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1. Introduction

One of the oldest topics related to difference equations and systems of difference equations is
their solvability. Many classical methods for solving some classes of equations and systems, including
linear ones, can be found in the following known books: [1–7].

There has been some renewed recent interest in the topic, especially in the solvability of various
classes of nonlinear difference equations and systems. One of the reasons for this is that our method
for solving the following second-order nonlinear difference equation

xn+1 =
xn−1

a + bxn−1xn
, n ∈ N0,

from 2004, has attracted some attention. Namely, for the case when xn 6= 0 for every n ≥ −1, the equation
can be transformed to a linear one by using a suitable change of variables. Some generalizations of the
equation, which are studied by developing the method, can be found in [8–10] (see also [11] where a slight
extension of the equation was studied in another way). A related solvable system of difference equations
was treated in [12]. Since that time various modifications of the method have been often used (see [13,14]
and the references therein for some related difference equations, as well as [15–17] and the references
therein for some related systems of difference equations). It should be pointed out that the systems
are usually symmetric or close-to-symmetric, whose study was popularized by Papaschinopoulos and
Schinas ([18–24]). In some of their papers, such as [19–21,23], they study the solvability and the long-term
behaviour of solutions to the equations and systems by finding their invariants. For some applications of
solvability and related matters see [6,25–29]. Some product-type difference equations and systems have
been essentially solved by using the linear ones, but in a more complex way ([30–32]). Several methods,
including the method of transformation and methods connected to product-type equations and systems,
can be found in the representative paper [33].

Recall that a sequence (x(1)n , . . . , x(k)n )n≥l , l ∈ Z, is a solution to a k-dimensional system of difference
equations if it satisfies the system for every n ≥ l. If every solution to a system can be obtained from a
finite family of formulas, then such a system is solvable in closed form.
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It is not difficult to see that the following nonlinear system of difference equations

xn+1 =
a1

xn
+

a2

yn
, yn+1 =

b1

xn
+

b2

yn
, n ∈ N0, (1)

where the parameters a1, a2, b1, b2, and the initial values x0, y0 are complex numbers, is solvable in
closed form (see, for example, [34]).

It is easily seen that system (1) is related to the equation

zn+1 =
a2zn + a1

b2zn + b1
, (2)

(the bilinear one) with the initial condition

z0 =
x0

y0
,

(note that for every well-defined solution to system (1), z0 is defined, since in this case it must be
x0 6= 0 6= y0). It is well-known that there are several methods for solving Equation (2). For example,
the equation can be solved by transforming it into a two-dimensional linear system (see [4]), which can
be solved by several methods (for solving more general linear systems, see, for example, [2,5]).
The original Russian version of the book [4] from 1937, which, at the moment, can be freely found on
the internet, gives the solution. In [6,7,35], a solution is presented to the equation by transforming it,
by using a suitable changes of variables, to a homogeneous linear second-order difference equation
with constant coefficients. The idea was later used in our paper [36] where, among other things,
a representation of the general solution to the equation was given in terms of the, so called, generalized
Fibonacci sequence. Equation (2) is also connected to finding the nth power of the following matrix

Â =

[
a2 a1

b2 b1

]
, (3)

associated to the equation, which can also be used to get the general solution to Equation (2).
All these facts, show the importance of the system of difference Equation (1) and suggest that

there are many interesting things behind the system which could be studied in detail. Having noticed
these facts a natural question arises of finding some related three-dimensional systems of difference
equations which are solvable in closed form.

Motivated by the problem, we have investigated some natural extensions of system (1) and,
recently in [37], have shown the solvability of the following three-dimensional system

xn+1 =
a1

xnyn
+

b1

ynzn
+

c1

znxn

yn+1 =
a2

xnyn
+

b2

ynzn
+

c2

znxn
(4)

zn+1 =
a3

xnyn
+

b3

ynzn
+

c3

znxn
,

n ∈ N0, where the parameters ai, bi, ci, i = 1, 3, and initial values x0, y0, z0, are complex numbers.
We want to point out that in [37], we showed that system (4) is practically solvable, in the sense

that the set of closed-form formulas for its solutions can be explicitly given for all possible values of
parameters ai, bi, ci, i = 1, 3, and initial values x0, y0, z0. To clarify the notion, say that, for example,
a homogeneous linear difference equation with constant coefficients of order greater or equal to five is
an example of a theoretically solvable difference equation, which is not always practically solvable one,
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because the characteristic polynomial associated to the equation need not be solvable by radicals in
this case ([38]).

