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Abstract: Let P be a planar point set with no three points collinear, k points of P be a k-hole of P if the
k points are the vertices of a convex polygon without points of P. This article proves 13 is the smallest
integer such that any planar points set containing at least 13 points with no three points collinear,
contains a 3-hole, a 4-hole and a 5-hole which are pairwise disjoint.
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1. Introduction

In this paper, we deal with the finite planar point set P in general position, that is to say, no three
points in P are collinear. In 1935, Erdős and Szekeres [1], posed a famous combinational geometry
question: Whether for every positive integer m ≥ 3, there exists a smallest integer ES(m), such that any
set of n points (n ≥ ES(m)), contains a subset of m points which are the vertices of a convex polygon.
It is a long standing open problem to evaluate the exact value of ES(m). Erdős and Szekeres [2] showed
that ES(m) ≥ 2m−2 + 1, which is also conjectured to be sharp. We have known that ES(4) = 5 and
ES(5) = 9. Then by using computer, Szekeres and Peters [3] proved that ES(6) = 17. The value of
ES(m) for all m > 6 is unknown.

For a planar point set P, let k points of P be a k-hole of P if the k points are the vertices of
a convex polygon whose interior contains no points of P. Erdős posed another famous question in
1978. He asked whether for every positive integer k, there exists a smallest integer H(k), such that
any set of at least H(k) points in the plane, contains a k-hole. It is obvious that H(3) = 3. Esther Klein
showed H(4) = 5. Harborth [4] determined H(5) = 10, and also gave the configuration of nine points
with no empty convex pentagons. Horton [5] showed that it was possible to construct arbitrarily
large set of points without a 7-hole, That is to say H(k) does not exist for k ≥ 7. The existence of
H(6) had been proved by Gerken [6] and Nicolás [7], independently. In [8], Urabe first studied the
disjoint holes problems when hewas considering the question about partitioning of planar point sets.
Let Ch(P) stand for the convex hull of a point set P. A family of holes {Hi}i∈I is called pairwise
disjoint if Ch(Hi) ∩ Ch(Hj) = ∅, i 6= j; i ∈ I, j ∈ I. These holes are disjoint with each other. Determine
the smallest integer n(k1, ..., kl), k1 ≤ k2 ≤ ... ≤ kl , such that any set of at least n(k1, ..., kl) points of
the plane, contains a ki-hole for every i, 1 ≤ i ≤ l, where the holes are disjoint. From [9], we know
n(2, 4) = 6, n(3, 3) = 6. Urabe [8] showed that n(3, 4) = 7, while Hosono and Urabe [10] showed that
n(4, 4) = 9. In [11], Hosono and Urabe also gave n(3, 5) = 10, 12 ≤ n(4, 5) ≤ 14 and 16 ≤ n(5, 5) ≤ 20.
The result n(3, 4) = 7 and n(4, 5) ≤ 14 were re-authentication by Wu and Ding [12]. Hosono and

Symmetry 2018, 10, 447; doi:10.3390/sym10100447 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/10/10/447?type=check_update&version=1
http://dx.doi.org/10.3390/sym10100447
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 447 2 of 17

Urabe [9] proved n(4, 5) ≤ 13. n(4, 5) = 12 by Bhattacharya and Das was published in [13], who also
discussed the convex polygons and pseudo-triangles [14]. Hosono and Urabe also changed the lower
bound on H(5, 5) to 17 [9], and Bhattacharya and Das showed the upper bound on n(5, 5) to 19 [15].
Recently, more detailed discussions about two holes are published in [16]. Hosono and Urabe in [9]
showed n(2, 3, 4) = 9, n(2, 3, 5) = 11, n(4, 4, 4) = 16. We showed n(3, 3, 5) = 12 in [17]. We have
proved that n(3, 3, 5) = 12 [17], n(4, 4, 5) ≤ 16 [18] and also discuss a disjoint holes problem in
preference [19]. In this paper, we will continue discussing this problem and prove that n(3, 4, 5) = 13.

2. Definitions

The vertices are on convex hull of the given points,from the remaining interior points. Let V(P)
denote a set of the vertices and I(P) be a set of the interior points of P. |P| stands for the number of
points contained in P. Let p1, p2, ..., pk be k points of P, we know that p1, p2, ..., pk be a k-hole H when
the k points are the vertices of a convex polygon whose interior does not contain any point of P. And we
simply say H = (p1 p2...pk)k. As in [9], let l(a, b) be the line passing points a and b. Determine the
closed half-plane with l(a, b), who contains c or does not contain c by H(c; ab) or H(c̄; ab), respectively.
R is a region in the plane. An interior point of R is an element of a given point set P in its interior,
and we say R is empty when R contains no interior points, and simply R = ∅. The interior region of
the angular domain determined by the points a, b and c is a convex cone. It is denoted by γ(a; b, c). a
is the apex. b and c are on the boundary of the angular domain. If γ(a; b, c) is not empty, we define
an interior point of γ(a; b, c) be attack point α(a; b, c), such that γ(a; b, α(a; b, c)) is empty, as shown in
Figure 1.

Figure 1. Figure of attack point.

For β = b or β = c of γ(a; b, c), let β
′

be a point such that a is on the line segment ββ
′ . γ(a; b

′
, c)

means that a lies on the segment bb′ . Let v1, v2, v3, v4 ∈ P and (v1v2v3v4)4 be a 4-hole, as shown in
Figure 2. We name l(v3, v4) a separating line, denoted by SL(v3, v4) or SL4 for simple, when all of the
remaining points of P locate in H(v1; v3v4).

Figure 2. Figure of separating line.

We identify indices modulo t, when indexing a set of t points.
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3. Main Result and Proof

Theorem 1. [9] For any planar point set with at least 13 points in general position, if there exists a separating
line SL4, which separates a 4-hole from all of the remaining points, we always can find a 3-hole, a 4-hole and
a 5-hole which are pairwise disjoint.

From [20], we know that 13 ≤ n(3, 4, 5) ≤ 14. In this note we will give the exact value of n(3, 4, 5),
that is the following theorem.

