing.
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Figure 15. Cutting of a steak with different collision meshes. (a) the visual mesh after cut; (b) the
collision mesh after cut. There are 85 vertices and 137 triangles for the collision mesh of this model;
(c) there are 50 vertices and 67 triangles for the collision mesh of this model.
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Table 1. Performance of the pre-process phase of cutting a steak.

# Collision Vertices Collision Triangles Preprocessing Time (s)
Per Collision Triangle after Preprocessing

Visual Vertices Visual Triangles

1 50 67 5.1 105 137
2 85 137 10.2 50 70

Table 2. Performance of the simulation phase of cutting a steak.

#
Per Cut Time (ms)

Cut and Update
Collision-Visual Binding

Update Collision-Simulation and
Visual-Simulation Embedding

Add Surface
Mesh

Total Cut
Time

Simulation
Time

1 2.5 15.3 3.7 17.6 2.5–3.5
2 2.4 5.8 3.2 9.4 2.6–3.8

Since the cutting introduces new vertices for both visual, collision and simulation meshes, it will
generally increase the simulation time. To better analyze the performance of our cutting method,
we record the changes in six consecutive cuts of the No. 2 model. Figure 16a shows the numbers of
vertices of visual, collision and simulation meshes, while Figure 16b shows the numbers of elements.
We cannot see a clear difference of the simulation time between the first and the last cuts (however,
the time is definitely less than 1 ms). Although the number of vertices and triangles of the visual mesh
increases significantly, the number of vertices and elements of collision and simulation meshes grows
very slow.
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Figure 16. The numbers of vertices and elements in six consecutive cuts. (a) the number of vertices;
(b) the number of elements.
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It is clear that the number of collision vertices and triangles affect the performance of the most of
the collision algorithms. The very same steak model was also used in [31,37], where the same triangle
mesh was used for both visualization and collision in their cutting simulation, while in our simulation
the resolutions of visual and collision meshes are of different levels of magnitude. Since the authors
of [31,37] did not provide the data of their collision meshes during cutting, we compare with the best
scenario they could get, i.e., when the collision mesh remains unchanged. With reference to Figure 17,
it is clear that the resolutions of collision meshes used in the previous cited works are of a different
level of magnitude.

It is difficult to compare precisely with the cutting method of Wu et al. [26], since different
models were used. The collision detection of their method relies on an octree structure, while our
collision handling is independent from the simulation mesh. Their collision vertices are generated by
down-sampling every 8th points of the visual mesh. In this way, only collision points can be utilized,
while, in our simulation, all the collision points, edges and triangles are available. Furthermore,
there was no discussion on how well the collision vertices approximate the visual ones by this
down-sampling method. Jia et al. [27] has pointed out the difference between the down-sampling and
the full simulation at the thin regions of the models, while, in our method, once a collision mesh with
good approximation property is built before the simulation, the approximation will be maintained after
each cut since the new collision points generated by the cut are the interpolations from the collision
points before cut. This can also be seen in the next example. Their method supports general objects,
while our method only supports thin volumetric object. This is a clear disadvantage of our method,
and the generalization to support all objects will be our future work.
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Figure 17. Comparison of the number of collision vertices and triangles in our method with the best
scenario, which could be found in [31,37]. Data is displayed in logarithmic scale of 10.

5.2. Cutting of a Thin Object

Thin objects, such as a thin sheet, are also supported by our framework. In the second example,
we cut the thin sheet. In the first experiment, we fix the resolutions of the collision and simulation
meshes, and then test our cutting method with the visual meshes of different resolutions. There are
65 vertices and 104 triangles in the collision mesh, while there are 200 vertices and 81 hexahedra
in the simulation mesh. Figure 18 shows the cutting process of the thin sheet. For all the models,
Figure 19 lists the visual collision binding after the preprocessing, and the visual mesh overlapped
with the collision mesh before and after cutting. We refer the readers to the accompanying videos for
the interactive cutting of different models of the thin sheet. Table 3 collects the performance data of
the pre-processing phase of these models. These data are similar to the data in the previous example.
The preprocessing time increases largely with the increase of the resolutions of the visual mesh. Table 4
collects the performance data of the simulation phase. The time to test intersections and re-meshing
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the collision and visual meshes increases slightly, while the time for updating the visual-simulation
and collision-simulation embedding increases significantly. While the resolution of its visual triangles
of model No. 4 is over the magnitude of 100 K, it still can be cut interactively. This indicates that our
framework is very flexible with respect to different computation powers. For example, just like in
many computer games, for the cutting simulation, we can provide different configurations of mesh
resolutions for different computers. Although the simulations with all the models can be run in
real time, updating of the collision-simulation and visual-simulation embedding is the bottleneck of
our implementation.
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(d) the visual, collision and simulation meshes after cutting.
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Figure 19. The visual mesh overlapped with the collision mesh before and after cutting. From left to
right, the resolution of the visual mesh is increased while the resolution of the collision mesh remains
unchanged. (a) the close-up view of the visual and collision bindings after the pre-processing; (b) the
collision mesh is overlapped with the visual mesh before cutting; (c) the collision mesh is overlapped
with the visual mesh after cutting.
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Table 3. Performance of the pre-processing phase in the first experiment of cutting a thin sheet.

