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Abstract: Let S∗l denote the class of analytic functions f in the open unit disk D = {z : |z| < 1}
normalized by f (0) = f ′(0)− 1 = 0, which is subordinate to exponential function, z f ′(z)

f (z) ≺ ez (z ∈ D).
In this paper, we aim to investigate the third-order Hankel determinant H3(1) for this function class
S∗l associated with exponential function and obtain the upper bound of the determinant H3(1).
Meanwhile, we give two examples to illustrate the results obtained.
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1. Introduction

Let S denote the class of functions f which are analytic and univalent in the open unit disk
D = {z : |z| < 1} of the form

f (z) = z +
∞

∑
n=2

anzn (z ∈ D). (1)

Assume that P denote the class of analytic functions p normalized by

p(z) = 1 + c1z + c2z2 + c3z3 + · · ·

and satisfying the condition Re p(z) > 0 (z ∈ D).
It is easy to see that, if p(z) ∈ P , then exists a Schwarz function ω(z) with ω(0) = 0 and

|ω(z)| < 1, such that (see [1])

p(z) =
1 + w(z)
1− w(z)

(z ∈ D).

Now, we start with recalling the definition of subordination.
Suppose that f and g are two analytic functions in D. Then, we say that the function g is

subordinate to the function f , and we write

g(z) ≺ f (z) (z ∈ D),

if there exists a Schwarz function ω(z) with ω(0) = 0 and |ω(z)| < 1, such that (see [2])

g(z) = f (ω(z)) (z ∈ D).

Recently, Mendiratta et al. in [3] introduced the following subclass S∗l of analytic functions
associated with exponential function.
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Definition 1. (see [3]). A function f ∈ S is said to be in the class S∗l , if it satisfies the following condition:

z f ′(z)
f (z)

≺ ez (z ∈ D). (2)

We easily observe that, f ∈ S∗l , if and only if∣∣∣∣log
z f ′(z)

f (z)

∣∣∣∣ < 1 (z ∈ D). (3)

In fact, if we choose f (z) = z + 1
4 z2, then, from Equation (3), we can sketch the figure of the

function class S∗l (see Figure 1).
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Figure 1. the figure of the function class S∗l for f (z) = z + 1
4 z2.

The qth Hankel determinant for q ≥ 1 and n ≥ 1 is stated by Noonan and Thomas [4] as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
(a1 = 1).

This determinant has been considered by several authors, for example, Noor [5] determined the
rate of growth of Hq(n) as n→ ∞ for functions f (z) given by Equation (1) with bounded boundary
and Ehrenborg [6] studied the Hankel determinant of exponential polynomials.

In particular, we have

H2(1) =

∣∣∣∣∣∣∣
a1 a2

a2 a3

∣∣∣∣∣∣∣ = a3 − a2
2 (a1 = 1, n = 1, q = 2),
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H2(2) =

∣∣∣∣∣∣∣
a2 a3

a3 a4

∣∣∣∣∣∣∣ = a2a4 − a2
3 (n = 2, q = 2),

and

H3(1) =

∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣∣∣
(n = 1, q = 3).

Since f ∈ S , a1 = 1, thus

H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2).

We note that H2(1) is the well-known Fekete-Szego functional (see, for instance, [7–12]).
In recent years, many authors studied the second-order Hankel determinant H2(2) and the

third-order Hankel determinant H3(1) for various classes of functions, the interested readers can
see, for example, [13–22]. We note that, they discussed the determinants H2(2) and H3(1) based
on the function classes, which are all subordinate to a certain function 1+Az

1+Bz (−1 ≤ B < A ≤ 1;
z ∈ D). Until now, very few researchers have studied the above determinants for the function class,
subordinated to ez (z ∈ D). So, in this paper, we aim to investigate the third-order Hankel determinant
H3(1) for the function class S∗l , which is associated with exponential function, and obtain the upper
bound of the above determinant.

2. Main Results

In order to prove our desired results, we shall require the following lemmas.

Lemma 1. (see [23]). If p(z) ∈ P , then exists some x, z with |x| ≤ 1, |z| ≤ 1, such that

2c2 = c2
1 + x(4− c2

1),

4c3 = c3
1 + 2c1x(4− c2

1)− (4− c2
1)c1x2 + 2(4− c2

1)(1− |x|2)z.

Lemma 2. (see [24]). Let p(z) ∈ P , then

|cn| ≤ 2, n = 1, 2, · · · .

Lemma 3. (see [3]). If the function f (z) ∈ S∗l and of the form Equation (1), then

|a2| ≤ 1, |a3| ≤
3
4

, |a4| ≤
17
36

, |a5| ≤ 1. (4)

We now state and prove the main results of our present investigation.

Theorem 1. If the function f (z) ∈ S∗l and of the form Equation (1), then we have

|a3 − a2
2| ≤

1
2

. (5)
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Proof. Since f (z) ∈ S∗l , according to the definition of subordination, then there exists a Schwarz
function ω(z) with ω(0) = 0 and |ω(z)| < 1, such that

z f ′(z)
f (z)

= eω(z).