Theorem 2. n(3, 4, 5) = 13, that is to say, 13 is the smallest integer such that any planar point set with at
least 13 points in general position, we always can find a 3-hole, a 4-hole and a 5-hole which are pairwise disjoint.

Proof. Let P be a 13 points set. CH(P) = {v1, v2, ..., vl}. If we can find a 5-hole and a disjoint convex
region with at least 7 points remained, we are done by n(3, 4) = 7 [8]. That is to say, if we find a straight
line which separates a 5-hole from at least 7 points remained, the result is correct. We call such a line
a cutting line through two points u and v in P, denoted by L5(u, v). If we can find a 4-hole and the
vertices number of the remaining points is more than 4, we are done by Theorem 1, where the two
parts are disjoint. That is to say, if we can find such a cutting line through two points m and n in
P, denoted by L4(m, n), our conclusion is correct. Therefore, in the following proof, if we can find
a cutting line L5(u, v) or L4(m, n), our conclusion must be true.

In the following, we will assume there does not exist a separating line SL4. Then there must exist
a point pi, such that γ(pi; vi, v

′
i−1) and γ(pi; vi−1, v

′
i) are empty, as shown in Figure 3. Considering the

13 points, it is easy to know the conclusion is obvious right when |V(P)| ≥ 7. Next, we discuss the
considerations that 3 ≤ |V(P)| ≤ 6.

Figure 3. Figure of point determined by two separating lines.

Case 1 |V(P)| = 6.

Let vi ∈ V(P) for i = 1, 2, ...6. As shown in Figure 4, we have the points pi for i = 1, 2, ...6,
such that the shaded region is empty and we have 1 point p7 remained.

Figure 4. Figure of |V(P)| = 6
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As the isomorphism of geometry from Figure 4, we only discuss one case. And the rest could be
obtained in the same way.

Assume γ(v1; p1, v3)∩ γ(v3; v1, p2) = ∅. We have a cutting line L5(v1, α(v1; v3, v6)).
Assume γ(v1; p1, v3)∩ γ(v3; v1, p2) 6= ∅. We have a cutting line L5(v1, p4).

Case 2 |V(P)| = 5.

Let vi ∈ V(P) for i = 1, 2, 3, 4, 5. We have 5 friend points pi for i = 1, 2, 3, 4, 5 as shown in
Figure 5. Then we have 3 points r1, r2, r3 remained.

Figure 5. Figure of |V(P)| = 5.

Assume γ(p1; v
′
1, p3)∩ γ(p2; v

′
3, v
′
2) = ∅. We have a cutting line L5(p1, α(p1; p3, v

′
2)).

Assume γ(p3; v
′
3, p5)∩ γ(p4; v

′
4, v
′
5) = ∅. We have a cutting line L5(p3, α(p3; p5, p1)).

Assume γ(p1; v
′
1, p3) ∩ γ(p2; v

′
3, v
′
2) 6= ∅ and γ(p3; v

′
3, p5) ∩ γ(p4; v

′
4, v
′
5) 6= ∅. Suppose

γ(p1; v
′
2, p3) ∩ γ(p5; v

′
5, p3) = ∅. If γ(p1; v

′
1, p3) ∩ γ(p2; v

′
3, v
′
2) has two of the remaining

points say r1, r2, r3 ∈ γ(p5; p3, v5), let r1 = α(p3; p1, v
′
4): and if r2 ∈ γ(r1; p2, p

′
3) 6= ∅,

we have a cutting line L5(r1, p3); and if r2 ∈ γ(r1; p
′
1, p3), we have (v2v3 p2)3, (p1r1r2 p3v1)5 and

a 4-hole from the remaining points; and if r2 ∈ γ(r1; p2, p
′
1), we have a cutting line L5(p1, r1).

If γ(p5; p3, v5)∩ γ(v4; p3, p4) has two of the remaining points, symmetrically, the conclusion is also
right. Suppose γ(p1; v

′
2, p3)∩ γ(p5; v

′
5, p3) 6= ∅. We may suppose r1 ∈ γ(p1; v

′
1, p3)∩ γ(p2; v

′
3, v
′
2),

r2 ∈ γ(p1; v
′
2, p3)∩ γ(p5; v

′
5, p3), r3 ∈ γ(p3; v4, p5) ∩ γ(p4; v

′
4, v
′
5). If γ(r2; p1, p

′
3) 6= ∅, we have

(v2v3 p2)3, (p1r1 p3r2v1)5 and a 4-hole from the remaining points. If γ(r2; p3, p
′
1) 6= ∅, we have

(v2v3 p2)3, (r2 p1r1 p3α(r2; p3, p
′
1))5 and a 4-hole from the remaining points. If γ(r2; p1, p

′
3) = ∅ and

γ(r2; p3, p
′
1) = ∅, we have (v4v5 p4)3, (r3 p5v1r2 p3)5 and a 4-hole from the remaining points.

Case 3 |V(P)| = 4.

Let vi ∈ V(P) for i = 1, 2, 3, 4. We have 4 friend points pi for i = 1, 2, 3, 4. Then we have 5 points
r1, r2, r3, r4, r5 remained as shown in Figure 6.



Symmetry 2018, 10, 447 5 of 17

Figure 6. Figure of |V(P)| = 4.

If γ(p1; v
′
1, v
′
2) ∩ H(p1; p2 p4) = ∅ or γ(p3; v

′
3, v
′
4) ∩ H(p3; p2 p4) = ∅, we have a cutting

line L5(p4, α(p4; p2, v
′
1)) or L5(p4, α(p4; p2, v

′
4)). Then we will consider that γ(p1; v

′
1, v
′
2) ∩

H(p1; p2 p4) 6= ∅ and γ(p3; v
′
3, v
′
4)∩ H(p3; p2 p4) 6= ∅.

