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Abstract: The present paper attains a Harnack inequality for the option pricing (or Kolmogorov) equation
with gradient estimate arguments. We then perform a no-arbitrage analysis of a financial market.
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1. Introduction

The study of Harnack inequality has been an active field in the past three decades. Harnack inequality
states that the values of the nonnegative solution to a harmonic function are comparable. There are many
articles presenting the Harnack inequality through various equations in European space or Riemannian
manifold [1,2]. Additionally, some scholars study its applications [3–5].

In finance, the no-arbitrage hypothesis is an important theoretical basis in studying a series of
financial problems (e.g., the investment portfolio and the option pricing theory). Many articles have
studied the no-arbitrage condition mainly by functional analysis, the Martingale approach, and convex
optimization. These articles yield plentiful rich results [6–8].

In recent years, new perspectives have appeared in researching current problems in the financial
market. Romeil Sandhu [9] characterized the market fragility by Ricci curvature. Brody [10] applied
information geometry to the theory of interest rates to analyze the relationship of two different
yield curves. Young [11], Kirill Ilinski [12], and Simone Farinelli [13] characterized the geometric
no-arbitrage condition by the curvature. Yang Ho Choi [14] derived a general asymptotic solution of the
multidimensional Black–Scholes formula without the constant volatility assumption by the heat kernel
expansion. Carciola et al. [3] proved the Harnack inequality of option pricing (or Kolmogorov operator)
equations based on the fundamental solution of the Kolmogorov operator equations and studied the
no-arbitrage bounds for a financial market by using this Harnack inequality.

Motivated by the work of Carciola et al. [3], a natural question is that, if the fundamental solution
is not available, can one consider and study similar problems? From this consideration, we consider
a similar no-arbitrage problem to some Kolmogorov-like operator equations based on a Harnack
inequality with gradient estimate arguments instead of the argument of a fundamental solution for a
financial market.

The organization of this paper is as follows. We state some necessary terminologies and notations
in Section 2. Section 3 is devoted to perform the Harnack inequality and no-arbitrage analysis.
Conclusions are provided in Section 4.
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2. Preliminaries

For convenience, we first state some necessary terminologies and notations as follows.
Consider a market with n stocks Si

t(i = 1, 2, · · · , n) and a risk-free asset Bt, such as a bank account,
at the time t. Suppose the prices of the stocks and the bank account are described by

dSi
t = rSi

tdt + Si
t

n

∑
j=1

σijdW j
t = rSi

tdt + σiSi
tdWt,

and
dBt = rBtdt,

where W =
(
W1, · · · , Wn) is a standard n-dimensional Brownian motion, σ is a non-singular n× n

matrix and the risk-free rate r is a constant.
Consider a portfolio described by a process θ = (αt, βt) =

(
α1, · · · , αn, β

)
, where αt = α (t, St)

and βt = β (t, St) are smooth functions. The portfolio value can be expressed as

Vt =
n

∑
i=1

αi
tS

i
t + βtBt = αtSt + βtBt.

A strategy is called self-financing if

dVt = αtdSt + βtdBt. (1)

Construct a portfolio Πt: buy one option C
(
S1, · · · , Sn, t

)
, which is a function of Si and t, and sell

4i underlying assets Si. The value of the portfolio is then Πt = C
(
S1, · · · , Sn, t

)
−

n
∑

i=1
4iSi

t, where4i

can be chosen suitably so that Πt is risk-free. Thus, the portfolio Πt can be described by

dΠt = rΠtdt,

where r is a risk-free rate, that is,

dΠt = dC−
n

∑
i=1
4idSi = rΠtdt = r

(
C−

n

∑
i=1
4iSi

)
dt.

Next we apply the Itô formula to C, so that we have

dC =
∂C
∂t

dt +
n

∑
i=1

∂C
∂Si dSi +

1
2

n

∑
i,j=1

∂2C
∂Si∂Sj dSidSj.