Pushing further this line of investigations, quite recently, in [39], we have shown that the following
four-dimensional system

xn+1 =
a1

xnynzn
+

b1

ynznun
+

c1

znunxn
+

d1

unxnyn

yn+1 =
a2

xnynzn
+

b2

ynznun
+

c2

znunxn
+

d2

unxnyn

zn+1 =
a3

xnynzn
+

b3

ynznun
+

c3

znunxn
+

d3

unxnyn

un+1 =
a4

xnynzn
+

b4

ynznun
+

c4

znunxn
+

d4

unxnyn
,

(5)

n ∈ N0, where the parameters ai, bi, ci, di, i = 1, 4, and initial values x0, y0, z0, u0, are complex numbers,
is also practically solvable, by giving a detailed description of how closed-form formulas, in all possible
cases, can be found.

The line of investigations in [34,37,39] has motivated us to try to find what it is that decides the
solvability of the systems studied therein, that is, of systems of difference Equations (1), (4) and (5).
The fact that in the study of the systems in [37,39] appeared matrices consisting of the parameters which
appeared in the systems, as well as the fact that, as we have already mentioned, the general solution to
system (1) can be solved by using the matrix (3), have strikingly suggested that matrices have some
important role in the solvability of these systems. This also suggested to us that systems (4) and (5),
should be written in the following, somewhat nicer, forms xn+1

yn+1

zn+1

 =
1

xnynzn

 b1 c1 a1

b2 c2 a2

b3 c3 a3


 xn

yn

zn

 , (6)


xn+1

yn+1

zn+1

un+1

 =
1

xnynznun


b1 c1 d1 a1

b2 c2 d2 a2

b3 c3 d3 a3

b4 c4 d4 a4




xn

yn

zn

un

 , (7)

respectively.
Our aim is to unify and extend the results in [34,37,39], by explaining what is behind the solvability

of systems (1), (4) and (5). To do this, motivated by the forms of systems (4) and (5) given in (6) and (7),
here we consider the following general system of difference equations

y(1)n+1

y(2)n+1
...

y(k)n+1

 =
1

f (y(1)n , . . . , y(k)n )


a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
. . .

...
ak1 ak2 . . . akk

 ·


y(1)n

y(2)n
...

y(k)n

 , (8)

for n ∈ N0, where f is a complex-valued function on Ck, such that

f (0, 0, . . . , 0) = 0 (9)
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and

f (w1, w2, . . . , wk) 6= 0, (10)

when wj 6= 0, j = 1, k.
By Cn

k , 0 ≤ k ≤ n, we denote the Binomial coefficients. They can be defined algebraically as the
coefficients of the polynomial Pn(x) = (1+ x)n, n ∈ N0, that is, we have

Pn(x) = Cn
0 + Cn

1 x + · · ·+ Cn
nxn.

Recall that

Cn
k =

n!
k!(n− k)!

, (11)

where

m! =
m

∏
j=1

j and 0! := 1.

By comparing the coefficients in the following identity (1+ x)n−1(1+ x) = (1+ x)n, the following
recurrence relation

Cn
k = Cn−1

k + Cn−1
k−1 , (12)

is obtained for k, n ∈ N, such that 1 ≤ k < n.
For more information regarding the coefficients consult the following classics: [4,7,40–43].

It is interesting that the recurrence relation (12) is also a solvable difference equation, but with
two independent variables which are usually called partial difference equations (for some results on
solvability of the equations see [3,5,44]), and that there is a closed form formula for the general solution
to the equation on its natural domain, the, so called, combinatorial domain (see [45]). Namely, in [45]
was devised a method, which is called the method of half-lines for which it turned out that can be used
for solving several other important difference equations with two independent variables (see, [46] and
the related references therein).

Throughout the paper we will use the standard convention ∑l
j=k ci = 0, when k < l, and ∏k−1

j=k ci = 1.

