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Abstract: Many open quantum systems encountered in both natural and synthetic situations are
embedded in classical-like baths. Often, the bath degrees of freedom may be represented in terms
of canonically conjugate coordinates, but in some cases they may require a non-canonical or
non-Hamiltonian representation. Herein, we review an approach to the dynamics and statistical
mechanics of quantum subsystems embedded in either non-canonical or non-Hamiltonian
classical-like baths which is based on operator-valued quasi-probability functions. These functions
typically evolve through the action of quasi-Lie brackets and their associated Quantum-Classical
Liouville Equations, or through quasi-Lie brackets augmented by dissipative terms. Quasi-Lie
brackets possess the unique feature that, while conserving the energy (which the Noether theorem
links to time-translation symmetry), they violate the time-translation symmetry of their algebra.
This fact can be heuristically understood in terms of the dynamics of the open quantum subsystem.
We then describe an example in which a quantum subsystem is embedded in a bath of classical
spins, which are described by non-canonical coordinates. In this case, it has been shown that
an off-diagonal open-bath geometric phase enters into the propagation of the quantum-classical
dynamics. Next, we discuss how non-Hamiltonian dynamics may be employed to generate the
constant-temperature evolution of phase space degrees of freedom coupled to the quantum subsystem.
Constant-temperature dynamics may be generated by either a classical Langevin stochastic process or
a Nosé–Hoover deterministic thermostat. These two approaches are not equivalent but have different
advantages and drawbacks. In all cases, the calculation of the operator-valued quasi-probability
function allows one to compute time-dependent statistical averages of observables. This may be
accomplished in practice using a hybrid Molecular Dynamics/Monte Carlo algorithms, which we
outline herein.
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1. Introduction

A growing community of physicists is interested in both monitoring and controlling the time
evolution of small numbers of quantum degrees of freedom (DOF) that are embedded in noisy
and uncontrollable environments [1–3]. A specific case of such a system is encountered when the
environment is classical-like in nature. This situation is one of fundamental importance because,
ultimately, we and our experimental tools behave classically, at least from a coarse-grained perspective.
In recent years, we have also witnessed a rising interest in nano-mechanical, opto-mechanical and other
types of hybrid quantum systems [4–26]. Such systems often exhibit an interplay between classical
and quantum effects, allowing them to be modeled by means of hybrid quantum-classical methods.

It has been known for a long time, that the dynamics and statistical mechanics of
a quantum subsystem coupled to classical-like DOF can be formulated in terms of operator-valued
quasi-probability functions in phase space [27–32]. For example, the dynamics of nano-mechanical
oscillators has been previously described by one of the authors in terms of operator-valued
quasi-probability functions [33]. Such functions evolve through quasi-Lie brackets [34–43], which can
also be augmented by dissipative terms when the energy is not conserved [44,45]. When the bath
is described by canonically conjugate variables (and only in this case), a hybrid quantum-classical
formalism may be derived. Starting from a fully quantum representation of the subsystem and
bath DOF, one can perform a partial Wigner transform [46] (over the bath DOF) and then
take its semiclassical limit [47]. The resulting equation of motion is commonly known as the
quantum-classical Liouville equation (QCLE) [48–60]. The QCLE has been used to study a wide
variety of problems [61–75] and a number of in-depth reviews on the basic formulation of the
theory exist [76–89]. The mathematical structure underlying the QCLE is dictated by a quasi-Lie
bracket [42,43,90,91]. Quasi Lie brackets are known within the community of classical molecular
dynamics simulators as non-Hamiltonian brackets [92–94]. Mathematicians have also studied very
similar structures known as almost Poisson brackets or quasi-Lie algebras [95–99]. It is interesting to
note that the quasi-Lie (or non-Hamiltonian) structure of the QCLE [30,31,34–43] has both favorable
and unfavorable aspects associated with it. Because the antisymmetry of the quasi-Lie bracket ensures
energy conservation, one is able to verify the stability of numerical integration algorithms. However,
because the quasi-Lie algebra is not invariant under time translation, the initially classical DOF
acquire a quantum character as time flows, implying that one never has a true dynamical theory of
quantum and classical DOF but only an approximated dynamics of a full quantum system [100]. This is
somewhat paradoxical because energy conservation is linked to time-translation symmetry through
the Noether theorem; nevertheless, quasi-Lie brackets break the time-translation symmetry of the
algebra (which can be seen as a signature of the effect of the classical bath on the quantum subsystem).

This review deals with situations where the bath DOF are described in terms of non-canonical
coordinates [101,102] or non-Hamiltonian coordinates [92–94], and situations where dissipation must
be taken explicitly into account [44,45]. In all these cases, we will see that the operator-valued
probability functions will develop new functional dependences and novel definitions of the quasi-Lie
brackets will have to be introduced. In particular, we will first describe the case of a classical spin
bath [90,91], as an example of a bath described by non-canonical coordinates [101,102]. It has been
shown that for such a bath an off-diagonal [103] open-path [104–106] geometric phase [107–109]
enters into the propagation of the quantum-classical dynamics. We will then describe the case
of a non-Hamiltonian bath, which arises when the bath coordinates coupled to the quantum
subsystem are also coupled to a large bath (which does not directly interact with the quantum
subsystem and whose detailed dynamics is not of interest). In such cases, the secondary bath
acts as a thermal reservoir and can be described either by means of stochastic processes [110]
(e.g., Langevin dynamics [45]), or by means of non-Hamiltonian fictitious coordinates acting
as deterministic thermostats (e.g., the Nosé–Hoover thermostat [111,112]). Both Langevin and
Nosé–Hoover deterministic time evolutions are examples of non-Hamiltonian dynamics. However,
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only Nosé–Hoover dynamics is defined solely in terms of a quasi-Lie bracket [42,43]. Instead, explicit
dissipative dynamics requires that diffusive terms be added to the bracket.

The quantum-classical equations of motion herein discussed can be implemented in silico using
a variety of simulation algorithms [78,113–123]. We will sketch out one such integration algorithm,
which unfolds the quantum-classical dynamics of the operator-valued quasi-probability function in
terms of piecewise-deterministic trajectories evolving on the adiabatic energy surfaces of the system
under study [78,113].

The structure of this review is as follows. In Section 2, we illustrate the algebraic approach used
to formulate the dynamics of a quantum subsystem embedded in a classical-like environment with
canonically conjugate coordinates. In Section 3, we show how this formalism can be generalized
to the case of a bath described by non-canonical variables, namely a collection of classical spins.
Here, we will also show how an off-diagonal open-path geometric phase enters into the time evolution
of the operator-valued quasi-probability function of the system. In Section 4, we show how the
formalism allows us to also treat stochastic classical-like baths undergoing Langevin dynamics.
Finally, in Section 5, we shed light on the quasi-Lie algebra established by the quantum-classical
brackets and show how their antisymmetric structure is exploited to achieve thermal control of the
bath DOF by means of deterministic thermostats such as the Nosé–Hoover and Nosé–Hoover chain
thermostats. Our conclusions and perspectives are given in Section 6.