Thus, (
∂C
∂t

+
1
2

n

∑
i,j=1

(σσ∗)ij SiSj ∂2C
∂Si∂Sj

)
dt +

n

∑
i=1

(
∂C
∂Si −4i

)
dSi

= r

(
C−

n

∑
i=1
4iSi

)
dt

(2)

where σ∗ is the transpose of σ. The right-hand side of Equation (2) is risk-free, so the coefficient of
the stochastic term on the left-hand side should be zero. We can take4i =

∂C
∂Si and remove dt. Thus,

we arrive at
∂C
∂t

+
1
2

n

∑
i,j=1

(σσ∗)ij SiSj ∂2C
∂Si∂Sj +

n

∑
i=1

rSi ∂C
∂Si − rC = 0.
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It is well-known that Equation (1) is equivalent to the fact that Vt = V (t, St), αt = ∇SV (t, St) and
βt = e−rt (V (t, St)− St∇SV (t, St)), where V = V (t, St) is a solution to the B− S equation:

1
2

n

∑
i,j=1

(σσ∗)ij SiSj∂SiSj V + rS∇SV + ∂tV − rV = 0. (3)

Let xi = lnSi. Equation (3) becomes

1
2

n

∑
i,j=1

(σσ∗)ij ∂xixj V + b∇V + ∂tV − rV = 0 (4)

or
∂tV +

1
2
∇∗x A∇xV + b∗∇xV − rV = 0 (5)

where b is a vector defined by

bi = r− 1
2

n

∑
i=1

σ2
ii, i = 1, · · · , n. (6)

By variable substitution, y = Bx. Note that ∇x = B∗∇y. Equation (5) becomes

∂tV +
1
2
∇∗y (BAB∗)∇yV + (Bb)∗∇yV − rV = 0. (7)

Because A is a symmetric matrix, there exists an orthogonal transformation B such that

BAB∗ = Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 (8)

where λ1, · · · , λn are characteristic values of matrix A, and ξi is the characteristic vector corresponding
to λi. It is obvious that we can have

B =


ξ∗1
ξ∗2
...

ξ∗n

 =


ξ11 ξ12 · · · ξ1n
ξ21 ξ22 · · · ξ2n

...
...

. . .
...

ξn1 ξn2 · · · ξnn

 . (9)

Under the substitution y = Bx, Equation (7) becomes

∂tV +
1
2

n

∑
i=1

λi
∂2V
∂y2

i
+

n

∑
i=1

ξ∗b
∂V
∂yi
− rV = 0. (10)

Next we take V = eω∗y+β(T−t)u, where β is a constant and ω is a n-dimension vector, which will
be confirmed later. Hence, we obtain

∂tu +
1
2

n

∑
i=1

[λiωi + ξ∗b]
∂u
∂y

+
1
2

n

∑
i=1

λi
∂2u
∂y2

i
−
[

r + β− 1
2

ω∗Λω− b∗B∗ω
]

u = 0.

Assume the following:
ω = −Λ−1Bb
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and

β = −r +
1
2

ω∗Λω + b∗B∗ω

= −r +
1
2
(Bb)∗ Λ−1ΛΛ−1 (Bb)− b∗B∗Λ−1Bb

= −r− 1
2
(Bb)∗ Λ−1 (Bb)

. (11)

Equation (10) becomes

∂tu = −1
2

n

∑
i=1

λi
∂2u
∂y2

i
. (12)

3. Harnack Inequality and No-Arbitrage Analysis

3.1. Harnack Inequality

Harnack inequality is used in many fields, the most important of which are those of parabolic
differential equations [15] and nonlinear parabolic equations [16]. Carciola et al. [3] proved the
Harnack inequality of Kolmogorov equations by using the method of optimal control, and they
obtained the optimal Harnack constant. However, the works of Carciola et al. are heavily dependent
on the fundamental solution of the Kolmogorov operator. Once the fundamental solution is unknown,
how can one prove the Harnack inequality? For convenience and comparison, we also consider the
Kolmogorov operator equation by adopting the argument in [17] to prove the Harnack inequality.
As we know, the Kolmogorov operator [18] is expressed generally as

L :=
1
2

n

∑
i,j=1

aij (t) ∂xixj + 〈b (t) + B (t) x,∇〉+ ∂t, (t, x) ∈ Rn+1. (13)

Let f be a positive solution to L f = 0, according to Equation (12), the Kolmogorov equation is
equivalent to

∂t f = −1
2

n

∑
i=1

λi
∂2 f
∂y2

i
. (14)

Set
4λu = λi∇i∇iu, |∇u|2λ = λi∇iu · ∇iu.

Let u = log f . We then have
ut = −4λu− |∇u|2λ . (15)

In this paper, we will mainly consider the following Harnack quantity:

H := −α4λu− β |∇u|2λ + φ. (16)

α, β ∈ R, φ : Rn × [0, ∞) will be suitably chosen later.