Now

z f ′(z)
f (z) =

z+∑∞
n=2 nanzn

z+∑∞
n=2 anzn

= (1 +
∞
∑

n=2
nanzn−1)[1− a2z + (a2

2 − a3)z2 − (a3
2 − 2a2a3 + a4)z3 + · · · ]

= 1 + a2z + (2a3 − a2
2)z

2 + (a3
2 − 3a2a3 + 3a4)z3 + · · · .

(6)

Define a function

p(z) =
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + · · · .

Then, we notice that p(z) ∈ P and

ω(z) =
p(z)− 1
1 + p(z)

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · .

On the other hand,

eω(z) = 1 + ω(z) + ω(z)2

2! + ω(z)3

3! + · · ·
= 1 + c1z+c2z2+c3z3+···

2+c1z+c2z2+c3z3+··· +
1
2 (

c1z+c2z2+c3z3+···
2+c1z+c2z2+c3z3+··· )

2 + 1
6 (

c1z+c2z2+c3z3+···
2+c1z+c2z2+c3z3+··· )

3 + · · ·

= 1 + 1
2 (c1z + c2z2 + c3z3 + · · · )[1− c1z

2 + (
c2

1
4 −

c2
2 )z

2 − (
c3

1
8 −

c1c2
2 + c3

2 )z
3 + · · · ]

+ 1
8 (c1z + c2z2 + c3z3 + · · · )2[1− c1z

2 + (
c2

1
4 −

c2
2 )z

2 − (
c3

1
8 −

c1c2
2 + c3

2 )z
3 + · · · ]2

+ 1
48 (c1z + c2z2 + c3z3 + · · · )3[1− c1z

2 + (
c2

1
4 −

c2
2 )z

2 − (
c3

1
8 −

c1c2
2 + c3

2 )z
3 + · · · ]3 + · · ·

= 1 + 1
2 c1z + ( c2

2 −
c2

1
8 )z

2 + (
c3

1
48 −

c1c2
4 + c3

2 )z
3 + · · · .

(7)

On comparing the coefficients of z, z2, z3 between the Equations (6) and (7), we obtain

a2 =
c1

2
, a3 =

c2

4
+

c2
1

16
, a4 =

c3

6
+

c1c2

24
−

c3
1

288
. (8)

So,

|a3 − a2
2| =

∣∣∣∣∣ c2

4
+

c2
1

16
−

c2
1

4

∣∣∣∣∣ =
∣∣∣∣∣ c2

4
−

3c2
1

16

∣∣∣∣∣ .

Using Lemma 1, we thus know that

|a3 − a2
2| =

∣∣∣∣∣ x(4− c2
1)

8
−

c2
1

16

∣∣∣∣∣ .

Letting |x| = t ∈ [0, 1], c1 = c ∈ [0, 2] and applying the triangle inequality, the above equation
reduces to

|a3 − a2
2| ≤

t(4− c2)

8
+

c2

16
.

Suppose that

F(c, t) :=
t(4− c2)

8
+

c2

16
,
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then we get
∂F
∂t

=
4− c2

8
≥ 0,

which shows that F(c, t) is an increasing function on the closed interval [0,1] about t. Therefore,
the function F(c, t) can get the maximum value at t = 1, that is

max F(c, t) = F(c, 1) =
(4− c2)

8
+

c2

16
.

Next, let

G(c) :=
(4− c2)

8
+

c2

16
=

1
2
− c2

16
.

Then, we easily find the function G(c) have a maximum value at c = 0, also which is

|a3 − a2
2| ≤ G(0) =

1
2

.

The proof of Theorem 1 is thus completed.

Theorem 2. If the function f (z) ∈ S∗l and of the form Equation (1), then we have

|a2a3 − a4| ≤
896
√

2 + 385
3087

. (9)

Proof. From the Equation (8), we have

|a2a3 − a4| = | c1c2
8 +

c3
1

32 −
c3
6 −

c1c2
24 +

c3
1

288 |
= | c1c2

12 −
c3
6 +

5c3
1

144 |.

Again, by applying Lemma 1, we get

|a2a3 − a4| =
∣∣∣∣∣ (4− c2

1)c1x2

24
−

(4− c2
1)c1x

24
−

(4− c2
1)(1− |x|2)z

12
+

5c3
1

144

∣∣∣∣∣ .

Assume that |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. Then, using the triangle inequality, we deduce that

|a2a3 − a4| ≤
(4− c2)ct2

24
+

(4− c2)ct
24

+
(4− c2)

12
+

5c3

144
.

Setting

F(c, t) :=
(4− c2)ct2

24
+

(4− c2)ct
24

+
(4− c2)

12
+

5c3

144
.