Assume one of the five points say r1 ∈ γ(p1; v
′
1, v
′
2) ∩ H(p1; p2 p4) and the remaining

four say ri ∈ γ(p3; v
′
3, v
′
4) ∩ H(p3; p2 p4), i = 2, 3, 4, 5. (If γ(p1; v

′
1, v
′
2) ∩ H(p1; p2 p4) has four

points and γ(p1; v
′
1, v
′
2) ∩ H(p1; p2 p4) has one point, symmetrically, the conclusion is also right).

Let r2 = α(p4; p2, v
′
1).

Suppose r1 ∈ γ(p1; v
′
1, p2) or r1 ∈ γ(p1; v

′
2, p4). We always have a cutting line L5(p2, p4).

Suppose r1 ∈ γ(p1; p4, r2)∩ H(p1; p2 p4)). We have (v1v4 p4)3, (p1v2 p2r2r1)5 and a 4-hole from the
remaining points. Suppose r1 ∈ γ(p1; p2, r2)∩ H(p1; p2 p4). We have (v2v3 p2)3, (p1v1 p4r2r1)5 and
a 4-hole from the remaining points.

Assume two of the five points, say r1, r2 ∈ γ(p1; v
′
1, v
′
2)∩ H(p1; p2 p4) and the remaining three

say ri ∈ γ(p3; v
′
3, v
′
4)∩ H(p3; p2 p4), i = 3, 4, 5. (If γ(p1; v

′
1, v
′
2)∩ H(p1; p2 p4) has three points and

γ(p1; v
′
1, v
′
2)∩ H(p1; p2 p4) has two points, symmetrically, our conclusion is also right.)

Suppose γ(p2; v1, p4) = ∅. If γ(p2; v1, p1) 6= ∅, let r1 = α(p2; v1, p1), we have (r2 p1v2)3,
(p4v1r1 p2α(p2; p4, v

′
2))5 and a 4-hole from the remaining points. If γ(p2; v1, p1) = ∅, we have

(r1r2v2)3, (p4v1 p1 p2α(p2; p4, v
′
2))5 and a 4-hole from the remaining points. Suppose γ(p2; v1, p4) 6=

∅. Let r1 = α(p2; p4, v1). If r2 ∈ γ(r1; p1, p
′
2), we have (v1v4 p4)3, (r1r2 p1v2 p2)5 and a 4-hole from

the remaining points. If r2 ∈ γ(r1; p1, p
′
4), we have (v2 p2v3)3, (v1 p1r2r1 p4)5 and a 4-hole from the

remaining points. If r2 ∈ γ(r1; p2, p
′
4), we have (v1v2 p1)3, (p4r1r2 p2α(p2; p4, v

′
2)5 and a 4-hole from

the remaining points.

Case 4 |V(P)| = 3.

Let v1, v2, v3 ∈ V(P). We have 3 friend points p1, p2, p3 and 7 points remained. As shown in
Figure 7, denote γ(p1; v

′
2, p3)∩ γ(p3; v

′
3, p1) = T1, γ(p1; v

′
1, p2)∩ γ(p2; v

′
3, p1) = T2, γ(p2; v

′
2, p3)∩

γ(p3; v
′
1, p1) = T3.

Without loss of generality, we assume |T3| ≥ |T1| ≥ |T2|.

(1) |T3| = 7.

We have a cutting line L5(p2, α(p2; p3, v
′
2))).

(2) |T3| = 6.

Name the remaining one r1. If r1 ∈ γ(p3; v
′
3, p1) or r1 ∈ γ(p2; v

′
3, p1), we have a cutting line

L5(p2, p3). If r1 ∈ γ(p3; p1, p2) ∩ γ(p1; p2, p3): and if γ(r1; p3, p
′
1) 6= ∅, we have a cutting line
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L5(r1, α(r1; p3, p
′
1)); and if γ(r1; p3, p

′
1) = ∅, we have (v1v3 p3)3, (r1 p1v2 p2α(r1; p2, p

′
1))5 and a

4-hole from the remaining points.

(3) |T3| = 5.

Name the remaining two points r1, r2. Then we will discuss the region γ(p3; v1, p1), as shown in
Figure 8.

Figure 7. Figure of |V(P)| = 5.

Figure 8. Figure of |T3| = 5

Assume γ(p3; v1, p1) = ∅. (If γ(p1; p2, v2) = ∅, by the similar reason our conclusion is also
right.) Let r1 = α(p3; p1, p2). Suppose r1 ∈ γ(p2; p1, p3).

If r2 ∈ γ(r1; p3, p
′
1), we have a cutting line L5(p3, r2). If r2 ∈ γ(p2; r1, p1): and if γ(r1; p3, p

′
1) 6=

∅, we have (r2 p2v2)3, (p3v1 p1r1α(r1; p3, p
′
1))5 and a 4-hole from the remaining points; and if

γ(r1; p3, p
′
1) = ∅, we have (v1v2 p1)3, (p3r1r2 p2α(p2; p3, v3))5 and a 4-hole from the remaining points.

Suppose r1 ∈ γ(p2; p1, v
′
3). If r2 ∈ γ(r1; p3, p

′
1), we have a cutting line L5(p3, r2). If r2 ∈ γ(r1; p

′
1, p

′
3),

we have (r1v2 p2)3, (p3v1 p1r1α(r1; p3, p2))5 and a 4-hole from the remaining points.
Assume γ(p3; v1, p1) 6= ∅ and γ(p1; p2, v2) 6= ∅. Then we suppose γ(p3; v1, p1) has one point

say r1 and γ(p1; p2, v2) has one point say r2. If γ(r1; p1, p
′
2) 6= ∅, we have a cutting line L5(p2, r1).

If γ(r1; p1, p
′
2) = ∅, we have a cutting line L5(r1, α(r1; p2, p3).

(4) |T3| = 4.
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Name the remaining three points r1, r2, r3. Then we will discuss the region γ(p3; p1, v
′
3), as shown

in Figure 9.