Lemma 1. If H is defined as in Equation (16), then

Ht =−4λ H − 2∇H · ∇λu + α

[
2

n

∑
i,j=1

λi∇j∇iu · λj∇j∇iu−4λ
′ u

]

− β

[
2

n

∑
i,j=1

λi∇j∇iu · λj∇j∇iu + |∇u|2
λ
′

]
+4λφ + 2∇φ · ∇λu + φt

. (17)
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Proof. By a direct calculation, we obtain

∂t

(
|∇u|2λ

)
= −2∇λu · ∇4λu− 2∇λu · ∇ |∇u|2λ + |∇u|2

λ
′

and
∂t (4λu) = 4

λ
′ u−4λ (4λu)−4λ

(
|∇u|2λ

)
.

In addition,

4λ

(
|∇u|2λ

)
= 2

n

∑
i,j=1

λi∇j∇iu · λj∇j∇iu + 2∇λu · ∇4λu. (18)

We then have

Ht =α4λ (4λu) + α4λ |∇u|2λ − α4
λ
′ u + 2β∇λu · ∇ (4λu)

+ 2β∇
(
|∇u|2λ

)
· ∇λu− β |∇u|2

λ
′ + φt.

(19)

After simplifying Equation (19), we obtain

Ht =−4λ H − 2∇H · ∇λu + α

[
2

n

∑
i,j=1

λi∇j∇iu · λj∇j∇iu−4λ
′ u

]

− β

[
2

n

∑
i,j=1

λi∇j∇iu · λj∇j∇iu + |∇u|2
λ
′

]
+4λφ + 2∇φ · ∇λu + φt.

This completes the proof of Lemma 1.

For convenience, we assume

Q1. 1
N < ∂m+lu

∂ym
i ∂yl

j
< 1 (i, j = 1, · · · , n), where N > 1, the integers m, l ≥ 0 satisfy 1 ≤ m + l ≤ 4.

Q2. 5
n
∑

i=1
λ2

i + 10
n
∑
i 6=j

λiλj ≤ α
Nβ

n
∑

i=1
λ
′
i.

Lemma 2. Assume that Q1 and Q2 are tenable. The following then holds:

α4λ (4λu) + β4λ |∇u|2λ ≤ α4
λ
′ u.

Theorem 1. Suppose f (x, t) is a positive solution to Equation (14). If Q1 and Q2 hold, α, β, a satisfy

0 < α < β, (20)

and

a ≥ nα2

2 (β− α)
> 0. (21)

Assume u = log f . Then the following holds:

H0 ≡ −α4λu− β |∇u|2λ −
a
t
≤ 0 (22)

for all t.
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Proof. We choose φR (y, t) defined on the n-rectangle denoted by R ⊂ Rn, which is made up of a
Cartesian product of n intervals [pi, qi], so that φR → −∞ if yi → pi, qi or if t → 0. More precisely,
we can take

φR (y, t) = − a
t
−

n

∑
k=1

λk

(
b

(yk − pk)
2 +

b

(qk − yk)
2

)
(23)

for t > 0 and y = (y1, · · · , yn) ∈ R = Πn
1 [pi, qi]. The corresponding Harnack quantity is

HR = −α4λu− β |∇u|2λ + φR (y, t) .

It is obvious that HR → H0, while the rectangle R = Πn
1 [pi, qi] → Rn, and HR < 0 for small

t (t→ 0).
Next, we will illustrate HR < 0 by reduction to absurdity. Assume that HR arrives at zero for the

first time at point t0 and point y0 ∈ R, that is, HR (y0, t0) = 0. Then, at point (y0, t0), by maximum
principle we have (

HR
)

t
≥ 0, ∇HR = 0, 4λ HR ≤ 0

and
4λu = − 1

α

(
β |∇u|2λ − φR

)
.

By applying Lemma 1 and the inequality
n
∑

i,j=1
λi∇j∇iu · λj∇j∇iu ≥ 1

n (4λu)2, we have

0 ≤−4λHR − 2∇HR · ∇λu + 2 (α− β)
n

∑
i,j=1

λi∇j∇iu · λj∇j∇iu

− α4
λ
′ u− β |∇u|2

λ
′ +4λφR + 2∇φR · ∇λu + (φR)t

. (24)

With Lemma 2, we have

−4λ HR − α4
λ
′ u +4λφR = α4λ (4λu) + β4λ |∇u|2λ − α4

λ
′ u ≤ 0.