2. Quasi-Lie Brackets and Hybrid Quantum-Classical Systems

Classical and quantum dynamics share the same algebraic structure [124,125], which is realized
by means of Poisson brackets in the classical case and commutators in the quantum theory.
Poisson brackets have a symplectic structure that is easily represented in matrix form [102,126].
Both Poisson brackets and commutators define Lie algebras. In terms of commutators, a Lie algebra
possesses the following properties:

[χ̂1, χ̂2] = −[χ̂2, χ̂2], (1)

[χ1χ̂2, χ̂3] = χ̂1[χ̂2, χ̂3] + [χ̂1, χ̂3]χ̂2, (2)[
c, χ̂j

]
= 0, (3)

where c is a so-called c-number and χ̂j, j = 1, 2, 3 are quantum operators. In order to have a Lie algebra,
together with Equations (1)–(3), the Jacobi relation must also hold

J = [χ̂1, [χ̂2, χ̂3]] + [χ̂3, [χ̂1, χ̂2]] + [χ̂2, [χ̂3, χ̂1]] = 0. (4)

The time-translation invariance of the commutator algebra follows from the Jacobi relation, which
therefore states an integrability condition. If Ĥ is not explicitly time-dependent, the antisymmetry
of the commutator (1), arising from the antisymmetry of the symplectic matrix B, ensures that the
energy is a constant of motion: dĤ/dt = iL̂Ĥ = 0. Energy conservation under time-translation is
a fundamental property shared by the algebra of Poisson brackets and the algebra of commutators
that is in agreement with Noether theorem.

Now, let us consider a hybrid quantum-classical system, in which the quantum subsystem,
described by a few canonically conjugate operators (q̂, p̂) = x̂ is embedded in a classical bath with
many DOF, described by many canonically conjugate phase space coordinates, X = (Q, P). We will
assume that the Hamiltonian of this hybrid system has the form

ĤW(X) =
P2

2M
+

p̂2

2m
+ VW(q̂, Q)

=
P2

2M
+ ĥW(Q) ,

(5)
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where m and M are the masses of the subsystem and bath DOF, respectively, and VW is the
potential energy describing the interactions among the subsystem DOF, among the bath DOF,
and between these two sets of DOF. The last equality on the right-hand side of Equation (5)
defines the adiabatic Hamiltonian ĥW(Q) of the system. It has been known for many years that
the statistical mechanics of such hybrid quantum-classical systems may be formulated in terms of
an operator-valued quasi-probability function Ŵ(X, t) [27–32]. Specifically, the statistical average
of hybrid quantum-classical operators, representing a dynamical property of the system, may be
calculated according to

〈χ̂〉(t) = Tr′
∫

dXŴ(X, t)χ̂W(X) , (6)

where Tr′ denotes the partial trace involving a complete set of states of the quantum subsystem.
The operator-valued quasi-probability function in phase space evolves according to

∂

∂t
Ŵ(X, t) = − i

h̄

[
ĤW Ŵ(X, t)

]
D
[

ĤW

Ŵ(X, t)

]
= − i

h̄
[
ĤW, Ŵ(X, T)

]
D = −iL̂D χ̂ , (7)

where D is an antisymmetric matrix super-operator defined by

D =

 0 1−
←−
∇B

−→
∇

2ih̄−1

−
(

1−
←−
∇B

−→
∇

2ih̄−1

)
0

 , (8)

with ∇ = (∂/∂Q, ∂/∂P) = ∂/∂X, and

←−
∇B
−→
∇ =

2N

∑
I,J=1

←−∇ IBI J
−→∇ J (9)

denotes the Poisson bracket operator. The last equality on the right-hand side of Equation (7) defines
the quantum-classical Liouville operator iL̂D . Equation (7) is the QCLE [48–60] of the system.

The QCLE in Equation (7) is founded upon a quasi-Lie bracket, which we may write explicitly as

[χ̂1(X), χ̂2(X)]D =
[

χ̂1(X) χ̂2(X)
]
D
[

χ̂1(X)

χ̂2(X)

]
, (10)

where D is the antisymmetric matrix operator defined in Equation (8). However, in contrast to the Lie
brackets of quantum and classical mechanics, the quasi-Lie bracket defined in Equation (10) violates
the Jacobi relation (4):

JD =
[
χ̂1(X), [χ̂2(X), χ̂3(X)]D

]
D +

[
χ̂3(X), [χ̂1(X), χ̂2(X)]D

]
D +

[
χ̂2(X), [χ̂3(X), χ̂1(X)]D

]
D 6= 0 . (11)

The failure of the Jacobi implies that the algebra of quasi-Lie brackets is not invariant under
time-translation. For example, it can be generally proven that

eitLD [χ̂1(X, 0), χ̂2(X)] 6=
[

eitLD χ̂1(X), eitLD χ̂2(X)

]
. (12)

On the other hand, the quasi-Lie bracket conserves the energy eitLD ĤW(X) = ĤW(X). Hence,
the dynamics generated by the QCLE displays energy conservation and lack of time-translation
invariance of the bracket algebra. The situation is surprising because one does not expect a broken
time-translation invariance symmetry in an isolated system. However, while a total hybrid
quantum-classical system is closed from the point of view of energy conservation, the quasi-Lie
bracket describes the irreversible transfer of quantum information from the subsystem to the classical
DOF, which acquire a quantum character as the time flows. In this sense, one can heuristically argue
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that the lack of time-translation invariance or the algebra is a mere consequence of the open dynamics
of the quantum subsystem.

2.1. Derivation of the QCLE through a Partial Wigner Transform

When the bath DOF are described by canonically conjugate variables (and only in this case),
the hybrid quantum can be derived by performing a partial Wigner transform of the quantum Liouville
equation (QLE) over the bath DOF and taking a semiclassical limit of the resulting equations. To this
end, let us consider the fully quantum counterpart to the Hamiltonian in Equation (5):

Ĥ =
P̂2

2M
+

p̂2

2m
+ V(q̂, Q̂) . (13)

The quantum statistical state of the system is described by the density matrix (or statistical
operator) ρ̂(t). The time dependence of the density matrix is dictated by the QLE:

d
dt

ρ̂(t) = − i
h̄
[
Ĥ, ρ̂(t)

]
= − i

h̄

[
ρ̂ Ĥ

]
B
[

ρ̂

Ĥ

]
, (14)

where [..., ...] denotes the commutator, and B is the symplectic matrix [102,126]:

B =

[
0 1
−1 0

]
. (15)

The average of an operator χ̂ defined on the same Hilbert space of the system is calculated by

〈χ̂〉(t) = Tr (ρ̂(t)χ̂) , (16)

where Tr denotes the trace operation. Now, in order to derive a classical-like description of the bath,
one introduces the partial Wigner transform of the density matrix ρ̂ over the X̂’s:

Ŵ(X, t) =
1

2πh̄

∫
dZeiP·Z/h̄〈Q− Z

2
|ρ̂(t)|Q +

Z
2
〉 . (17)

The symbol Ŵ denotes an operator-valued Wigner function (also known as the partially-Wigner
transformed density matrix), which is both an operator in the Hilbert space of the q̂’s and a function
of the bath coordinates X. The partial Wigner transform of an arbitrary operator χ̂ is analogously
given by

χ̂W(X) =
∫

dZeiP·Z/h̄〈Q− Z
2
|χ̂|Q +

Z
2
〉 . (18)

Taking the partial Wigner transform of Equation (16) leads to the expression for the average of
χ̂ given in Equation (6). The partial Wigner transform of the Hamiltonian in Equation (13) is given
in Equation (5).