2. Analysis of Solvability of System (8) and the Main Result

For every complex square matrix A of order k there is a nonsingular matrix

T =


t11 t12 . . . t1k
t21 t22 . . . t2k
...

...
. . .

...
tk1 tk2 . . . tkk

 ,

a transition matrix, such that

T−1AT = J =


J1 0 · · · 0

0 J2
. . .

...
...

. . . . . . 0
0 · · · 0 Jl

 , (13)
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where Ji, 1 ≤ i ≤ l, are matrices of the following form

Ji =


λi 1 . . . 0

0 λi
. . .

...
...

. . . . . . 1
0 . . . 0 λi

 , (14)

the, so called, Jordan blocks. If the submatrices Ji, i = 1, l, are of orders ρi, i = 1, l, respectively, then,
of course, it must be ∑l

i=1 ρi = k. The matrix J in (13) is called the Jordan normal form of matrix A.

Remark 1. Recall that for a given matrix A its normal form is not unique. Namely, the Jordan blocks of a Jordan
matrix corresponding to matrix A, can be permutated and the obtained block diagonal matrix is also a Jordan
matrix of A (see, for example, [47,48]).

Using the change of variables
y(1)n

y(2)n
...

y(k)n

 =


t11 t12 . . . t1k
t21 t22 . . . t2k
...

...
. . .

...
tk1 tk2 . . . tkk




x(1)n

x(2)n
...

x(k)n

 (15)

in (8), and if in the obtained system we employ equality (13), it follows that
x(1)n+1

x(2)n+1
...

x(k)n+1

 =
1

f
(

∑k
j=1 t1jx

(j)
n , . . . , ∑k

j=1 tkjx
(j)
n
)


J1 0 · · · 0

0 J2
. . .

...
...

. . . . . . 0
0 · · · 0 Jl




x(1)n

x(2)n
...

x(k)n

 , (16)

for n ∈ N0.
Let

ki :=
i

∑
j=1

ρj, i = 1, l, (17)

and k0 = 0.
The system (16) can be written as a set of l systems each of which corresponds to a Jordan block

of matrix J, that is, for the Jordan block Ji, where i ∈ {1, . . . , l} is fixed, we have
x(ki−1+1)

n+1
...

x(ki−1)
n+1

x(ki)
n+1

 =
1

f
(

∑k
j=1 t1jx

(j)
n , . . . , ∑k

j=1 tkjx
(j)
n
)


λi 1 . . . 0

0 λi
. . .

...
...

. . . . . . 1
0 . . . 0 λi




x(ki−1+1)

n
...

x(ki−1)
n

x(ki)
n

 , (18)

for every n ∈ N0.
First, we assume that

λj 6= 0, j = 1, l, (19)

that is, that none of the characteristic values of the matrix A is equal to zero.
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Then for every solution to system (16) which has no zero component, we have

x(1)n+1

λ1x(1)n + x(2)n

=
x(2)n+1

λ1x(2)n + x(3)n

= · · · =
x(k1−1)

n+1

λ1x(k1−1)
n + x(k1)

n

=
x(k1)

n+1

λ1x(k1)
n

=
x(k1+1)

n+1

λ2x(k1+1)
n + x(k1+2)

n

=
x(k1+2)

n+1

λ2x(k1+2)
n + x(k1+3)

n

= · · · =
x(k2−1)

n+1

λ2x(k2−1)
n + x(k2)

n

=
x(k2)

n+1

λ2x(k2)
n

...

=
x(ki−1+1)

n+1

λix
(ki−1+1)
n + x(ki−1+2)

n

=
x(ki−1+2)

n+1

λix
(ki−1+2)
n + x(ki−1+3)

n

= · · · =
x(ki−1)

n+1

λix
(ki−1)
n + x(ki)

n

=
x(ki)

n+1

λix
(ki)
n

...