By Inequality (20) and by setting Y = |∇u|2λ, Inequality (24) becomes

0 ≤2 (α− β)

nα2 β2Y2 +
2 (α− β)

nα2 φ2
R −

4 (α− β) β

nα2 YφR

− β |∇u|2
λ
′ + 2∇φR · ∇λu + (φR)t

. (25)

We now illustrate that the right-hand side is in fact negative, which will give us a contradiction.
Calculating − 4(α−β)β

nα2 YφR and 2∇λφR · ∇u, we obtain

− 4 (α− β) β

nα2 YφR + 2∇φR · ∇λu

≤ −4 (α− β) βφR

nα2

∣∣∣√λi∇iu
∣∣∣− nα2

∣∣∣√λi∇iφR

∣∣∣
4 (α− β) βφR

2

+
4 (α− β) βφR

nα2 ·

nα2
∣∣∣√λi∇iφR

∣∣∣
4 (α− β) βφR

2

. (26)
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Noting that φR < 0, we have

−4 (α− β) β

nα2 YφR + 2∇λφR · ∇u ≤
nα2

∣∣∣√λi∇iφR

∣∣∣2
4 (α− β) βφR

.

Thus, we arrive at

0 ≤ (φR)t +
nα2

∣∣∣√λi∇iφR

∣∣∣2
4 (α− β) βφR

+
2 (α− β)

nα2 φ2
R. (27)

We can deal with this by a direct calculation. It is easy to see that

∣∣∣√λk∇kφR

∣∣∣2 =
n

∑
k=1

λ3
k

(
2b

(yk − pk)
3 −

2b

(qk − yk)
3

)2

and to observe that ∣∣∣√λk∇kφR

∣∣∣2
φR

≥ −
n

∑
k=1

λ2
k

(
2
√

b

(yk − pk)
2 +

2
√

b

(qk − yk)
2

)2

. (28)

We set the following:

A :=
2 (α− β)

nα2 < 0, B :=
nα2

4 (α− β) β
< 0.

To arrive at a contradiction, we choose a as in Inequality (21) so that Aa2 + a ≤ 0. Next, plugging
Inequalities (23) and (28) into Inequality (27), we obtain

0 ≤ A
n

∑
k=1

λ2
k

(
b

(yk − pk)
2 +

b

(qk − yk)
2

)2

− B
n

∑
k=1

λ2
k

(
2
√

b

(yk − pk)
2 +

2
√

b

(qk − yk)
2

)2

≤
[

Ab2 − 4Bb
] n

∑
k=1

λ2
k

(
1

(yk − pk)
2 +

1

(qk − yk)
2

)2
. (29)

We conclude that it is sufficient to have

Ab2 − 4Bb < 0,

which reduces to
b >

4B
A

.

In conclusion, a and b satisfy

a ≥ nα2

2 (β− α)
, b >

n2α4

2 (α− β)2 β
.

At this point we can observe that the right-hand side of Inequality (24) is in fact negative, which
is a contradiction. It is impossible for HR to reach zero for the first time. Therefore, HR < 0, and it is
obvious that H0 < 0. Assume the solution exits in all of space Rn, we can let R→ Rn so that φR → − a

t .
This completes the proof of Theorem 1.
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Theorem 2. Let f be a positive solution to Equation (14). Let γ (t) = (y (t) , t) , t ∈ [t1, t2], be a space-time
curve joining two given points (y1, t1) , (y2, t2) ∈ Rn × [0, ∞) with 0 < t1 < t2. Assume further that a ≤ nα

2 ,
|∇u| < M (M > 0) and β = α + ε (ε→ 0). We then have

f (y2, t2) ≤ f (y1, t1)

(
t2

t1

) n
2

exp

[
1
2

M2 (t2 − t1) +
|y2 − y1|2

2 (t2 − t1)

]
.

Proof. Assume u = log f in Equation (14). Then

ut = −4λu− |∇u|2λ .

By the differential Harnack inequality expressed in Inequality (22), we have H0 ≤ 0, so

−4λu ≤ 1
α

(
β |∇u|2λ +

a
t

)
.