Hence, we have
∂F
∂t

=
(4− c2)ct

12
+

(4− c2)c
24

≥ 0,

namely, that F(c, t) is an increasing function on the closed interval [0,1] about t. This implies that the
maximum value of F(c, t) occurs at t = 1, which is

max F(c, t) = F(c, 1) =
(4− c2)c

24
+

(4− c2)c
24

+
(4− c2)

12
+

5c3

144
.

Now define

G(c) :=
(4− c2)c

24
+

(4− c2)c
24

+
(4− c2)

12
+

5c3

144
,
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then

G′(c) =
(4− c2)

12
− c2

6
− c

6
+

15c2

144
.

Let G′(c) = 0, then the root is c = r = −4+8
√

2
7 . And so the function G(c) have a maximum value

attained at c = r = −4+8
√

2
7 , also which is

|a2a3 − a4| ≤ G(r) =
896
√

2 + 385
3087

.

The proof of Theorem 2 is completed.

Theorem 3. If the function f (z) ∈ S∗l and of the form Equation (1), then we have

|a2a4 − a2
3| ≤

7
12

. (10)

Proof. Suppose that f (z) ∈ S∗l , then from Equation (8), we have

|a2a4 − a2
3| = |

c1c3
12 +

c2
1c2
48 −

c4
1

576 − ( c2
4 +

c2
1

16 )
2|

= | c1c3
12 −

c2
1c2
96 −

c4
1

576 −
c2

2
16 −

c4
1

256 |.

In view of Lemma 1, we thus obtain

|a2a4 − a2
3| =

∣∣∣∣ c1c3
12 +

c2
1c2
48 −

c4
1

576 − ( c2
4 +

c2
1

16 )
2
∣∣∣∣

=

∣∣∣∣ xc2
1(4−c2

1)
192 − x2c2

1(4−c2
1)

48 − x2(4−c2
1)

2

64 − c1(4−c2
1)(1−|x|

2)z
24 − c4

1
256

∣∣∣∣ .

Also, let |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. Then, using the triangle inequality, we get

|a2a4 − a2
3| ≤

tc2(4− c2)

192
+

t2c2(4− c2)

48
+

t2(4− c2)2

64
+

(4− c2)

12
+

c4

256
.

Assume that

F(c, t) :=
tc2(4− c2)

192
+

t2c2(4− c2)

48
+

t2(4− c2)2

64
+

(4− c2)

12
+

c4

256
,

thus, we have
∂F
∂t

=
c2(4− c2)

192
+

tc2(4− c2)

24
+

t(4− c2)2

32
≥ 0,

which implies that F(c, t) increases on the closed interval [0,1] about t. That is, that F(c, t) have a
maximum value at t = 1, which is

max F(c, t) = F(c, 1) =
5c2(4− c2)

192
+

(4− c2)2

64
+

(4− c2)

12
+

c4

256
.

Taking

G(c) :=
5c2(4− c2)

192
+

(4− c2)2

64
+

(4− c2)

12
+

c4

256
,

then we have

G′(c) =
5c(4− c2)

96
− c(4− c2)

16
− c

6
− 5c3

96
+

c3

64
.
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If G′(c) = 0, then the root is c = 0. After a simple calculation, we can deduce that G′′(0) < 0,
which means that the function G(c) can take the maximum value at c = 0, also which is

|a2a4 − a2
3| ≤ G(0) =

7
12

,

and so we complete the proof of Theorem 3.

Theorem 4. If the function f (z) ∈ S∗l and of the form Equation (1), then we have

|H3(1)| ≤
165, 095 + 60, 928

√
2

444, 528
≈ 0.565. (11)

Proof. Because
H3(1) = a3(a2a4 − a2

3)− a4(a4 − a2a3) + a5(a3 − a2
2),

so, by applying the triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|. (12)

Next, substituting Equations (4), (5), (8) and (10) into (12), we easily get the desired assertion
Equation (11).

Finally, we give two examples to illustrate the results obtained.

Example 1. If we choose the function f (z) = ez − 1 = z + ∑∞
n=2

zn

n! ∈ S∗l , then we have

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|

=
1
3!
× | 1

2!
× 1

4!
− 1

3!
× 1

3!
|+ 1

4!
× | 1

4!
− 1

2!
× 1

3!
|+ 1

5!
× | 1

3!
− 1

2!
× 1

2!
|

≈ 0.004 < 0.565.

Example 2. If we put the function f (z) = − log(1− z) = z + ∑∞
n=2

zn

n ∈ S∗l , then we get

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|

=
1
3
× |1

2
× 1

4
− 1

3
× 1

3
|+ 1

4
× |1

4
− 1

2
× 1

3
|+ 1

5
× |1

3
− 1

2
× 1

2
|

≈ 0.042 < 0.565.

3. Conclusions

In this paper, we mainly investigate the third-order Hankel determinant H3(1) for the function
class S∗l , which is subordinate to exponential function, and obtain the upper bound of the above
determinant. The results obtained generalize and unify the theories of Hankel determinants in
geometric function theory.
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