=
x(kl−2+1)

n+1

λl−1x(kl−2+1)
n + x(kl−2+2)

n

=
x(kl−2+2)

n+1

λl−1x(kl−2+2)
n + x(kl−2+3)

n

= · · · =
x(kl−1−1)

n+1

λl−1x(kl−1−1)
n + x(kl−1)

n

=
x(kl−1)

n+1

λl−1x(kl−1)
n

=
x(kl−1+1)

n+1

λl x
(kl−1+1)
n + x(kl−1+2)

n

=
x(kl−1+2)

n+1

λl x
(kl−1+2)
n + x(kl−1+3)

n

= · · · =
x(kl−1)

n+1

λl x
(kl−1)
n + x(kl )

n

=
x(kl )

n+1

λl x
(kl )
n

=
1

f
(

∑k
j=1 t1jx

(j)
n , . . . , ∑k

j=1 tkjx
(j)
n
) , (20)

for n ∈ N0.
Let

as,t :=
x(s)0

x(t)0

, (21)

for s, t ∈ {1, 2, . . . , k}.
Note that

as,s = 1, s = 1, k.

Since
x(ki−1)

n+1

λix
(ki−1)
n + x(ki)

n

=
x(ki)

n+1

λix
(ki)
n

,

i = 1, l, we have

x(ki−1)
n+1

x(ki)
n+1

=
x(ki−1)

n

x(ki)
n

+
1
λi

, (22)

for i = 1, l.
From (22), it follows that

x(ki−1)
n

x(ki)
n

= aki−1,ki
+

n
λi

,

that is,

x(ki−1)
n =

(
aki−1,ki

+
n
λi

)
x(ki)

n , (23)

for i = 1, l.
Further, we have

x(ki−2)
n+1

λix
(ki−2)
n + x(ki−1)

n

=
x(ki)

n+1

λix
(ki)
n

, (24)
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for i = 1, l.
Employing (23) in (24), we obtain

x(ki−2)
n+1

λix
(ki−2)
n + (aki−1,ki

+ n
λi
)x(ki)

n

=
x(ki)

n+1

λix
(ki)
n

,

i = 1, l, that is,

x(ki−2)
n+1

x(ki)
n+1

=
x(ki−2)

n

x(ki)
n

+
aki−1,ki

λi
+

n
λ2

i
, (25)

i = 1, l.
From (25), we obtain

x(ki−2)
n

x(ki)
n

= aki−2,ki
+ aki−1,ki

n
λi

+
(n− 1)n

2λ2
i

, (26)

for i = 1, l.
Motivated by (23) and (26), we assume that

x(ki−m)
n

x(ki)
n

=
m

∑
j=0

aki−m+j,ki

Cn
j

λ
j
i

, (27)

for every m ∈ {1, . . . , ki − ki−1 − 2} and each i ∈ {1, . . . , l}.
By using (27) in the following equality

x(ki−m−1)
n+1

λix
(ki−m−1)
n + x(ki−m)

n

=
x(ki)

n+1

λix
(ki)
n

,

i = 1, l, we get
x(ki−m−1)

n+1

λix
(ki−m−1)
n + x(ki)

n ∑m
j=0 aki−m+j,ki

Cn
j

λ
j
i

=
x(ki)

n+1

λix
(ki)
n

,

and consequently

x(ki−m−1)
n+1

x(ki)
n+1

=
x(ki−m−1)

n

x(ki)
n

+
m

∑
j=0

aki−m+j,ki
Cn

j
1

λ
j+1
i

, (28)

for i = 1, l.
From (28), we obtain

x(ki−m−1)
n

x(ki)
n

=aki−m−1,ki
+

n−1

∑
s=0

m

∑
j=0

aki−m+j,ki
Cs

j
1

λ
j+1
i

=aki−m−1,ki
+

m

∑
j=0

aki−m+j,ki

1

λ
j+1
i

n−1

∑
s=0

Cs
j . (29)
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Now by using (12), we have

n−1

∑
s=0

Cs
j =

n−1

∑
s=0

(
Cs+1

j+1 − Cs
j+1
)
= Cn

j+1. (30)

Employing (30) in (29), we obtain

x(ki−m−1)
n

x(ki)
n

=aki−m−1,ki
+

m

∑
j=0

aki−m+j,ki

Cn
j+1

λ
j+1
i

=aki−m−1,ki
+

m+1

∑
j=1

aki−m−1+j,ki

Cn
j

λ
j
i

=
m+1

∑
j=0

aki−m−1+j,ki

Cn
j

λ
j
i

. (31)