We then compute u along γ:

d
dt

[u (y (t) , t)] = ∇u · ẏ + ut

= ∇u · ẏ−4λu− |∇u|2λ

≤ 1
α

(
β |∇u|2λ +

a
t

)
− |∇u|2λ +∇u · ẏ

=

(
β

α
− 1
)
|∇u|2λ +∇u · ẏ +

a
αt

≤
(

β

α
− 1
)
|∇u|2λ +

1
2
|∇u|2 + 1

2
|ẏ|2 + a

αt

≤ 1
2

M2 +
1
2
|ẏ|2 + n

2t

. (30)

Integrating the above inequality expressed in Inequality (30) along γ, and taking the infimum
over all the space-time paths,

u (y2, t2)− u (y1, t1) ≤ inf
γ(t)=(y(t),t)

∫ t2

t1

[
1
2

M2 +
1
2
|ẏ|2 + n

2t

]
dt.

Recalling that u = log f , we arrive at Theorem 2.

Remark 1. Theorem 2 compares any two values of f in Equation (14). Recall the B–S equation, where we could
compare the portfolio values at any two times. In Section 3.2, we will consider a two-period financial model and
compare the portfolio values at the beginning and the end of the period by Theorem 2.

3.2. No-Arbitrage Analysis

Consider a single stage financial market with n assets and s elementary states of the world.
The initial value of n assets are S1

0, S2
0, · · · , Sn

0 , and their future values are S1, S2, · · · , Sn ∈ Ms,
where Ms is a collection of contingent claims with s status. A general strategy is described by
θ = (θ1, θ2, · · · , θn)

T ∈ Θn. The cost of this strategy is

V0 = θ1S1
0 + θ2S2

0 + · · ·+ θnSn
0

=
(

S1
0, S2

0, · · · , Sn
0

)
· (θ1, θ2, · · · , θn)

T

= ST
0 · θ ∈ R

.
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At the end of the period, the portfolio value is

V1 (θ) = Sθ = θ1S1 + θ2S2 + · · ·+ θnSn

=


S11 S21 · · · Sn1

S12 S22 · · · Sn2

...
...

. . .
...

S1s S2s · · · Sns

 ·


θ1

θ2
...

θn

 =̂S · θ ∈ Ms

where S is a pay-off matrix. We denote the single stage financial market by (Ms, Θn,S) .

Definition 1 (No-arbitrage). For the market (Ms, Θn,S), if there exists a strategy θ
′ ∈ Θn, such that

V0

(
θ
′
)
≤ 0 and V1

(
θ
′
)
> 0, we say that the market (Ms, Θn,S) has the first kind of arbitrage. If there

exists a strategy θ
′′ ∈ Θn, such that V0

(
θ
′′
)
< 0 and V1

(
θ
′′
)
= 0, we say that the market (Ms, Θn,S) has

the second kind of arbitrage.
We say that there is no arbitrage opportunity in the market (Ms, Θn,S) if there is neither the first arbitrage

opportunity nor the second arbitrage opportunity.

For details regarding the financial background, we refer the reader to [19,20].

Proposition 1. Consider the self-financing portfolio mentioned in Equation (1), which defined [0, T]. By
Theorem 2, we have

V (t, St) ≤ ertH (S0, St, t)V (0, S0) , 0 ≤ t < T (31)

where

H (S0, St, t) =
(

T
T − t

) n
2

exp

[
|St − S0|2

2t
+

M2t
2

]

=

(
T

T − t

) n
2

exp

[
1
2t

n

∑
i=1

(
Si

t − Si
0

)2
+

M2t
2

].

Proof. In fact, one can only take V(t, St)=̂ f (t, yt), St=̂yt in Theorem 2. This ends the proof of
Proposition 1.

Corollary 1. Formula (31) illustrates that it is of no-arbitrage in the self-financing market (Ms, Θn,S).

3.3. Example

Consider a market with a risk asset St and a risk-free asset Bt. Suppose the assets are given by

dSt = rStdt + σ0StdWt.

dBt = rtBtdt. (32)

Set b = r− 1
2 σ2

0 . As a consequence of Corollary 1, it is obvious that the market is of no-arbitrage if
the portfolio value satisfies the following inequality:

V (St, t) ≤ ertH (S0, St, t)V (S0, 0) , 0 ≤ t < T (33)

where

H (S0, St, t) =
(

T
T − t

) 1
2

exp

[
S2

0
2t
(

exp{
∫ t

0
σ0dWs + bt} − 1

)2
+

M2t
2

]
. (34)
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4. Conclusions

This paper gives the no-arbitrage analysis by a Harnack inequality for the option pricing equation
with gradient arguments. In particular, we do not need to derive the fundamental solution of this
Kolmogorov equation. Therefore, we could arrive at the no-arbitrage analysis if the fundamental
solution of an option pricing equation is unknown.