Upon taking the partial Wigner transform of the QLE, Equation (14), and truncating the resulting
equation after first order in h̄, one arrives at the QCLE

∂

∂t
Ŵ(X, t) = − i

h̄
[
ĤW, Ŵ(X, t)

]
+

1
2

ĤW
←−
∇B
−→
∇Ŵ(X, t)− 1

2
Ŵ(X, t)

←−
∇B
−→
∇ĤW

= −iLŴ(X, t) ,
(19)
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where the last equality defines the quantum Liouville operator iL = (i/h̄)[ĤW, ·] − (1/2)
(ĤW
←−
∇B
−→
∇·) + (1/2)(·

←−
∇B
−→
∇ĤW). To arrive at Equation (19), we have used the partial Wigner

transform of a product of operators,

(χ̂1χ̂2)W (X) = χ̂1,W(X)e
ih̄
2

←−
∇B

−→
∇χ̂2,W(X) , (20)

and truncated the exponential after first order in h̄, i.e.,

e
ih̄
2

←−
∇B

−→
∇ ≈ 1 +

ih̄
2
←−
∇B
−→
∇ . (21)

It should be noted that Equation (21) is exact for Hamiltonians with quadratic bath terms and
bilinear coupling between the x̂ and X DOF. In Ref. [47], it is shown how the linear expansion can be
performed in terms of the parameter µ =

√
m/M, which is small in cases where the bath DOF are

much more massive than those of the subsystem. Equation (19) is exactly equivalent to Equation (7).

2.2. Integration Algorithm

A number of algorithms, which depend on the basis representation, exist for approximately
solving the QCLE [50,51,54–56,60,78,113–123]. Herein, we illustrate the so-called Sequential Short-Time
Propagation (SSTP) algorithm [78,113], which offers a good compromise between accuracy and
simplicity of implementation. The SSTP algorithm is based on the representation of the QCLE in the
adiabatic basis, which is defined by the eigenvalue equation

ĥW|α; Q〉 = Eα(Q)|α; Q〉 . (22)

The representation of the QCLE in the adiabatic basis is sketched in Appendix A. In the adiabatic
basis, the QCLE is given by Equation (A1) and the quantum-classical Liouville super-operator matrix
elements are given in Equation (A4).

To derive the SSTP algorithm, we divide the time interval t into n equal small steps τ = t/n.
If one is able to calculate the propagation over a single τ, the dynamics over the whole interval can
be reconstructed by sequential iteration of the procedure. Let us then consider the quantum-classical
propagator over a small step τ for the matrix elements of the operator-valued quasi-probability function
Ŵ(X) in the adiabatic basis. Such a propagator is written as(

e−iτL
)

αα,ββ′
≈ δαβδα′β′ e

−i
∫ τ

0 dsωαα′ (s)e−iτLαα′
(

1 + τTαα′ ,ββ′

)
. (23)

On the right-hand side of Equation (23), we have introduced ωαα′ , the Bohr frequency defined in
Equation (A3), iLαα′ is a classical-like Liouville operator, defined in Equation (A5), and Tαα′ ,ββ′ is the
transition operator defined in Equation (A7). The SSTP dynamics of the matrix elements of Ŵ(X, t) is
given by

Wαα(X, τ) = ∑
ββ′

δαβδα′β′ e
−i
∫ τ

0 dsωαα′ (s)e−iτLαα′
(

1 + τTαα′ ,ββ′

)
Wββ(X) . (24)

When τ is infinitesimal, the right-hand side of Equations (23) and (24), become essentially equal
to the left-hand side, as can be seen from the Dyson identity [113].

The transition operator is purely off-diagonal. Its action generates quantum transitions in the
subsystems and changes the bath momenta accordingly. Upon setting the transition operator to zero,
we obtain an adiabatic expression for the propagator. If the non-adiabatic effects are not too strong, they
may be treated in a perturbative fashion by sampling the action of the transition operator in a stochastic
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fashion. Typically, researchers have used [43,62,64–75,78,82,85,87–91,113,118–122] the following
expressions for the probabilities of making a transition (jump) and not-making a transition, respectively:

PJ =
|τ P

M · dαβ|
1 + |τ P

M · dαβ|
, (25)

QNO−J =
1

1 + |τ P
M · dαβ|

. (26)

Another important technical ingredient of the algorithm is the approximation of the transition
operator in Equation (A7) with its momentum-jump form:

T MJ
αα′ ,ββ′ = δα′β′

P
M
· dαβe(Eα−Eβ)M∂/∂(P·d̂αβ)

2
+ δαβ

P
M
· d∗α′β′ e

(E′α−E′β)M∂/∂(P·d̂∗
α′β′ )

2
, (27)

where d̂αβ is the normalized coupling vector. Within the momentum-jump approximation [77,78],
the action of the transition operator on the bath momenta can be easily obtained in closed form:

e(Eα−Eβ)M∂/∂(P·d̂αβ)
2
P = P− P

(
P · d̂αβ

)
+ d̂αβ

√(
P · d̂αβ

)2
+ M

(
Eα − Eβ

)
. (28)

Considering Equations (6) and (24), together with its SSTP implementation just described, one can
see that the solution of the QCLE can be obtained from an ensemble of classical-like trajectories,
where each trajectory (whose initial conditions arise from a Monte Carlo sampling [127] of the X’s),
involves deterministic evolution segments on a given adiabatic energy surfaces interspersed with
stochastic quantum transitions, caused by the momentum-jump operator in Equation (27).

The SSTP algorithm [78,113] maps the calculation of averages through the QCLE (19) onto a stochastic
process. It is a hybrid Molecular Dynamics/Monte Carlo procedure suffering from two main problems.
The first is given by the momentum-jump approximation, which is not valid in general. One can
avoid this approximation by devising different integration schemes, but usually at the expense of other
approximations [123]. The second problem is not just associated with the SSTP algorithm, but it is
common to all Monte Carlo approaches to the calculation of quantum averages: the infamous sign-problem.
The sign-problem is one of the major unsolved problems in the physics of quantum systems. Within
the SSTP algorithm, it manifests itself both through the oscillating phase factors associated with the
propagation on mean-energy surfaces and through the accumulation of fluctuating weights associated
with the Monte Carlo sampling of the quantum transitions. In practice, upon analyzing the results
obtained by means of this algorithm [43,62,64–75,78,82,85,87–91,113,115–122], we can conclude that
the more quantum is the character of the bath the greater is the error in the calculation of the averages.

The mapping of the calculation of averages via the SSTP algorithm onto a stochastic process is
reminiscent of the approach to open quantum system dynamics provided by the Stochastic Liouville
Equation (SLE) [128–131]. However, in contrast to the SLE, the QCLE is a deterministic equation
that explicitly takes into account all the DOF of the system without approximating the memory of
the total hybrid quantum-classical system. The stochastic process only enters through the specific
hybrid Molecular Dynamics/Monte Carlo implementation provided by the SSTP algorithm. Indeed,
a recently proposed scheme of integration [123] does not involve any stochastic process whatsoever.