From (31) and by induction it follows that (27) holds for every i ∈ {1, . . . , l} and
m ∈ {1, . . . , ki − ki−1 − 1}, which can also be written as follows

x(ki−m)
n = α

(ki−m)
n x(ki)

n , (32)

where

α
(ki−m)
n :=

m

∑
j=0

aki−m+j,ki

Cn
j

λ
j
i

, (33)

for i ∈ {1, . . . , l} and m ∈ {1, . . . , ki − ki−1 − 1}.
On the other hand, from (20) we also have

x(ki)
n+1

x(kl)
n+1

=
λix

(ki)
n

λl x
(kl)
n

, (34)

for 1 ≤ i ≤ l − 1, from which it follows that

x(ki)
n =

(
λi
λl

)n

aki ,kl
x(kl)

n , (35)

for 1 ≤ i ≤ l − 1.
From (32) and (35) it follows that

x(ki−m)
n = α

(ki−m)
n

(
λi
λl

)n

aki ,kl
x(kl)

n , (36)

for 1 ≤ i ≤ l − 1 and m ∈ {1, . . . , ki − ki−1 − 1}.
From the above analysis we have the following result.

Lemma 1. Consider system (16), where Ji, i = 1, l, are Jordan blocks of orders ρi, i = 1, l, whose diagonal
elements are nonzero numbers λi, i = 1, l. Let

β
(ki−m)
n =



( λi
λl

)naki ,kl
, 1 ≤ i ≤ l − 1 and m = 0;

α
(ki−m)
n

( λi
λl

)naki ,kl
, 1 ≤ i ≤ l − 1 and 1 ≤ m ≤ ki − ki−1 − 1;

α
(kl−m)
n , 1 ≤ m ≤ kl − kl−1 − 1,

1, i = l and m = 0,

(37)
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where ki, i = 1, l are defined in (17), α
(ki−m)
n , 1 ≤ i ≤ l, 1 ≤ m ≤ ki− ki−1− 1 are defined in (33), whereas as,t,

s, t ∈ {1, 2, . . . , k}, are defined in (21).
Then, for any solution (x(1)n , x(2)n , . . . , x(k)n ) to the system such that x(j)

n 6= 0, for every n ∈ N0, j = 1, k,
the following equalities hold

x(j)
n = β

(j)
n x(kl)

n , (38)

for j = 1, kl .

Employing (38) in the following consequence of (20)

x(kl)
n+1 =

λl x
(kl)
n

f
(

∑k
j=1 t1jx

(j)
n , . . . , ∑k

j=1 tkjx
(j)
n
) , n ∈ N0,

is obtained

x(kl)
n+1 =

λl x
(kl)
n

f
((

∑k
j=1 t1jβ

(j)
n
)
x(kl)

n , . . . ,
(

∑k
j=1 tkjβ

(j)
n
)
x(kl)

n
) , n ∈ N0,

which due to the fact that kl = k, is nothing but

x(k)n+1 =
λl x

(k)
n

f
((

∑k
j=1 t1jβ

(j)
n
)
x(k)n , . . . ,

(
∑k

j=1 tkjβ
(j)
n
)

x(k)n
) , n ∈ N0. (39)

Remark 2. Bearing in mind Remark 1, we see that the transition matrix could be chosen such that any of
the Jordan blocks could go to the last position (lth one in our notations) in the corresponding Jordan matrix J,
from which it follows that in formula (39) instead of λl can be any of the other characteristic values of matrix A.
The form of formula (39) will be the same, but the values of sequences (β

(j)
n )n∈N0 , j = 1, k, can be different.