Author Contributions: All authors contributed equally and significantly this paper. All authors read and
approved the final manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 11871275, No. 11371194).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kawabi, H. The Parabolic Harnack Inequality for the Time Dependent Ginzburg-Landau Type SPDE and its
Application. Potential Anal. 2005, 22, 61–84. [CrossRef]

2. Arnaudon, M.; Thalmaier, A.; Wang, F. Harnack inequality and heat kernel estimates on manifolds with
curvature unbounded below. Bull. Sci. Math. 2006, 130, 223–233. [CrossRef]

3. Carciola, A. Harnack inequality and no-arbitrage bounds for self-financing portfolios. Bol. Soc. Esp. Mat. Apl.
2009, 49, 15–27.

4. Wang, F. Harnack Inequality and Applications for Stochastic Generalized Porous Media Equations.
Ann. Probab. 2007, 35, 1333–1350. [CrossRef]

5. Bass, R.F.; Levin, D.A. Harnack inequalities for jump processes. Potential Anal. 2002, 17, 375–388. [CrossRef]
6. Harrison, J.M.; Pliska, S.R. Martingales and stochastic integrals in the theory of continuous trading.

Stoch. Process. Their Appl. 1981, 11, 215–260. [CrossRef]
7. Cox, J.C.; Ross, S.A. The valuation of options for alternative stochastic processes. J. Financ. Econ. 1976, 3,

145–166. [CrossRef]
8. Deng, X.; Li, Z.; Wang, S.; Yang, H. Necessary and Sufficient Conditions for Weak No-Arbitrage in Securities

Markets with Frictions. Ann. Oper. Res. 2005, 133, 265–276. [CrossRef]
9. Sandhu, R.; Georgiou, T.; Tannenbaum, A. Market Fragility, Systemic Risk, and Ricci Curvature. arXiv 2015,

arXiv:1505.05182.
10. Brody, D.C.; Hughston, L.P. Interest Rates and Information Geometry. R. Soc. 2011, 457, 1343–1363. [CrossRef]
11. Young, K. Foreign exchange market as a lattice gauge theory. Am. J. Phys. 1999, 67, 862–868. [CrossRef]
12. Ilinski, K. Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing; Wiley: Hoboken, NJ, USA, 2001.
13. Farinelli, S. Geometric Arbitrage Theory and Market Dynamics. J. Geom. Mech. 2015, 7, 431–471. [CrossRef]
14. Choi, Y.H. Curvature Arbitrage. Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 2007.
15. Moser, J. A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 1964, 17,

101–134. [CrossRef]
16. Huang, G.; Huang, Z.; Li, H. Gradient estimates and differential Harnack inequalities for a nonlinear

parabolic equation on Riemannian manifolds. Ann. Glob. Anal. Geom. 2013, 43, 209–232. [CrossRef]
17. Cao, X. Harnack estimate for the endangered species equation. Proc. Am. Math. Soc. 2015, 143, 4537–4545.

[CrossRef]
18. Garofalo, N.; Lanconelli, E. Level sets of the fundamental solution and Harnack inequality for degenerate

equations of Kolmogorov type. Trans. Am. Math. Soc. 1990, 321, 775–792. [CrossRef]
19. Barucci, E.; Fontana, C. Financial Markets Theory; Springer: Berlin, Germany, 2017.
20. Delbaen, F.; Schachermayer, W. The Mathematics of Arbitrage; Springer: Berlin, Germany, 2006.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11118-004-6456-4
http://dx.doi.org/10.1016/j.bulsci.2005.10.001
http://dx.doi.org/10.1214/009117906000001204
http://dx.doi.org/10.1023/A:1016378210944
http://dx.doi.org/10.1016/0304-4149(81)90026-0
http://dx.doi.org/10.1016/0304-405X(76)90023-4
http://dx.doi.org/10.1007/s10479-004-5037-7
http://dx.doi.org/10.1098/rspa.2000.0722
http://dx.doi.org/10.1119/1.19139
http://dx.doi.org/10.3934/jgm.2015.7.431
http://dx.doi.org/10.1002/cpa.3160170106
http://dx.doi.org/10.1007/s10455-012-9342-0
http://dx.doi.org/10.1090/S0002-9939-2015-12576-2
http://dx.doi.org/10.1090/S0002-9947-1990-0998126-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Harnack Inequality and No-Arbitrage Analysis
	Harnack Inequality
	No-Arbitrage Analysis
	Example

	Conclusions
	References