Figure 9. Figure of |T3| = 4

(a) Assume r1, r2, r3 ∈ γ(p3; p1, v
′
3). Let r1 = α(p3; p1, v

′
3). We have (v1 p2 p3)3, (r1 p1v2 p2 p3)5 and

a 4-hole from the remaining points.
(b) Assume two of ri, i = 1, 2, 3, say r1, r2 ∈ γ(p3; p1, v

′
3). Suppose r3 ∈ γ(p2; p1, p3) ∩

γ(p3; p1, p2). If γ(r3; p1, p
′
2) 6= ∅: we have a 4-hole from {r4, r5, r6, r7, v3},

(p1v2 p2r3α(r3; p1, p
′
2))5 and a 3-hole from the remaining points. If γ(r3; p1, p

′
2) 6= ∅,

we have(r3 p1v2 p2α(r3; p2, p
′
1))5, (r1r2v1)3 and a 4-hole from the remaining points.

If γ(r3; p1, p
′
2) = ∅ and γ(r3; p1, p

′
2) = ∅, we have a cutting line L4(p2, r3).

(c) Assume one of ri, i = 1, 2, 3, say r1 ∈ γ(p3; p1, v
′
3).

Suppose γ(r3; p1, v2) = ∅. We have a cutting line L5(p3, r2).

Suppose γ(p3; p1, v2) 6= ∅. Let r2 = α(p3; p1, v2). If r2 ∈ γ(p1; v
′
1, p2), we have a cutting

line L5(r2, α(r2; p3, p2)). Then we suppose r2 ∈ γ(p1; p2, p3). If r1 ∈ γ(r2; p
′
2, p1): and if

r3 ∈ γ(r2; p3, p
′
1), we have a cutting line L5(r2, r3); and if r3 ∈ γ(r2; p2, p

′
1), we have (v1r1 p3)3,

(p1v2 p2r3r2)5 and a 4-hole from the remaining points; and if r3 ∈ γ(r2; p2, v2), we have
(v1v3 p3)3, (r1 p1v2r3r2)5 and a 4-hole from the remaining points; and if r3 ∈ γ(r2; v2, p

′
3),

we have a cutting line L5(v2, p3). If r1 ∈ γ(r2; p
′
2, p3): and if r3 ∈ γ(r2; p3, p

′
1), we have a cutting

line L5(r2, α(r2; p3, p
′
1)); and if r3 ∈ γ(r2; p2, p

′
1), we have (v1r1 p3)3, (r2 p1v2 p2r3)5 and a 4-hole

from the remaining points; and if r3 ∈ γ(r2; r
′
1, p2), we have (v1v2 p1)3, (p3r1r2r3 p2)5 and

a 4-hole from the remaining points; and if r3 ∈ γ(r2; v2, r
′
1), we have (v1v3 p3)3, (r1 p1v2r3r2)5 and

a 4-hole from the remaining points; and if r3 ∈ γ(r2; p
′
3, v2), we have (v1r1 p1)3, (p3r2r3v2 p2)5

and a 4-hole from the remaining points.
(d) Assume γ(p3; p1, v

′
3) = ∅. By the same reason, we also assume γ(p1; p2, v

′
1) = ∅. Then we will

discuss the region γ(v1; p1, p2), as shown in Figure 10.
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Figure 10. Figure of |T3| = 4 with shaded region nonempty.

(d1) Suppose γ(v1; p1, p2) = ∅. Let r1 = α(p1; p3, p2) within (p1 p2 p3).

If γ(r1; p1, p
′
3) 6= ∅, we have (v2v3 p2)3, (r1 p3v1 p1α(r1; p1, p

′
3))5 and a 4-hole from the

remaining points.

If γ(r1; p1, p
′
3) = ∅: and if γ(r1; p3, p

′
1) 6= ∅, we have (v2v3 p2)3,

(p3v1 p1r1α(r1; p3, p1))5 and a 4-hole from the remaining points; and if γ(r1; p3, p
′
1) = ∅,

let r2 = α(r1; p
′
3, p

′
1) within (p1 p2 p3), we have (v1v3 p3)3, (r1 p1v2r2r3)5 and a 4-hole

from the remaining points when r3 ∈ γ(r2; r1, v
′
2)∩ γ(r1; r2, p

′
1), we have (v1 p1r1 p3)4,

(r3r2v2 p2α(r3; p2, r2))5 and a 3-hole from the remaining points when r3 ∈ γ(r2; p
′
1, v
′
2)

and γ(p3; p2, v
′
1) ∩ γ(r3; p2, r

′
2) 6= ∅, we have (v1v2 p1)3, (p3r1r2r3α(r3; p3, r

′
2))5 and

a 4-hole from the remaining points when r3 ∈ γ(r2; p
′
1, v
′
2) and γ(p3; p2, v

′
1) ∩

γ(r3; p2, r
′
2) = ∅, we have (v1r1 p3)3, (p1v2 p2r3r2)5 and a 4-hole from the remaining

points when r3 ∈ γ(r2; p
′
1, p2), we have (v1v2 p1)3, (p3r1r2r3 p2)5 and a 4-hole from the

remaining points when r3 ∈ γ(r2; r
′
1, p2).

(d2) Suppose γ(v1; p1, p2) has one of the r1, r2, r3, say r1 ∈ γ(r1; p1, p2). Let r2 = α(p2; p1, p3).

If r2 ∈ γ(r1; p2, p3), we have (v2v3 p2)3, (r1 p1v1 p3r2)5 and a 4-hole from the
remaining points.

If r2 ∈ γ(r1; p1, p3): and if r3 ∈ γ(r2; r1, p3), we have (v1v2 p1)3, (r3r2r1 p2 p3)5 and
a 4-hole from the remaining points; and if r3 ∈ γ(r2; p3, p

′
1), we have (v2v3 p2)3,

(v1 p1r2r3 p3)5 and a 4-hole from the remaining points; and if r3 ∈ γ(r2; p
′
1, v
′
1),

we have a cutting line L5(r1, α(r1; p2, p
′
1)) when γ(r1; p2, p

′
1) 6= ∅, we have (v2v3 p2)3,

(r3r2 p1r1α(r3; r1, r
′
2))5 and a 4-hole from the remaining points when γ(r1; p2, p

′
1) = ∅

and γ(r3; r1, r
′
2) 6= ∅, we have (r1 p1v2 p2)4, (p3v1r2r3α(r3; p3, r

′
2))5 and a 3-hole from the

remaining points when γ(r1; p2, p
′
1) = ∅ and γ(r3; r1, r

′
2) = ∅.