3. Classical Spin Baths

Contrary to what some books in quantum mechanics state (in the authors’s knowledge,
an exception is Schulman’s book [132]), the concept of spin can be defined in an entirely classical
way [132–136]. In practice, spinors provide a more fundamental representation of the rotation group
than that given by tensors [132–136]. Hence, one can think of a collection, e.g., a bath, of DOF
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comprising classical spinors (or, for brevity, spins): a classical spin-bath. An example of a classical spin
baths is given by the Classical Heisenberg Model [137], whose Hamiltonian is

HCHS = ∑
a=x,y,z

N

∑
I,J

SI
aCa

I JS
J
a , (29)

where SI are N classical vectors obeying the constraint(
SI

x

)2
+
(

SI
y

)2
+
(

SI
z

)2
= 1 , (30)

for I = 1, ..., N, and the Ca
I J are coupling constants. However, since the generalization to baths

with many spins is straightforward, in the following, we will illustrate the theory using a bath
comprising a single classical spin. Consider a classical spin vector S, with components Sa, a = x, y, z,
and Hamiltonian HS(S). Let us define the spin gradient as ∇S = ∂/∂S, which in terms of the spin
components is written as ∇S

a = ∂/∂Sa, with a = x, y, z. The equations of motion of the spin are then
written as

Ṡ = BS∇SHS , (31)

where

BS =

 0 Sz −Sy

−Sz 0 Sx

Sy −Sx 0

 . (32)

One can also adopt the compact form BS
ab = ∑c=x,y,z εabcSc and a, b = x, y, z of the antisymmetric

matrix BS, where εabc is the Levi–Civita pseudo-tensor. The Casimir C2 = S · S is preserved by the
equations of motion (31), independently of the form of the spin Hamiltonian HS(S). In addition,
the dynamics has a zero phase space compressibility κS = ∇S · Ṡ = 0. The classical phase space flow
of the spin is defined through the non-canonical bracket

∑
a,b

A(S)
←−∇S

aBS
ab
−→∇S

b B(S) = A(S)
←−∇SBS−→∇SB(S) , (33)

where A = A(S) and B = B(S) are arbitrary functions of the spin DOF.
Consider now the hybrid quantum-classical Hamiltonian of a quantum subsystem coupled to the

classical spin
Ĥ(S) = Ĥ({χ̂}) + VC({χ̂}, S) + HS(S)

= ĥS(S) + HS(S) ,
(34)

describing a quantum subsystem in terms of the Hamiltonian Ĥ({χ̂}), depending on the operators
{χ̂}, V({χ̂}, S) is the subsystem-spin interaction potential, and the second line of the equation
defines the adiabatic Hamiltonian ĥS. The quantum-classical dynamics of the operator-valued
quasi-probability function (defined in the spinor space of the total system), ŴS(S, t), is dictated
by the spin-bath QCLE [90,91]

∂

∂t
ŴS(S, t) = − i

h̄

[
Ĥ(S) ŴS(S, t)

]
DS

[
Ĥ(S)

ŴS(S, t)

]
= − i

h̄
[
Ĥ(S), ŴS(S, t)

]
DS ,

(35)

where

DS =

[
0 1 + ih̄

2
←−∇BS−→∇

−1− ih̄
2
←−∇BS−→∇ 0

]
. (36)
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We next set out to represent Equation (35) in the adiabatic basis |α; S〉 defined by the
eigenvalue equation

ĥS(S)|α; S〉 = Eα(S)|α; S〉 . (37)

It should be noted that, in contrast to the case of canonically conjugate phase space coordinates
which depends only on the positions Q and not on the conjugate momenta P, this adiabatic basis
depends on all the non-canonical spin coordinates S. In this basis, Equation (35) becomes

∂

∂t
ŴS

αα′ = −iωαα′WS
αα′ − HS←−∇SBS〈α|−→∇SŴS|α′〉

+
1
2
〈α|ĥS

←−∇SBS−→∇SŴS|α′〉 − 1
2
〈α|ŴS←−∇ SBS−→∇S ĥS|α′〉 ,

(38)

where ωαα′ = Eα(S)− Eα′(S)/h̄ is the Bohr frequency. Defining the spin coupling vector

dS
αα′ = 〈α; S|−→∇S|α′; S〉, (39)

one finds the two identities

〈α; S|
(−→∇SŴS(S)

)
|α′; S〉 =

−→∇SWS
αα′(S) + ∑

β

dS
αβWS

βα′(S)−∑
β′

WS
αβ′(S)d

S
β′α′ (40)

〈α; S|
(−→∇S ĥS(S)

)
|α′; S〉 =

−→∇Shαα′
S − ∆Eαα′d

S
αα′ (41)

where ∆Eαα′ = Eα − Eα′ . Using Equations (40) and (41), the spin-bath QCLE may be rewritten as

∂

∂t
WS

αα′(S, t) = −∑
ββ′

(
iωαα′δαβδαα′ + iLαα′δαβδαα′ + T S

αα′ ,ββ′ + Sαα′ ,ββ′

)
WS

ββ′(S, t) , (42)

where we have defined the classical-like spin-Liouville operator

iLαα′ = HS
←−∇ SBS−→∇ S +

1
2

Eα′
←−∇ SBS−→∇ S +

1
2

Eα
←−∇ SBS−→∇ S

=
(
BS−→∇ SHS

αα′

)
· −→∇ S ,

(43)

with the average adiabatic Hamiltonian

HS
αα′ = HS +

1
2
(Eα + Eα′) . (44)

The transition operator for the spin bath is given by

T S
αα′ ,ββ′ = dS

αβ ·
(
BS−→∇ SHS

)
δβ′α′ +

1
2

∆EαβdS
αβ ·

(
BS−→∇ S

)
δα′β′

+dS∗
α′β′ ·

(
BS−→∇ SHS

)
δαβ +

1
2

∆Eα′β′dS∗
α′β′ ·

(
BS−→∇ S

)
δαβ .

(45)

The limit dS
αα → 0 of the spin transition operator in Equation (45) provides the form of the standard

transition operator for canonical conjugate coordinates, given in Equation (A7). Finally, because of the
spin nature of the bath, one finds a higher order transition operator (which does not appear in the case
of canonical conjugate bath coordinates):

Sαα′ ,ββ′ =
1
2

∆EασdS
ασBSdS

σβδα′β′ +
1
2

∆EαβdS
αβB

SdS∗
α′β′

+
1
2

∆Eα′σ′dS∗
α′σ′B

SdS∗
σ′β′δαβ +

1
2

∆Eα′β′dS∗
α′β′B

SdS
αβ

−1
2
(Eα + Eα′)

←−∇SBS · dS
αβδα′β′ −

1
2
(Eα + Eα′)

←−∇SBS · dS∗
α′β′δαβ .

(46)
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The adiabatic limit of the spin-bath QCLE in (42) can be taken by setting to zero the off-diagonal
elements of dαα′ , which appear in the operators in Equations (45) and (46). This is physically reasonable
whenever the coupling between the different adiabatic energy surfaces is negligible. One obtains

T S,ad
αα′ ,ββ′ =

(
dS

αα + dS∗
α′α′
)
BS−→∇SHSδαβδβ′α′

= −i
(
φS

αα − φS
α′α′
)
BS−→∇Sδαβδβ′α′ .

(47)

The geometric phase
φS

αα = −idS
αα (48)

has been introduced exploiting the purely imaginary character of dS
αα. Similarly, the higher order

transition operator becomes

Sad
αα′ ,ββ′ = − i

2 ∑
I,J

(
φS

αα − φS
α′α′

)
BS−→∇S (Eα + Eα′) δααδα′α′ (49)

Putting everything together, the adiabatic approximation of the spin-bath QCLE may be written as

∂

∂t
WS

αα′(S, t) =
[
−iωαα′ − i

(
φS

αα − φS
α′α′

)
B−→∇SHαα′

S − Hαα′
S
←−∇SB−→∇S

]
WS

αα′(S, t). (50)

In Equation (50), the phase ωαα′ has a dynamical nature while the phase φS
αα is of a geometric origin

and it can be considered an instance of the famous Berry phase [107–109]. Interestingly, Equation (35)
predicts that the geometric phase φS

αα can be non-zero also for open paths of the classical spins of the
bath (open-path Berry phases were discussed in Ref. [104]). Moreover, the phase factor φS

αα − φS
α′α′

is purely off-diagonal (off-diagonal Berry phases for environments described by canonically conjugate
variables were discussed in Refs. [103,105,106]). It is worth mentioning that the geometric phase φS

αα is
predicted also for non-adiabatic dynamics.