# Visual Vertices Visual Triangles Preprocessing Time (s)
Per Collision Triangle after Preprocessing

Visual Vertices Visual Triangles

1 881 1664 0.8 26 31
2 3425 6656 7.1 73 102
3 13505 26624 57.5 214 337
4 53633 106496 422.2 688 1193

Table 4. Performance of the simulation phase in the first experiment of cutting a thin sheet.

#
Per Cut Time (ms)

Cut and Update
Collision-Visual Binding

Update Collision-Simulation and
Visual-Simulation Embedding Total Cut Time Simulation Time

1 0.9 9.1 10.5 2.5–3.5
2 1.9 12.3 14.6 2.7–3.6
3 3.7 17.9 21.9 3.9–5.2
4 10.9 38.6 49.9 7.2–8.5

In the second experiment of this example, we fix the resolution of visual mesh and then test
our cutting method with the collision meshes of different resolutions. There are 3425 vertices and
6656 triangles in the visual mesh, while there are 200 vertices and 81 hexahedra in the simulation
mesh. Four different collision meshes are used. We refer the readers to the accompanying videos
for more information. Figure 20 lists the visual and collision meshes after cutting. Table 5 collects
the performance data of the pre-processing phase of these models. The resolutions of the collision
mesh increase from model No. 1 to model No. 3. No pre-processing phase is required for the fourth
model, since it uses the same mesh for both the visualization and collision handling. Table 6 collects
the performance data of the simulation phase. The average time for each cut of these models decrease
slightly from model No. 1 to model No. 3. All the models can run in real time when there are no
collisions with the environments. However, once the collisions are introduced, all the simulation
times increase rapidly. From model No. 1 to model No. 4, the simulation times increase, following
the increment of the resolutions of the collision mesh. The first two models can still run in real time,
model No. 3 can run interactively at 21.7 frames per second (FPS), and model No. 4 only has 7.5 FPS.
These data prove the flexibility of our cutting method that, when the resolution of visual mesh is fixed,
different resolutions of collision mesh can be chosen to meet the requirements of the simulation.
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slightly from model No. 1 to model No. 3. All the models can run in real time when there are no 

collisions with the environments. However, once the collisions are introduced, all the simulation 

times increase rapidly. From model No. 1 to model No. 4, the simulation times increase, following the 
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Figure 20. All the four models are cut and collide with the same environments. From left to right,
the resolution of the collision mesh is increased. (a) visual meshes; (b) collision meshes.



Symmetry 2018, 10, 17 18 of 22

Table 5. Performance of the pre-processing phase in the second experiment of cutting a thin sheet.

#
Collision
Vertices

Collision
Triangles Preprocessing Time (s)

Per Collision Triangle after Preprocessing

Visual Vertices Visual Triangles

1 65 104 6.9 73 102
2 280 500 35.1 25 29
3 796 1500 105.9 11 10

Table 6. Performance of the simulation phase in the second experiment of cutting a thin sheet.

#
Per Cut Time (ms) FPS

Total Cut
Time

Simulation without
Collision Time

Simulation with
Collision Time

Without
Collision Time

With Collision
Time

1 13.6 5.1–7.0 12.0–15.1 141.1 68.1
2 12.8 6.5–7.8 21.2–24.5 134.2 39.7
3 11.9 7.1–8.5 44.1–47.3 112.0 21.7
4 9.8 12.1–14.5 130.6–134.2 86.3 7.5

5.3. Meniscus Lesion Handling in a Prototype Simulator

We have applied our cutting method in a feasibility study on knee arthroscopy surgery training
simulation (see Figure 21). For the setup of our prototype simulator, a 3D printed knee model and
two haptic devices were used. One device is used for controlling the camera, while another one for
controlling the surgical tool. The meniscus is a vulnerable thin crescent-shaped soft tissue located
within the knee between the bones. In a typical procedure of handling meniscus lesion, the surgeons
punch out the torn tissue, and then contour the edge of the meniscus with a shaver. Figure 21 shows
the cutting of the meniscus in our simulator compared to the snapshots from real surgical videos
with the similar angle of views. The readers are also referred to the accompanying videos for more
information. With reference to Figure 22, the meniscus model is composed of the visual mesh with
2882 vertices and 5760 triangles, the collision mesh with 105 vertices and 160 triangles, as well as the
simulation mesh with 120 vertices and 42 hexahedra. The pre-processing time is about 12.7 s. There
are about 64 visual vertices and 76 visual triangles for each collision triangle after the pre-processing
phase. Figure 23 shows the cutting process. Each punch of the meniscus is composed of the cuts of a
few collision triangles (see Figure 23b). For each punch, the average total cut time is 48.2 ms, the time
for cutting collision and visual mesh and updating collision-visual binding is about 6.2 ms, the time for
updating visual-simulation and collision-simulation embedding is 32.8 ms, while the time for adding
the cut surface is about 8.1 ms. The time for each simulation step is about 6.5 ms, while the average
number of frames per second is 162.