If r2 ∈ γ(r1; p2, p3), we have (v2v3 p2)3, (p3v1 p1r1r2)5 and a 4-hole from the
remaining points.

(d3) Suppose γ(v1; p1, p2) has two of the points r1, r2, r3, say r1, r2 ∈ γ(r1; p1, p2).
Let r1 = α(p2; p1, p3).

If γ(r1; p2, p
′
1) 6= ∅, we have a cutting line L5(r1, α(r1; p2, p

′
1)).

If γ(r1; p2, p
′
1) = ∅, let r2 = α(p1; p2, p2): and if r2 ∈ γ(v1; p2, p3), we have a cutting

line L5(r2, r3) when r3 ∈ γ(r2; p1, p3), we have (v1 p1v2)3, (p3r2r3r1 p2)5 and a 4-hole
from the remaining points when r3 ∈ γ(r2; p3, r1), we have (v2v3 p2)3, (r2v1 p1r1 p3)5



Symmetry 2018, 10, 447 9 of 17

and a 4-hole from the remaining points when r3 ∈ γ(r1; r2, p
′
1), we have (v1 p3v3)3,

(r1 p1v2 p2r3)5 and a 4-hole from the remaining points when r3 ∈ γ(r1; p2, p
′
1); and if

r2 ∈ γ(v1; p1, p2), we have (p1r1 p2v2)4, (p1v1r1r3α(r3; p3, r
′
2))5 and a 3-hole from

the remaining points when γ(r2; r3, p
′
1) ∩ γ(p2; p3, v

′
2) 6= ∅, we have a cutting line

L5(r1, α(r1; p2, p
′
1)), when γ(r1; p2, p

′
1) 6= ∅, we have (v1v3 p3)3, (r3r2 p1r1α(r1; r3, p

′
1))5

and a 4-hole from the remaining points when γ(r2; r3, p
′
1) ∩ γ(p2; p3, v

′
2) = ∅ and

γ(r1; p2, p
′
1) = ∅.

(d4) Suppose γ(v1; p1, p2) has all of the three points r1, r2, r3. Let r1 = α(p1; p3, p2),
r2 = α(p1; p2, p3).

If γ(r1; p3, p
′
1) 6= ∅ or γ(r2; p2, p

′
1) 6= ∅, we always have a cutting line L5.

If γ(r1; p3, p
′
1) = ∅ and γ(r2; p2, p

′
1) = ∅: and if r3 ∈ γ(r1; p1, p

′
3), we have a cutting

line L5(p3, r1); and if r3 ∈ γ(r1; p
′
3, p2)∩ γ(r2; p

′
2, r1), we have (v1v2 p1)3, (p3r1r3r2 p2)5

and a 4-hole from the remaining points; and if r3 ∈ γ(r2; p1, p
′
2), we have a cutting

line L5(p2, r2); and if r3 ∈ γ(r2; p
′
1, v
′
2), we have (v1 p1r1 p3)4, (r3r2v2 p2α(r3; p2, r

′
2))5

and a 3-hole from the remaining points when γ(r3; p2, r
′
2) ∩ γ(v1; p2, p3) 6= ∅,

we have (v2v3 p2)3, (r1 p1r2r3α(r3; p3, r
′
2))5 and a 4-hole from the remaining points when

γ(r3; p2, r
′
2)∩ γ(v1; p2, p3) 6= ∅.

(5) |T3| = 3. Let r1, r2, r3 ∈ T3.

(a) |T1| = 3.

Let r4, r5, r6 ∈ T1. Name the remaining one point r7. Assume r7 ∈ γ(v2; p3, p2), as shown in
Figure 11.

Figure 11. Figure of |T1| = 3.

Symmetrically, our conclusion is also right when r7 ∈ γ(v2; p3, p1). Let r4 = α(p3; p1, v
′
3).

We have (r5r6v1)3, (r4 p1v2r7 p3)5 and a 4-hole from the remaining points.
(b) |T1| = 2.

Let r4, r5 ∈ T1. Name the remaining two points r6, r7.

(b1) |T2| = 2. Let r6, r7 ∈ T2.

Assume γ(v1; p1, p2) = ∅. Let r4 = α(p2; v1, p3). Suppose r5 ∈ γ(r4; p
′
2, p3).

We have a cutting line L5(p1, p3). Suppose r5 ∈ γ(r4; v
′
1, p3). If γ(r5; p3, r

′
4) 6= ∅,

we have a cutting line L5(r5, α(r5; p3, v
′
4)). If γ(r5; p3, r

′
4) = ∅, we have a cutting

line L5(r1, α(r1; p1, p2) where r1 = α(p1; p3, p2). Suppose r5 ∈ γ(r4; p
′
2, v
′
1). We have

(r6r7v2)3, (r4v1 p1 p2r5)5 and a 4-hole from the remaining points.
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Assume γ(v1; p1, p2) has one of r4, r5. Let r4 ∈ α(v1; p1, p2). Suppose r5 ∈ α(r4; p
′
1, v1).

If γ(r4; p2, v
′
1) = ∅, we have (r2r3v3)3, (r5r4 p2r1 p3)5 and a 4-hole from the remaining

points where r1 = α(p2; p3, v3). If γ(r4; p2, v
′
1) 6= ∅, we have (p1v2r7)3, (v1r4r6 p2r5)5

and a 4-hole from the remaining points where r6 = α(r4; p2, v
′
1).

Assume γ(v1; p1, p2) has r4, r5. Let r4 ∈ α(p2; v1, p1), r1 = α(p2; p3, v3). we have
(r2r3v3)3, (p2r1 p3v1r4)5 and a 4-hole from the remaining points.

(b2) |T2| = 1.

Let r6 ∈ T2 and r7 ∈ (p1 p2 p3), as shown in Figure 12.

Figure 12. Figure of |T2| = 1.