When the total Hamiltonian is time-independent, as the one in Equation (34), the adiabatic
evolution of the matrix elements of the spin-bath operator-valued quasi-probability function, given by
Equation (50), can be rewritten as

∂

∂t
WS

αα′(S, t) =
[
−iωαα′ −

(
〈α, S| d

dt
|α, S〉 − 〈α′, S| d

dt
|α′, S〉

)
− Hαα′

S
←−∇SBS−→∇S

]
WS

αα′(S, t) . (51)

Using the Dyson identity, one can obtain the following form for ŴS(S, t) in terms of the
adiabatic propagator:

WS
αα′(S, t) = exp

[
−i
∫ t

t0
dt′ωαα′(t′)

]
exp

[
−
∫ t

t0
dt′
(
〈α, S| d

dt′ |α, S〉 − 〈α′, S| d
dt′ |α

′, S〉
)]

× exp
[
−(t− t0)HS

αα′
←−∇SBS−→∇S

]
WS

αα′(S, t0) .
(52)

Equation (52) provides a convenient starting point for devising numerical integration schemes
based on the SSTP propagation scheme [113].

In Ref. [91], the following model Hamiltonian was considered:

Ĥ(S) = −Ωσ̂x − c1bσ̂z − µS · σ − c2bSz +
S2

z
2

(53)

Ĥ(S) = ĥS(S)− c2bSz +
S2

z
2

, (54)

where Ω, c1, and c2 are real parameters, b is the z component of the magnetic field B = (0, 0, b),
while σ = (σx, σy, σz) is a vector having the Pauli matrices σx, σy, and σz as components. The SSTP
algorithm was applied to Equation (52) and the action of the classical like Liouville operator
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HS
αα′
←−∇SBS−→∇S was evaluated using time reversible integration algorithms based on the symmetric

break-up of the Liouville propagator [138–140].

4. Stochastic Classical Baths

Consider a quantum-classical system comprising a quantum subsystem and a classical
environment whose classical phase space coordinates are partitioned into two sets: one set X = (Q, P)
interacts directly with the quantum subsystem while the second set X′ = (Q′, P′) interacts only with
the coordinates X (and therefore is not directly coupled to the quantum subsystem). We assume that
the detailed dynamics of the coordinates X′ is not interesting: their function is just that of working as
a thermal bath, leading to dissipative dynamics [44].

An equation of motion for the hybrid quantum-classical system composed of the quantum
subsystem and the classical DOF X only has been derived using projection operator methods [44].
It takes the form,

∂

∂t
Ŵ(X, t) = − i

h̄

[
ĤW Ŵ(X, t)

]
D
[

ĤW

Ŵ(X, t)

]

+ ζ
−→∇ P

(
P
M

+ kBT
−→∇ P

)
Ŵ(X, t) ,= −iL̂DŴ(X, t) , (55)

where ∇P = ∂/∂P, ζ is the friction constant, kB is the Boltzmann constant, and T is the temperature of
the bath. The Hamiltonian in Equation (55) is defined in Equation (5). However, in the present case,
we must interpret VW(q̂, Q) as the potential of mean force arising from the average over the primed bath
variables Q′. The Liouville operator iL̂D, defined on the right-hand side of Equation (55), determines
the dissipative dynamics of the system. This Fokker–Planck-like operator and the potential of mean
force make the dissipative quantum-classical Liouville operator in Equation (55) different from that
describing an isolated quantum-classical system [47]. In particular, the term ζ

−→∇ P

[
(P/M) + kBT

−→∇ P

]
directly breaks the time-translation symmetry leading to diffusive motion and energy dissipation.

The dissipative Liouville operator can be written in the adiabatic basis as

iL̂D
αα′ββ′ =

(
iωαα′(R) + iLK

αα′

)
δαβδα′β′ + Tαα′ββ′ , (56)

where we have defined the Kramers operator as

iLK
αα′ =

[
P
M
−→∇Q +

1
2

(
Fα

W + Fα′
W

)−→∇ P − ζ
−→∇ P

(
P
M

+ kBT
−→∇ P

)]
. (57)

The quantum-classical average of any operator or dynamical variable χ̂(X) can be written as

〈χ̂〉(t) = ∑αα′ββ′
∫

dXχα′α(X) exp[−iLD
αα′ββ′ t]W

ββ′(X)

= ∑αα′ββ′
∫

dXWββ′(X) exp[iLDB
β′βα′αt]χα′α(R, P),

(58)

where iLDB
β′βα′α is the backward operator, defined as

iL̂DB
αα′ββ′ =

(
iωαα′(R) + iLKB

αα′

)
δαβδα′β′ + Tαα′ββ′ (59)

The backward Kramers iLKB
αα′ operator is written as

iLKB
αα =

[
P
M
−→∇Q +

1
2

(
Fα

W + Fα′
W

)−→∇ P − ζ

(
P
M
− kBT

−→∇ P

)−→∇ P

]
δαβδα′β′ . (60)
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According to the classical theory of random processes [110], the time evolution under the
backward Kramers operator iLKB

αα′ββ′ can be unfolded it via an average over realizations of stochastic
Langevin trajectories. In such a picture, the classical trajectory segments obey the Langevin equations
of motion,

Q̇ =
P
M

, (61)

Ṗ = − ζ

M
P +

1
2

(
FWWα + Fα′

W

)
+R(t) , (62)

whereR(t) is a Gaussian white noise process with the properties,

〈R(t)〉 = 0 , (63)

〈R(t)R(t′)〉 = 2kBTζδ(t− t′) . (64)

To Equations (61) and (62), one can associate a time-dependent Langevin–Liouville operator

iLL
αα′(t) =

P
M
−→∇Q +

(
− ζ

M
P +

1
2
(Fα

W + Fα
W) +R(t)

)−→∇ P , (65)

and a time-ordered propagator

UL
αα′(t, 0) = T exp

[∫ t

0
dt′iLL

αα′(t
′)

]
. (66)

In order to generate the stochastic Langevin trajectories, we can use a total time-dependent
Langevin–Liouville super-operator

iL̂L
αα′ββ′(t) =

(
iωαα′(Q) + iLL

αα′(t)
)

δαβδα′β′ + Tαα′ββ′ (67)

and the associated propagator

UL
αα′ββ′(t, 0) = T exp

[∫ t

0
dt′iLL

αα′ββ′(t
′)

]
. (68)

Within such a Langevin picture, the quantum-classical average of any operator χ̂(X) can be
calculated as

〈χ̂〉(t) = ∑
αα′ββ′

∫
dXWββ′(Q)UL

ββ′αα′(t)χα′α(Q) (69)

where the over-line denotes an average over an ensemble of stochastic Langevin trajectories. Since they
are independent from each other, the order in which the average over phase space and the average
over the stochastic Langevin process are performed can be permuted. Hence, one can write

〈χ̂(X, t)〉 = ∑
αα′ββ′

∫
dRdPWββ′(X)UL

ββ′αα′(t)χ
′
α′α(XP).