The transformation in (15), as well as its inverse one, maps the sets of k-dimensional Lebesgue
measure zero to sets of measure zero, since T is a nonsingular matrix. Note also that the set

S :=
{
(w1, w2, . . . , wk) ∈ Ck : wj = 0, for some j ∈ {1, 2, . . . , k}

}
,

has k-dimensional Lebesgue measure zero.
Using these two facts, it follows that the sets

S1
n :=

{
(x(1)n , x(2)n , . . . , x(k)n ) ∈ Ck : x(j)

n = 0, for some j ∈ {1, 2, . . . , k}
}

,

and

S2
n : =

{
(y(1)n , y(2)n , . . . , y(k)n ) ∈ Ck : y(j)

n = 0, for some j ∈ {1, 2, . . . , k}
}

, (40)

=
{
(x(1)n , x(2)n , . . . , x(k)n ) ∈ Ck :

k

∑
l=1

tjl x
(l)
n = 0, for some j ∈ {1, 2, . . . , k}

}
, (41)

have measure zero for every n ∈ N0, and consequently the unions ∪n∈N0 Sl
n, l = 1, 2.

From this and the condition in (10), it follows that all the solutions to the systems (8) and (16) are
well-defined outside a set of k-dimensional Lebesgue measure zero.

Now we formulate and prove our main result.
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Theorem 1. Consider system (8), where f is a complex-valued function on Ck satisfying the
conditions (9) and (10), A = [aij] is a complex square matrix of order k, T = [tij] is a nonsingular transition
matrix which transforms the matrix A to its Jordan normal form J, whose blocks Ji, i = 1, l, correspond to the
characteristic values λi, i = 1, l, α

(ki−m)
n , 1 ≤ i ≤ l, 1 ≤ m ≤ ki − ki−1 − 1 are defined by (33), and β

(ki−m)
n ,

1 ≤ i ≤ l, 0 ≤ m ≤ ki − ki−1 − 1 are defined by (37), where ai,j, 1 ≤ i ≤ j ≤ k are some nonzero arbitrary
constants.

If the difference equation

zn+1 =
λlzn

f
((

∑k
j=1 t1jβ

(j)
n
)
zn, . . . ,

(
∑k

j=1 tkjβ
(j)
n
)
zn
) , n ∈ N0, (42)

is solvable in closed form, for some λl 6= 0, then system (8) is also solvable in closed form.

Proof. First assume that (19) holds, that is, λj 6= 0 for j = 1, k. By using the change of variables (15),
system (8) is transformed into system (16). From the analysis preceding the formulation of the
theorem we see that for every solution to system (16) which has no zero component (so, for almost
all initial values) the sequence x(k)n is a solution to Equation (42). Since the equation is solvable,
a closed-form formula for sequence x(k)n can be found, from which along with Lemma 1 it follows that
some closed-form formulas for sequences x(j)

n , 1 ≤ j ≤ k− 1 can be found. By using the formulas
in (15) we get some closed-form formulas for solutions to (8), from which the theorem follows in
this case.

Now assume that zero is a characteristic value of matrix A of order s. Then, due to the comment
in Remark 1 we may assume that

λk−s+1 = · · · = λk = 0, (43)

which implies that
λj 6= 0, j = 1, k− s.

In this case, one or several Jordan blocks correspond to the zero characteristic value. Then from (18)
with λi = 0, we obtain

x(ki−1+1)
n+1

...

x(ki−1)
n+1

x(ki)
n+1

 =
1

f
(

∑k
j=1 t1jx

(j)
n , . . . , ∑k

j=1 tkjx
(j)
n
)


0 1 . . . 0

0 0
. . .

...
...

. . . . . . 1
0 . . . 0 0




x(ki−1+1)

n
...

x(ki−1)
n

x(ki)
n

 ,

for every n ∈ N0, from which, for every (well-defined) solution to (16), it follows that

x(ki−1+1)
n+1 =

x(ki−1+2)
n

f
(

∑k
j=1 t1jx

(j)
n , . . . , ∑k

j=1 tkjx
(j)
n
)

x(ki−1+2)
n+1 =

x(ki−1+3)
n

f
(

∑k
j=1 t1jx

(j)
n , . . . , ∑k

j=1 tkjx
(j)
n
)

... (44)

x(ki−1)
n+1 =

x(ki)
n

f
(

∑k
j=1 t1jx

(j)
n , . . . , ∑k

j=1 tkjx
(j)
n
)

x(ki)
n+1 = 0,
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for n ∈ N0.
From (44) it is easily obtained that

x(ki−1+1)
n+ki−ki−1

= x(ki−1+2)
n+ki−ki−1−1 = · · · = x(ki−1)

n+2 = x(ki)
n+1, n ∈ N0. (45)