Assume r6 ∈ γ(r7; p
′
3, p2). We have (r2r3v3)3, (p3r7r6 p2r1)5 and a 4-hole from the

remaining points where r1 = α(p2; p3, v3). Assume r6 ∈ γ(r7; p
′
3, v2). We have (r4r5v1)3,

(p1v2r6r7 p3)5 and a 4-hole from the remaining points. Assume r6 ∈ γ(r7; p1, v2).
If γ(r7; r

′
6, p2) 6= ∅, we have (r2r3v3)3, (p6r7r1 p2v2)5 and a 4-hole from the remaining

points where r1 = α(r7; p2, r
′
6). If γ(r7; r

′
6, p2) = ∅, we have (v2v3 p2)3, (p1r6r7r1 p3)5

and a 4-hole from the remaining points where r1 = α(r7; p3, p
′
1).

(b3) |T2| = 0.

Let r6, r7 ∈ (p1 p2 p3). Then we will discuss the region γ(p3; p1, v1), as shown in Figure 13.

Figure 13. Figure of |T2| = 0.
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Assume γ(p3; p1, v1) = ∅. Suppose γ(r6; p3, v
′
2) 6= ∅. We have (p3 p1v2r6α(r6; p3, v

′
2))5,

(r4r5v1)3 and a 4-hole from the remaining points. Suppose γ(r6; p3, v
′
2) = ∅.

If γ(r7; r
′
6, p2)∩ γ(p2; r7, v

′
2) 6= ∅, we have (r2r3v3)3, (r6v2 p2r1r7)5 and a 4-hole from

the remaining points where r1 = α(r7; p2, r
′
6). If γ(r7; r

′
6, p2) ∩ γ(p2; r7, v

′
2) = ∅,

we have (v2v3 p2)3, (r1r7r6 p1α(r1; p1, p3))5 and a 4-hole from the remaining points where
r1 = α(p1; r7, p3) within γ(p3; p2, v3).

Assume γ(p3; p2, v1) = ∅. We have (r2r3v3)3, (r1 p3r6v2 p2)5 and a 4-hole from the
remaining points where r1 = α(p3; p2, v3) and r6 = α(p3; v2, p1).

Assume γ(p3; p1, v2) 6= ∅ and γ(p3; p1, v2) 6= ∅. We may assume r6 ∈ γ(p3; p1, v2)

and r7 ∈ γ(p3; p1, v2). Suppose r7 ∈ γ(r6; p2, p
′
1). We have (r4r5v1)3, (r6r7 p2v2 p1)5

and a 4-hole from the remaining points. Suppose r7 ∈ γ(r6; p3, p
′
1). If γ(r7; r

′
6, p2) 6=

∅, we have (r2r3v3)3, (r7r6v2 p2r1)5 and a 4-hole from the remaining points where
r1 = α(p2; r7, v

′
2). If γ(r7; r

′
6, p2) = ∅: and if γ(r7; p1, v1) = ∅, we have (r2v3 p2)3,

(v1 p1r6r7r4)5 and a 4-hole from the remaining points where r4 = α(r7; p1, p3) within
γ(p3; p1, v1); and if γ(r7; p1, v1) 6= ∅, we have (r2v3 p2)3, (r4 p1r6r7r1)5 and a 4-hole from
the remaining points where r4 = α(r7; p1, v1).

(c) |T1| = 1. Let r4 ∈ T1.

(c1) |T2| = 1. Let r5 ∈ T2 and r6, r7 ∈ (p1 p2 p3).

Firstly, consider r4 ∈ γ(v1; p1, p2), then we will discuss the region γ(v1; p1, p2) ∩
(p1 p2 p3) = ∅, as shown in Figure 14.

Figure 14. Figure of |T1| = 1 and |T2| = 1.

Assume γ(v1; p1, p2) ∩ (p1 p2 p3) = ∅. We have a cutting line L5(r4, α(r4; p2, p
′
1)).

Assume γ(v1; p1, p2) ∩ (p1 p2 p3) 6= ∅. Let r6 = α(p2; p1, v1). If γ(r6; p2, p
′
1) 6= ∅,

we have a cutting line L5(r4, α(r6; p2, p
′
1)). Then we may assume γ(r6; p2, p

′
1) = ∅.

Suppose r5 ∈ γ(r6; v2, r
′
4). If r7 ∈ γ(r6; p

′
2, r4), we have (p1v2r5)3,

(r4r7r6 p2α(r4; p2, p3))5 and a 4-hole from the remaining points. If r7 ∈ γ(r6; p
′
1, r4),

we have a cutting line L5(r4, r6).

Suppose r5 ∈ γ(r6; v2, p1). If γ(r6; r
′
5, p

′
1) 6= ∅, we have (v1r4 p1)3,

(r6r5v2 p2α(r6; p2, r
′
5))5 and a 4-hole from the remaining points. If γ(r6; r

′
5, p

′
1) = ∅:

and if r7 ∈ γ(r6; r4, r
′
5), we have (v2v3 p2)3, (r4 p1r5r6r7)5 and a 4-hole from the

remaining points; and if r7 ∈ γ(r6; r4, p
′
2), we have (p1v2r5)3, (r4r7r6 p2α(r4; p2, p3))5

and a 4-hole from the remaining points. Suppose r5 ∈ γ(r6; p2, r
′
4). If r7 ∈ γ(r6; p

′
2, r4),
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we have (p1v2r5)3, (p2r6r7r4α(r4; p2, p3))5 and a 4-hole from the remaining points.
If r7 ∈ γ(r6; r4, p2) ∩ H(r6; r4 p2), we have (p1v2r6r5)3, (p3r4r7 p2α(p3; p2, v

′
1))5 and a

3-hole from the remaining points. If r7 ∈ γ(p2; r4, v1), we have (v1v2 p1)3, (r1r6r5 p2r7)5

and a 4-hole from the remaining points. If r7 ∈ γ(p2; v1, p3), we have (p1v2r5)3,
(v1r4r6 p2r7)5 and a 4-hole from the remaining points.