(70)

Equation (70) allows one to calculate averages in a quantum-classical dissipative system as phase
space weighted averages over many Langevin trajectories.
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In Ref. [45], a quantum subsystem with two energy levels interacting with a dissipative classical
quartic oscillator was considered. The Hamiltonian of the hybrid quantum-classical system reads

ĤW(X) =
P2

2M
+ Vq(Q)− h̄Ωσ̂x − h̄γ0Qσ̂z , (71)

where Vq(Q) = a
4 R4 − b

2 R2, Ω, a, b, and γ0 are real parameters, M is the mass of the quartic oscillator,
and σ̂x and σ̂z are Pauli matrices.

The calculation of quantum-classical averages using the dynamics defined by the time-dependent
Langevin–Liouville propagator U L

ss′(t) in Equation (68) is no more complicated than that for
deterministic quantum-classical dynamics. The momentum-jump approximation [77,78] and a simple
generalization of the SSTP algorithm [78,113] to the time dependent propagator were used in Ref. [45].
The explicitly time-dependent propagator U L

ss′(t) must be defined as a time ordered product. A simple
way to achieve that is to employ the decomposition scheme devised by Suzuki [141]. Details of the
numerical procedures are found in Ref. [45]

5. Non-Hamiltonian Dynamics in Thermal Baths

By exploiting the antisymmetric structure of the quantum-classical commutator, arising from the
matrix operator D given in Equation (8), one can impose the thermodynamic constraints of constant
temperature on the classical-like DOF [42,43]. Following Refs. [92–94], constant-temperature dynamics
for the classical bath coordinates, as defined through the non-Hamiltonian Nosé–Hoover equations of
motion, can be introduced by modifying the matrix B and augmenting in a minimal way the dimension
of the phase space bath. The classical Nosé–Hoover thermostat is briefly discussed in Appendix B.

As in the classical case, the Nosé variables are

XN ≡ (Q, Qη , P, Pη) , (72)

where Qη and Pη are the Nosé coordinate and momentum. The Nosé quantum-classical Hamiltonian
is obtained by adding the Nosé kinetic energy P2

η /2Mη and potential energy NkBTQη to ĤW

in Equation (5)

HN =
P2

2M
+

P2
η

2Mη
+ NkBTQη + ĥW(Q) , (73)

where Mη is the Nosé inertial parameter, kB is the Boltzmann constant, T is the constant temperature,
and N is the number of Q coordinates. Using the matrix BN in Equation (A13), the classical phase
space quasi-Hamiltonian bracket of two variables A1 and A2 can be defined as

A1
←−∇NBN−→∇N A2 =

2(N+1)

∑
I,J=1

A1
←−∇N

I BN
I J
−→∇N

J A2 . (74)

The explicit form of the matrix operator, which defines the quantum-classical bracket and the law
of motion through Equation (19), is then given by

DN =

 0 1−
←−∇NBN−→∇N

2ih̄−1

−
(

1−
←−∇NBN−→∇N

2ih̄−1

)
0

 . (75)

The Nosé–Hoover QCLE for the operator-valued quasi-probability function ŴN(XN, t) is given by

d
dt ŴN(XN, t) = −iLNWN(XN, t)− κN(XN)WN(XN, t)

= − i
h̄

[
ĤN ŴN(XN, t)

]
·DN ·

[
ĤN

ŴN(XN, t)

]
− κN(XN)WN(XN, t) .

(76)
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The presence of the term −κN(XN)WN(XN, t) in the left-hand side of Equation (76) derives from
the passage from the Heisenberg to the Schrödinger picture, as it is explained in Appendix C.

Upon considering the term in the right-hand side of (76), one obtains

ĤN←−∇NBN−→∇Nχ̂(XN, t)− χ̂(XN, t)
←−∇NBN−→∇NĤN =

∂V̂
∂Q

∂χ̂(XN, t)
∂P

+
∂χ̂(XN, t)

∂P
∂V̂
∂Q

− 2FQη

∂χ̂(XN, t)
∂Pη

− 2
P
M

∂χ̂(XN, t)
∂Q

(77)

− 2
Pη

Mη

∂χ̂(XN, t)
∂Qη

+ 2
Pη

Mη
P

∂χ̂(XN, t)
∂P

,

where FQη
= P2

M − NkBT. Finally, using the above result, the Nosé–Hoover QCLE reads

d
dt ŴN(XN, t) = − i

h̄
(

HNŴN(XN, t)− χ̂(XN, t)HN)+ 1
2

(
∂ŴN(XN,t)

∂P
∂V̂
∂Q + ∂V̂

∂Q
∂χ̂(XN,t)

∂P

)
− P

M
∂ŴN(XN,t)

∂Q − Pη

Mη

∂χ̂(XN,t)
∂Qη

+
Pη

Mη
P ∂χ̂(XN,t)

∂P − FQη

∂ŴN(XN,t)
∂Pη

.
(78)

In the adiabatic states defined in Equation (22), Equation (78) reads

d
dt

ŴN
αα′(XN, t) = −∑

ββ′
iLN

αα′ ,ββ′Ŵ
N
ββ′(XN, t) , (79)

where
iLN

αα′ ,ββ′ = iωαα′δαβδα′β′ + δαβδα′β′ iL
N
αα′ + Tαα′ ,ββ′ . (80)

We have used the definition of the Bohr frequency ωαα′ in Equation (A3) and of the
transition operator Tαα′ ,ββ′ in Equation (A7) in Appendix A. We have introduced a classical-like
Nosé–Liouville operator

iL̂N
αα′ =

P
M

∂
∂Q +

1
2

(
Fα + Fα′

)
−P

Pη

Mη

∂
∂P +

Pη

Mη

∂
∂Qη

+ FQη

∂

∂Pη

∂

∂P
.

(81)

The existence of the stationary operator-valued Nosé quasi-probability function ŴN,e(XN) is
discussed in Appendix C.

Nosé–Hoover Chain Thermal Baths

The Nosé–Hoover thermostat suffers from lack of ergodic dynamics when the bath has high
frequencies of motion. The Nosè–Hoover chain [142] is a more general non-Hamiltonian thermostat
that solves the ergodicity problems suffered by the standard Nosé–Hoover thermostat in the case
of stiff variables. The Nosè–Hoover chain thermostat can also be formulated in a quantum-classical
framework with minimal changes with respect to what is shown in Section 5. To this end, considering
for simplicity a chain of just two thermostat coordinates, one can define the classical phase space
point as

XNHC = (R, Qη1 , Qη2 , P, Pη1 , Pη2) , (82)

ĤNHC =
p̂2

2m
+

P2

2M
+

P2
η1

2Mη1

+
P2

η2

2Mη2

+V̂(q̂, R) + NkBTQη1 + kBTQη2 ,
(83)
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where Mη1 and Mη2 are the inertial parameters of the thermostat variables. As shown in Ref. [92,93],
one can define an antisymmetric matrix

BNHC =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 −P 0
0 −1 0 P 0 −Pη1

0 0 −1 0 Pη1 0


. (84)

The matrix BNHC can be used to define the quasi-Hamiltonian bracket according to Equation (9).
The Nosé–Hoover chain classical equations of motion in phase space [92] are then given by

Ẋ = −XNHC←−∇NHCBNHC−→∇NHCĤNHC. (85)

Quantum-classical dynamics is then introduced using the matrix super-operator

DNHC =

 0 1−
←−∇NHCBNHC−→∇NHC

2ih̄−1

−
(

1−
←−∇NHCBNHC−→∇NHC

2ih̄−1

)
0

 . (86)

The quantum-classical equations of motion can then be written as

dχ̂

dt
=

i
h̄

[
ĤNHC χ̂

]
·DNHC ·

[
ĤNHC

χ̂

]
. (87)

The equations of motion can be represented using the adiabatic basis obtaining the Liouville
super-operator

iLNHC
αα′ ,ββ′ = (iωαα′ + iLNHC

αα′ )δαβδα′β′ − Tαα′ ,ββ′ ,

(88)

where

iLNHC
αα′ =

P
M

∂

∂R
+

1
2
(Fα + Fα′)

∂

∂P
+

2

∑
k=1

(
Pηk

Mηk

∂

∂Qηk

+ FQηk

∂

∂Pηk

)−
Pη2

Mη2

Pη1

∂

∂Pη1

, (89)

with FQη2
= (P2

η1
/Mη1)− kBT. The proof of the existence of stationary density matrix in the case of

Nosé–Hoover chains follows the same logic of the simpler Nosé–Hoover case. In the adiabatic basis,
the density matrix stationary up to order bar has the same form as that given in Equations (A50)
and (A52). One has just to replace Equation (A50) for the order zero term with

WααNHC,e,(0) =
1

ZNHC e
−β

[
P2
2M +Eα(R)+∑2

k=1

(
P2

ηk
2Mηk

)
+NkBTQη1+kBTQη2

]
(90)

with an obvious definition of ZNHC.