Since (45) holds for any Jordan block corresponding to the characteristic value λ = 0, we have that

x(k−s+1)
n = · · · = x(k)n = 0, (46)

for large enough n.
Hence, if all the characteristic zeros of matrix A are equal to zero, then we see that all the solutions

will be eventually equal to zero.
If there is a nonzero characteristic value, then (20) holds when l is replaced by l − 1,

and condition (42) assumes that it holds when λl is replaced by λl−1, from which, as in the first
case, it follows that some closed-form formulas can be found for (x(j)

n )n∈N0 , j = 1, kl−1, from which
along with (46) and (15) closed-form formulas for system (8) are found.

Example 1. The corresponding k-dimensional extension of systems (1), (4) and (5) is the following

x(1)n+1 =
a11

∏k
j=1,j 6=1 x(j)

n

+
a12

∏k
j=1,j 6=2 x(j)

n

+ · · ·+ a1k

∏k
j=1,j 6=k x(j)

n

...

x(i)n+1 =
ai1

∏k
j=1,j 6=1 x(j)

n

+
ai2

∏k
j=1,j 6=2 x(j)

n

+ · · ·+ aik

∏k
j=1,j 6=k x(j)

n

(47)

...

x(k)n+1 =
ak1

∏k
j=1,j 6=1 x(j)

n

+
ak2

∏k
j=1,j 6=2 x(j)

n

+ · · ·+ akk

∏k
j=1,j 6=k x(j)

n

for n ∈ N0.
Note that system (47) can be written in the form

x(1)n+1 =
a11x(1)n + a12x(2)n + · · ·+ a1kx(k)n

∏k
j=1 x(j)

n

...

x(i)n+1 =
ai1x(1)n + ai2x(2)n + · · ·+ aikx(k)n

∏k
j=1 x(j)

n

(48)

...

x(k)n+1 =
ak1x(1)n + ak2x(2)n + · · ·+ akkx(k)n

∏k
j=1 x(j)

n

for n ∈ N0.
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Now note that from (48), it follows that

x(i)n+1

ai1x(1)n + ai2x(2)n + · · ·+ aikx(k)n

=
x(k)n+1

ak1x(1)n + ak2x(2)n + · · ·+ akkx(k)n

=
1

∏k
j=1 x(j)

n

for i = 1, k− 1 and n ∈ N0.
Let

Ã =


a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
. . .

...
ak1 ak2 . . . akk

 ,

where aij are the coefficients of system (48).
By using the change of variables

x(1)n

x(2)n
...

x(k)n

 =


t11 t12 . . . t1k
t21 t22 . . . t2k
...

...
. . .

...
tk1 tk2 . . . tkk

 ·


z(1)n

z(2)n
...

z(k)n

 ,

where [tij] is a transition matrix for the matrix Ã and employing the above presented procedure we get
that for solvability of system (47), it is enough to prove the solvability of the system

zn+1 =
λlz1−k

n

∏k
i=1
(

∑k
j=1 tijβ

(j)
n
) , n ∈ N0, (49)

where λl is a nonzero characteristic value of the matrix A, while (β
(j)
n )n∈N0 are the sequences defined

in (37), for the case when all the characteristic zeros of A are different from zero. For the case when
one of the characteristic values is equal to zero but is not of order k, then the situation is similar and
λl is a nonzero characteristic value of the matrix A, but instead of k will be another integer number.
When all the characteristic zeros of the matrix A are equal to zero, then from the proof of Theorem 1
we see that all the solutions will be eventually equal to zero.

Equation (49) is a special case of the following one

zn = bnzan
n−1, n ∈ N. (50)

Various special cases of Equation (50) have appeared recently during investigation of solvability of
some product-type systems (see, for example, Theorem 2.1 in [31], Theorem 1 and Theorem 2 in [32]).

Now we will generalize these results from [31,32], by showing the solvability of Equation (50)
under some more general conditions, which includes Equation (49).