Secondly, consider r4 ∈ γ(v1; p2, p3), then we will discuss the region γ(r4; p2, p3) ∩
(p1 p2 p3) = ∅, as shown in Figure 15.

Figure 15. Figure of |T1| = 1 and |T2| = 1 with shaded region nonempty.

Assume γ(r4; p2, p3) ∩ (p1 p2 p3) = ∅. We have (r2r3v3)3, (r1 p3r4r6 p2)5 and a 4-hole
from the remaining points where r1 = α(p3; p2, v3), r6 = α(r4; p2, p1). Assume
γ(r4; p1, p2)∩ (p1 p2 p3) = ∅. We have L5(p2, r4). Assume γ(r4; p2, p3)∩ (p1 p2 p3) 6=
∅ and γ(r4; p1, p2) ∩ (p1 p2 p3) 6= ∅. Then we may assume r6 ∈ γ(r4; p2, p3), r7 ∈
γ(r4; p1, p2). Suppose r6 ∈ γ(r4; v

′
1, p3) ∩ (p1 p2 p3). If γ(r6; r

′
4, p3) 6= ∅, we have

(p1r5 p2r7)4, (v1r4r6r1 p3)5 and (r2r3v3)3 where r1 = α(r6; p3, r
′
4). If γ(r6; r

′
4, p3) = ∅:

and if r7 ∈ γ(r4; v1, p2) ∩ γ(v1; p2, r4), we have L5(p2; r4); and if r7 ∈ γ(r4; r5, p2) ∩
γ(p2; p1, v1), we have L5(r4; r7); and if r7 ∈ γ(r4; p1, r5), we have (v1v2 p1)3,
(r4r7r5 p2r6)5 and a 4-hole from the remaining points. Suppose r6 ∈ γ(r4; v

′
1, p2) ∩

(p1 p2 p3). If r7 ∈ γ(v1; p1, p2)∩ (p1 p2 p3), we have (r5v2 p1)3, (v1r7 p2r6r4)5 and a 4-hole
from the remaining points. If r7 ∈ γ(v1; p2, r4)∩ γ(r4; p1, p2): and if r7 ∈ γ(r7; r

′
4, p1),

we have L5(r4, r7); and if r5 ∈ γ(r7; r
′
4, p2), we have (v1v2 p1)3, (r4r7r5 p2r6)5 and a 4-hole

from the remaining points.
(c2) |T2| = 0.

Denote r1, r2, r3 ∈ T3, r4 ∈ T2, r5, r6, r7 ∈ (p1 p2 p3). Let r5 = α(p3; p1, p2)

within (p1 p2 p3). If γ(r5; p
′
1, p3) 6= ∅, we have L5(r5; α(r5; p3, p

′
1)). Then we assume

γ(r5; p
′
1, p3) = ∅, and we will discuss the region γ(r5; p1, p2)∩ (p1 p2 p3) = ∅, as hown

in Figure 16.
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Figure 16. Figure of |T1| = 1 and |T2| = 0.

Assume γ(r5; p1, p2)∩ (p1 p2 p3) = ∅, we have (v1r4 p3)3, (r5 p1v2 p2α(p2; r5, p3))5 and
a 4-hole from the remaining points.

Assume γ(r5; p2, p3)∩ (p1 p2 p3) = ∅. Let p6 = α(r5; p2, p
′
3). Suppose r4 ∈ γ(r5; p3, r

′
6).

We have (r2r3v3)3, (p2r1 p3r4α(r4; p2, p
′
3))5 and a 4-hole from the remaining points where

r1 = α(p2; p3, v
′
2). Suppose r4 ∈ γ(r5; p1, r

′
6). We have (r2r3r4)3, (p2r1 p3r5r6)5 and

a 4-hole from the remaining points where r1 = α(p2; p3, v
′
2).

Assume γ(r5; p1, p2)∩ (p1 p2 p3) 6= ∅ and γ(r5; p2, p3)∩ (p1 p2 p3) 6= ∅. Without loss
of generality, we suppose r6 ∈ γ(r5; p1, p2), r7 ∈ γ(r5; p2, p3).

Firstly, we may assume r6 ∈ γ(r5; v2, p2). Suppose r4 ∈ γ(r6; p7, p
′
2). We have L5(p2, r6).

Suppose r4 ∈ γ(r5; r
′
6, p1) ∩ H(r5; r6 p2). We have a cutting line L5(r5, r6). Suppose

r4 ∈ γ(r6; p
′
6, p

′
1). If r7 ∈ γ(r4; p2, p3), we have (v1v2 p1)3, (v4r5r6 p2r7)5 and a 4-hole

from the remaining points. If r7 ∈ γ(p2; r4, p5), we have (v3r2r3)3, (v1 p1r6r5)4 and
(p3r4r7 p2r1)5 where r1 = α(p2; p3, v

′
2).

Secondly, we have may assume r6 ∈ γ(r5; v2, p
′
3), we have (v1 p1r4)3, (r5r6v2 p2r7)5 and

a 4-hole from the remaining points.

(d) |T1| = 0. |T2| = 0.

Let r4, r5, r6, r7 ∈ (p1 p2 p3). And r1 = α(p3; p2, v3), r4 = α(p3; p2, p1), r5 = α(p2; p1, r4).
If γ(r4; p2, p

′
3) 6= ∅, we have (r2r3v3)3, (p2r1 p3r4α(r4; p2, p

′
3))5 and a 4-hole from the

remaining points. Assume r5 ∈ γ(r4; p1, p3). If γ(r5; p2, p
′
1) 6= ∅, we have a cutting

line L5(r5; α(r5; p2, p
′
1)). Then we will discuss the region γ(v4; p1, p

′
2) ∩ (p1 p2 p3) and

γ(r4; p1, p
′
3)∩ γ(p1; p5, r4), as shown in Figure 17.
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Figure 17. Figure of |T1| = 1 and |T2| = 0 with shaded region nonempty.