Figure 24 shows the contouring process in our simulation. To simulate the contouring operation,
we need to generate jagged surface on the edge of the meniscus in the punching simulation
(see Figure 23a). This is achieved by introducing random numbers at the cut surface mesh generating
section. Then, we activate the model of a shaver and turn on the shaving mode in our simulation.
In the shaving mode, we will not cut the collision triangles when the shaver collides with them.
Instead, we monitor the intersected parameters on the collision edges. Since the cut surface mesh was
bound to these collision edges in the previous steps, we smooth the cut surface around the intersected
parameters. During the contouring process, the meniscus is getting deformed when the shaver pushes
on it, just as the behavior of the meniscus in the real surgery.
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Figure 22. The meniscus model. (a) the visual, collision and simulation meshes before cutting.
The white wireframe mesh is the visual mesh, the orange mesh is the collision mesh, and the hexahedral
mesh is the simulation mesh; (b) the close-up view of the visual and collision bindings after the
pre-processing. The red points and lines are the visual vertices and edges bound to the collision mesh
respectfully. The blue lines show the links between the collision vertices and their paired visual vertices.
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Figure 23. The cutting process of the meniscus. (a) the visual mesh of meniscus after each punch;
(b) the relevant collision mesh of the meniscus. The blue lines are the cutting paths, while the red
points are the intersection points between the cutting triangles of the scissor and the collision edges of
the meniscus.
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Figure 24. Contouring the edge of the meniscus. The red circle highlights the edge of the meniscus
before and after contouring.

In this example, the most related work that can be used as a benchmark is [29]. However,
its authors did not provide the data of their models, thus it is difficult to make a precise comparison.
The authors simulated punching of the meniscus by element removal, while we simulate it by cutting
the collision triangles. They reported 86 ms for a total cut time of a punch, while the total cut time in our
method is 48.2 ms. However, it is an unfair comparison since their paper was published in 2011, and the
meniscus model used is different from ours. Anyway, a clear advantage of our method is the updating
of the collision mesh, just as the example of cutting a steak. In [29], there is no mentioning of the
collision, while our method separates the resolution of the visual and collision meshes. Furthermore,
to the best of our knowledge, we did not find any simulation of contouring the edge of meniscus in all
the existing simulators. In the examples of [29] and the released demos of the commercial simulator
in [38], they both generate smooth cut surface, which leaves no room for the contouring operation.

6. Conclusions

We have introduced the visual-collision binding into cutting simulation, by which the framework
described in [1] was extended. Several new techniques have been developed to support the interactive
cutting of deformable thin objects in our framework. A high-resolution visual mesh is bound to a
low-resolution mesh by the calculation of geodesic paths. With the visual-collision binding built
in the pre-processing phase, high-resolution visual mesh is cut efficiently in a local 2D coordinates
system in the simulation phase. After the cutting, the visual-collision binding, visual-simulation and
collision-simulation embedding are updated locally. Experimental results show that thin deformable
objects can be cut interactively with different resolution of visual, collision and simulation meshes.
Compared to the works that use the same mesh for visualization and collision, the resolution of the
collision mesh in our method can be tuned to different magnitudes. Compared to the methods that
generate collision points by down-sampling the visual mesh, our method can provide the collision
points, edges, and triangles with the same approximation property as the original collision mesh.
In addition, our framework also supports the simulation of contouring the edge of a meniscus.

Although the cutting with interactive rates has been achieved, the implementation of our
framework has not been optimized yet. In future, we will improve the implementation. The visual-
collision binding is independent from the simulation meshes. We only tested it with the co-rotational
FEM on the hexahedral meshes, which have drawbacks on the boundary alignment. In the future,
we will test our method with the tetrahedral meshes and different simulation methods. Self-collision is
not considered in our simulation currently, which will be addressed in the future work. In addition,
we will extend our works to the general deformable objects.

Supplementary Materials: The following are available online at http://dx.doi.org/10.21979/N9/CN9V0Y,
Video S1: videos_cutThin, videos_curvedCut, videos_sepaCut, Model S1: models_cutThin, Code S1:
codes_cutThin.
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