Lemma 2. Assume that (an)n∈N ⊂ Z, (bn)n∈N ⊂ C and z0 ∈ C. Then for every solution to Equation (50),
the following equality holds

zn =

( n

∏
j=k

b
∏n

i=j+1 ai

j

)
z∏n

i=k ai
k−1 , (51)

for every k, n ∈ N such that k ≤ n.
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Proof. If n = 1, then k = 1 and (51) is reduced to (50) for n = 1. Assume (51) holds for an n0 ∈ N and
1 ≤ k ≤ n0. Then from (50) with n = n0 + 1 and the hypothesis, we have

zn0+1 =bn0+1z
an0+1
n0 = bn0+1

(( n0

∏
j=k

b
∏

n0
i=j+1 ai

j

)
z∏

n0
i=k ai

k−1

)an0+1

=

( n0+1

∏
j=k

b
∏

n0+1
i=j+1 ai

j

)
z∏

n0+1
i=k ai

k−1 , (52)

for k ≤ n0. If k = n0 + 1, then (51) obviously holds. The inductive argument proves the lemma.

If in (51) we chose k = 1, we have the following corollary.

Corollary 1. Assume (an)n∈N ⊂ Z, (bn)n∈N ⊂ C and z0 ∈ C. Then the general solution to Equation (50) is

zn =

( n

∏
j=1

b
∏n

i=j+1 ai

j

)
z∏n

i=1 ai
0 , (53)

for every n ∈ N.

From Corollary 1 and since 1− k ∈ Z it follows that Equation (49) is solvable in closed form when

∏k
i=1
(

∑k
j=1 tijβ

(j)
n
)
6= 0, for every n ∈ N0, from which the solvability of system (47) follows.

Remark 3. Since for k ≤ 4 the characteristic polynomial

Pk(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ · · · · · · · · · a1k
...

. . .
...

...
...

ai1 · · · aii − λ · · · aik
...

...
...

. . .
...

ak1 · · · · · · · · · akk − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

associated to the matrix Ã appearing in system (47) can be solved by well-known formulas ([49]), in this case the
system is also practically solvable, as we have proved in [37,39]. The same fact was one of the main reasons for
the solvability of the product-type difference equations and systems recently investigated in our papers [30–33].

If k ≥ 5, then the system cannot be solved by using the method, since the polynomial Pk(λ) need not be
solvable by radicals. Nevertheless, the proof in Example 1 shows that the system is theoretically solvable.

Remark 4. Note also that if the sequence (an)n∈N0 in (50) is not a sequence of integers, then the equation need
not have a unique solution. For example, the sequence defined by the following recurrence relation

zn+1 = z
1
2
n , n ∈ N0, (54)

where z0 ∈ C \ {0} is not uniquely defined.
Namely, if

z0 = reiθ, θ ∈ [0, 2π),

then √
z0 =

√
rei θ

2+kπi, k ∈ Z,

which implies that
√

z0 =
√

rei θ
2
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if k is even, and
√

z0 =
√

rei θ
2+iπ = −

√
rei θ

2

if k is odd, which are two different points due to condition z0 6= 0.
Repeating the procedure we get a binary tree whose branching points are 2n different values of 2n√zn, n ∈ N.

This shows that difference Equation (54) can have a continuum of solutions.

3. Conclusions

Motivated by some recent papers on solvability of some classes of rational systems of difference
equations, here we present a quite general solvable system of difference equations which includes
several ones in the recent papers. Our main result together with the analysis preceding it essentially
explains what decides the solvability of the systems. It is interesting to note that a product-type
difference equation appears and is one of the things that decides the solvability, which again shows
the importance of product-type equations and systems which have been studied considerably recently.
A natural example is given. The main result can be applied on many other concrete systems of
difference equations and no doubt that experts in mathematics and other related branches of sciences
will come across some systems whose solvability will be explained by our main result. Beside some
applications it is expected that the main result can be extended to some other settings which can be
another topic for further investigations in the area.
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16. Stević, S.; Diblik, J.; Iričanin. B.; Šmarda, Z. On some solvable difference equations and systems of

difference equations. Abstr. Appl. Anal. 2012, 2012, Article 541761.



Symmetry 2018, 10, 8 15 of 16
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30. Stević, S.; Iričanin. B.; Šmarda, Z. On a product-type system of difference equations of second order solvable

in closed form. J. Inequal. Appl. 2015, 2015, Article 327.
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