Assume γ(v4; p1, p
′
2)∩ (p1 p2 p3) = ∅. We have (r7r5v2)3, (r4 p3v1 p1r6)5 and a 4-hole from the

remaining points where r6 = α(r4; p1, p
′
3).

Assume γ(r4; p1, p
′
3) ∩ γ(p1; p5, r4) = ∅. Let r6 = α(p1; p3, r4). Suppose r7 ∈ γ(r6; r4, p

′
1).

We have (v1v2 p1)3, (p2r4r7r6r5)5 and a 4-hole from the remaining points. Suppose
r7 ∈ γ(r6; r4, v

′
1)∩ γ(r4; p1, p

′
2). We have (r1r2r3)3, (p1v2 p2r5)4 and (r4 p3v1r6r7)5. Suppose

r7 ∈ γ(r6; r5, v
′
1) ∩ γ(r4; p1, p

′
2). We have (v3r2r3)3, (r4 p2r1 p3)4 and (r6v1 p2r5r7)5. Suppose

r7 ∈ γ(r6; r5, p
′
2). We have (v1v2 p2)3, (r4 p3r6r7r5)5 and a 4-hole from the remaining points.

Suppose r7 ∈ γ(r6; p1, r
′
3). We have a cutting line L5(p3, r6).

Assume γ(v4; p1, p
′
2) ∩ (p1 p2 p3) 6= ∅ and γ(r4; p1, p

′
3) ∩ γ(p1; p5, r4) 6= ∅. Without loss of

generality, assume r6 ∈ γ(r4; p1, p
′
2)∩ (p1 p2 p3), r7 ∈ γ(r4; p1, p

′
3)∩ γ(p1; p5, r

′
4).

Suppose r6 ∈ γ(r5; p3, p
′
1). We have a cutting line L5(r6, α(r6; p1, p

′
3).

Suppose r6 ∈ γ(r5; p3, p1)∩γ(v1; r4, p3). If r7 ∈ γ(r5; p3, p
′
2)∩γ(p1; r5, r4), we have (v2 p2r5)3,

(v1 p1r7r4r6)5 and a 4-hole from the remaining points. If r7 ∈ γ(r5; p
′
3, p

′
1) ∩ γ(r4; p1, p

′
3),

we have (v2 p2 p3)3, (v1 p1r5r7r6)5 and a 4-hole from the remaining points.

Suppose r6 ∈ γ(r5; p3, p1) ∩ γ(v1; r1, p1). If r7 ∈ γ(r6; r4, v
′
1), we have (v1r6r7r4 p3)5,

(p1v2 p2r5)4 and (r1r2r3)3. If r7 ∈ γ(r6; r5, v
′
1), we have (v2v3 p2)3, (v1 p1r5r7r6)5 and a 4-hole

from the remaining points.

(6) |T3| = 2.

Let r1, r2 ∈ T3 and r1 = α(p2; p3, v
′
1). Assume r2 ∈ γ(r1; p2, v3). We have (p2r1r2v3)4 and the

remaining 9 points are in H(v3; p2 p3), as shown in Figure 18.
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Figure 18. Figure of |T3| = 2.

By the discussion of Part One, we know our conclusion is right. Assume r2 ∈ γ(r1; p
′
3, v2).

We have (p3r1r2v2)4. By the discussion of Part One, we know our conclusion is also right. Assume
r2 ∈ γ(r1; p

′
3, p2). We have a cutting line L5(p2, α(p2; p3, p1)).

(7) |T3| = 1.

Let r1 ∈ T3, r2 ∈ T1, r3 ∈ T2 and r4, r5, r6, r7 ∈ (p1 p2 p3). Let r4 = α(p3; p2, p1) within (p1 p2 p3).
Assume r4 ∈ γ(p3; p1, v1), as shown in Figure 19.

Figure 19. Figure of |T3| = 1.

If r2 ∈ γ(v1; p2, p3), we have a cutting line L5(r2, α(r2; p2, p1)). If r2 ∈ γ(v1; p2, p1), we have
a cutting line L5(v1, α(v1; p2, p1)). Assume r4 ∈ γ(p3; p2, v1). If γ(r4; p3, p

′
2) 6= ∅, we have a

cutting line L5(r4, α(r4; p3, p
′
2)). If γ(r4; p2, p

′
3) 6= ∅, we have a cutting line L5(r4; α(r4; p2, p

′
3)).

If γ(r4; p3, p
′
2) = ∅ and γ(r4; p2, p

′
3) = ∅: and if r1 ∈ γ(r4; p2, v3), we have (r4 p3v3r1)4; and if

r1 ∈ γ(r4; p3, v3), we have (p2r4r1v3)4. Then the remaining 9 points are all in H(v3; p2 p3). By the
discussion of Part One, our conclusion is right.

(8) |T3| = 0.
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Then |T2| = 0, |T1| = 0 and ri ∈ (p1 p2 p3) for i = 1, ..., 7. Let r1 = α(p1; p3, p2).
If r1 ∈ γ(p1; p3, v3), as shown in Figure 20.

Figure 20. Figure of |T1| = 0 and |T2| = 0.

We have (v1 p1r1 p3)4 and the remaining 9 points are all in H(p3; p1r1). By the discussion of Part
One, our conclusion is right. If r1 ∈ γ(p1; p3, v3): and if γ(r1; p1, p

′
3) = ∅, we have (v1 p3r1 p1)4

and the remaining 9 points are all in H(v1; p3r1); and if γ(r1; p1, p
′
3) 6= ∅, we have a cutting line

L5(r1, α(r1; p1, p
′
3)).

4. Conclusions

In this paper, we discuss a classical discrete geometry problem. After detailed proof, conclusion
shows that a general planar point set contains a 3-hole, a 4-hole and a 5-hole, with at least 13 points.
As 30 ≤ n(6) ≤ 463 [16,21] and n(7) does not exist, the proposed theorem will contribute to the
theoretical research to some degree. Discrete geometry is a meaningful tool to study social networks.
Therefore, our conclusion could be used to deal with some complex network problems. For example,
under the environment of competition social structure, the structural holes which have been studied
by many economists, are part of an important research branch of discrete geometry.
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