6. Conclusions and Perspectives

In this review, we discussed how to mathematically describe the dynamics and statistical
mechanics of quantum subsystems embedded in classical baths. The formalism is founded on
an operator-valued quasi-probability function evolving through a QCLE defined in terms of a quasi-Lie
bracket. It is worth emphasizing that the QCLE is a fully deterministic equation that takes into account
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explicitly all the DOF of the system, i.e., it describes the quantum and classical DOF of the total hybrid
system. Hence, the QCLE generates a unitary dynamics, conserving both the system’s probability
and energy. However, the time-translation invariance of the quasi-Lie bracket algebra is broken.
This situation is surprising: one does not expect a broken time-translation invariance symmetry
in an isolated system when all its degrees of freedom are taken into account. This can be seen as
a signature of the effect of the classical bath on the quantum subsystem, and of the back-reaction
of the subsystem onto the bath. In other words, the total hybrid system is closed from the point
of view of energy and probability conservation but, because of the above mentioned back-reaction,
it is also open: the quasi-Lie bracket describes the irreversible transfer of quantum information onto the
classical DOF. We also reviewed how the hybrid quantum-classical theory can be derived from a partial
Wigner transform and a semiclassical limit of the QLE only in the case when the bath is described
by canonically conjugate coordinates. After this, we discussed how to treat quantum subsystems
embedded in both non-canonical and non-Hamiltonian bath. In all cases, the mathematical object
representing the state of the system is an operator-valued quasi-probability function that depend on
the coordinates of the bath and whose equation of motion depends on the specific case under study.
It is explained how classical spin baths are described in terms of non-canonical coordinates and how
this fact leads to the appearance of an off-diagonal open-path geometric phase in the dynamics of the
operator-valued quasi-probability function of the system. We then discussed how the effect of thermal
baths can be implemented by means of a stochastic, quantum-classical Langevin dynamics and by
means of a deterministic, non-Hamiltonian Nosé–Hoover thermostatted dynamics. The formulation
of the dynamics in both the spin and Nosé–Hoover case was achieved by generalizing the quasi-Lie
bracket of the canonical case.

The formalisms were presented in such a way to shed light on practical implementation via
computer simulation algorithms. The particular class of algorithms upon which we focused is
based on the unfolding of the evolution of the operator-valued quasi-probability function in terms
of piecewise-deterministic trajectories evolving on the adiabatic energy surfaces of the system.
These methods scales favorably in terms of bath DOF but, to date, have been limited to relatively
short time intervals and Markovian systems. When the dynamics is non-Markovian, the memory
function, i.e., the autocorrelation function of the random force [3,110], cannot be approximated by
a delta function. The memory function of the bath can be expected to become more and more different
from a delta function as the quantum character of the bath becomes more pronounced (for example,
at low temperature) and as the subsystem-bath coupling grows in strength.

The QCLE discussed herein constitutes an approach to open quantum system dynamics (in the
case of hybrid quantum-classical systems) that is both distinct and complementary to that given by
master equations [3,110]. Within the QCLE approach, the degrees of freedom of the bath are not
integrated out of the dynamics but are explicitly taken into account at every time step. Hence, there is
no memory function to be approximated and bath properties can be calculated with the same ease
with which subsystem properties are computed. The limitations of the QCLE approach are mostly
numerical in character and arise in the SSTP algorithm, herein discussed, from the momentum-jump
approximation and the accumulation of fluctuating statistical weights associated with the Monte Carlo
sampling of the quantum transitions of the subsystem.

The QCLE-based approach to quantum dynamics in classical baths has proven to be successful
in modeling a variety of quantum processes in the condensed phase. Nevertheless, the currently
algorithms also present significant challenges, necessitating the need for further improvements and
developments. In light of the above, we hope that this review will attract the attention of a broad
community of researchers and spur further work along this direction. In addition to further algorithm
developments, we are interested in broadening the scope of applications studied by this approach.
For example, based on preliminary results, we believe that this approach can be successfully applied
to studying the interplay between quantum and classical fluctuations in hybrid nanoscale devices.
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Abbreviations

The following abbreviations are used in this manuscript:

DOF Degrees of Freedom
QCLE Quantum-Classical Liouville Equation
QLE Quantum Liouville Equation
SSTP Sequential Short-Time Propagation

Appendix A. Representation in the Adiabatic Basis

In the adiabatic basis, Equation (19) reads

d
dt

Wαα′(X, t) = −∑
ββ′

iLαα′ ,ββ′Wββ′(X, t) , (A1)

where

Wαα′(X, t) = 〈α; Q|Ŵ(X, t)|α′; Q〉 (A2)

are the matrix elements of the density matrix. Upon defining the Bohr frequency as

ωαα′ =
Eα − Eα′

h̄
, (A3)

the Liouville super-operator may be written as

iLαα′ ,ββ′ = iωαα′δαβδα′β′ + δαβδα′β′ iLαα′ + Tαα′ ,ββ′ . (A4)

We have also introduced a classical-like Liouville operator

iLαα′ =
P
M

∂

∂Q
+

1
2

(
Fα

W + Fα′
W

) ∂

∂P
, (A5)

where

Fα
W = −∂Eα

∂Q
(A6)

is the Hellmann–Feynman force.
In Equation (A4), the transition operator Tαα′ ,ββ′ is defined as

Tαα′ ,ββ′ = δα′β′
P
M
· dαβ

(
1 +

1
2

Sαβ ·
∂

∂P

)
+ δαβ

P
M
· d∗α′β′

(
1 +

1
2

S∗α′β′ ·
∂

∂P

)
. (A7)

In turn, the transition operator is defined in terms of the shift vector

Sαα′ =
(Eα − Eα′)

P
M · dαα′

dαβ (A8)
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and of the coupling vector

dαα′ = 〈α; Q| ∂

∂Q
|α′; Q〉 . (A9)

Appendix B. The Nosè–Hoover Thermostat

The Nosè–Hoover thermostat was originally formulated in Refs. [111,112]. Herein, we follow
Refs. [92–94]. The Hamiltonian of the subsystem with phase space coordinates (R, P) is:

HB =
P2

2M
+ V(R) , (A10)

where V(R) is the potential energy. One can introduce an extended system comprised by the
coordinates of the original subsystem augmented with the additional variables Qη and conjugate
momentum Pη . The dimension of such an extended phase space is obviously 2N + 2, which is
computationally tractable whenever N is computationally tractable. As a consequence, the phase space
point of the extended system is

XN =


R

Qη

P
Pη

 , (A11)

while the energy reads:

HN = HB + 3NkBTQη +
P2

η

2Mη
, (A12)

where Mη is a fictitious mass associated with the additional degree of freedom, kB is Boltzmann
constant, and T the bath constant temperature. In order to define time evolution, we abandon
the Hamiltonian structure of the theory. To this end, using the general formalism of Refs. [92–94],
we introduce the antisymmetric matrix:

BN =


0 0 1 0
0 0 0 1
−1 0 0 −P
0 −1 P 0

 , (A13)

so that Nosé’s equations of motion can be written as

ẊN
K =

2(N+1)

∑
I,J=1

XN
K
←−∇N

I BN
I J
−→∇N

J HN =
2N

∑
J=1

BN
KJ
−→∇N

J HN , (A14)

where the first equality on the right-hand side of Equations (A14) introduces the Nosé bracket, while the
extended phase space gradient is denoted as∇N

J = ∂/∂XN
J . We remark here that the Nosé bracket does

not satisfy the Jacobi relation [92–94], and thus defines a quasi-Hamiltonian algebra. The Liouville
equation for the Nosé distribution function is

∂

∂t
WN(XN, t) = −∑

2(N+1)
K=1 ∇N

K
(
ẊN

K WN(XN, t)
)

= −
(

∑
2(N+1)
K=1 ẊK

−→∇N
K − κN

)
WN(XN, t) = 0 ,

(A15)
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where the compressibility of the phase space reads:

κN =
2(N+1)

∑
k=1

∇N
K Ẋk =

2(N+1)

∑
k,j=1

BN
KJ
←−∇N

K
−→∇N

J HN . (A16)

As implied by Equation (A16), Nosé’s phase space flow has a non-zero compressibility (however,
this does not always occur for a quasi-Hamiltonian dynamics). In terms of the Nosé bracket,
the equilibrium Liouville equation for Nosé distribution function reads:

WN(XN)
←−∇NBN−→∇NHN = −κNWN(XN) . (A17)

By direct substitution, one can verify that the solution of Equation (A17) is:

WN(XN) ∝ exp [−w] δ(E− HN) , (A18)

where w is defined by the equation dw/dt = κN. Equations (A14) can be written explicitly in the form:

Ṙ =
P
M

, (A19)

Ṗ = −∂V
∂R
− P

Pη

Mη
, (A20)

Q̇η =
Pη

Mη
, (A21)

Ṗη =
P2

M
− NkBT . (A22)

In order to write explicitly the Nosé distribution function, it is useful to introduce the following
extended phase space function:

HT = HB +
P2

η

2Mη
. (A23)

Using the equations of motion, one finds

dHT

dt
= −NkBT

Pη

Mη
, (A24)

which is related to the compressibility by

κN = −N
Pη

Mη
= β

dHT

dt
. (A25)

At this point, we have all the ingredients that are needed to prove that extended phase space
averages of functions of the subsystem coordinates (R, P) can be written as canonical averages. We start
by considering

〈A(R, P)〉N ∝
∫

dXNe−
∫

κNdtδ(E− HN)A(R, P)

=
∫

dRdPdQηdPηe−β
∫ dHT

dt dtδ(E− HN)A(R, P) (A26)

=
∫

dRdPdQηdPηe−βHT
δ(E− HN)A(R, P) .
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The integral ∫
dQηδ(E− HN) (A27)

is calculated by using the identity

δ( f (Qη)) = ∑
{Qη0}

δ(Qη −Qη0)
d f

dQη
(Qη0)

, (A28)

where the sum runs over the zeros Qη0 of f (Qη). Upon identifying f (Qη) = E − HN, one gets
Qη0 = HT − E/N and

δ( f (Qη)) =
δ
(
Qη − β(HT − E)/N

)
3NkBT

(A29)

with the above results, the integral over Qη becomes a trivial Gaussian integral over Pη :

∫
dPηe

−β
P2

η
2Mη =

√
πMηkBT . (A30)

Finally, one obtains:

〈A(R, P)〉N ∝
∫

dRdPe−βHB
A(R, P) ≡ 〈A(R, P)〉can . (A31)

Hence, averages in the canonical ensemble can be calculated by letting the trajectories evolve
according to Nosé’s dynamics.

The quasi-Hamiltonian Nosè dynamics is a well-established tool of molecular dynamics
simulations. In practice, it is adopted whenever one wants to calculate dynamical properties at constant
temperature and/or study phase transitions. Discussions and pointers to the relevant literature on the
subject can be found in Ref. [127].

Appendix C. Stationary Operator-Valued Nosé Quasi-Probability Function

The quantum average of any operator ŴN(XN), in a dynamics where the temperature of the X
degrees of freedom is controlled by the Nosè–Hoover thermostat can be calculated as

〈χ̂(XN, t)〉 = Tr′
∫

dXN ŴN(XN, t)χ̂(XN) . (A32)

The action of exp
(
iLNt

)
can be transferred from χ̂(XN) to ŴN(XN) by using the cyclic invariance

of the trace and integrating by parts the terms coming from the classical brackets. One can write

iLN =
i
h̄

[
ĤN, . . .

]
− 1

2
ĤN←−∇NB−→∇N −←−∇NB−→∇NĤN} . (A33)

The action of iLN on an arbitrary operator χ̂(XN) is defined by

iLNχ̂ = i
h̄
[
ĤN, χ̂

]
− 1

2 ĤN←−∇NB−→∇Nχ̂− χ̂
←−∇NB−→∇NĤN (A34)

when integrating by parts the right-hand side, one obtains a term proportional to the compressibility
κN =

−→∇NBN−→∇NĤN. As a result, the quantum Liouville operator, partially depending on phase space
variables, is non-Hermitian (

iL̂N
)†

= −iL̂N − κN . (A35)
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The average value can then be written as

〈χ̂〉 = Tr′
∫

dX χ̂(XN) exp
[
−(iLN + κN)t

]
ŴN(XN) . (A36)

The operator-valued Nosè quasi-probability function evolves under the equation:

∂
∂t ŴN(XN, t) = − i

h̄
[
ĤN, ŴN(XN, t)

]
+ 1

2

(
HN←−∇NBN−→∇NŴN(XN, t)− ŴN(XN, t)

←−∇NBN−→∇NĤN
)

−κN(X)ŴN(X, t) .
(A37)

The stationary operator-valued Nosé quasi-probability function ŴN,e is defined by

(iLN + κN)ŴN,e = 0 . (A38)

To find the explicit expression, one can follow Ref. [41]: the density matrix is expanded in powers of h̄

ŴN,e =
∞

∑
k=0

h̄nŴN,e,(k) (A39)

and an explicit solution in the adiabatic basis is searched for. On such a basis, the Nosé–Liouville
operator is expressed by Equation (80) and the Nosé Hamiltonian is given by

Hα
N =

P2

2M
+

P2
η

2Mη
+ NkBTQη + Eα(R)

= HP
α (R, P) +

P2
η

2Mη
+ NkBTQη .

(A40)

One obtains an infinite set of equations corresponding to the various power of h̄

iHN
αα′W

N,e(0)
αα′ = 0 (A41)

iHN
αα′W

N,e,(k+1)
αα′ = −(iLN

αα′ + κN)WN,e,(k)
αα′ + ∑

ββ′
Tαα′ ,ββ′W

N,e,(k)
ββ′ (k ≥ 1) . (A42)

In order to ensure that a solution can be found by recursion, one must discuss the solution of
Equation (A42) when calculating the diagonal elements W(n)αα

Ne in terms of the off-diagonal ones

W(n)αα′

Ne . To this end, using WN,e(k)
αα′ = (WN,e,(k)

α′α )∗, Tαα,ββ′ = T ∗αα,β′β and the fact that Tαα,ββ = 0 when
a real basis is chosen, it is useful to re-write Equation (A42) in the form

(iLN
αα + κN)WNe,(k)

αα = ∑
β>β′

2Re
(
Tαα,ββ′W

N,e(k)
ββ′

)
. (A43)

One has [92] (−iLN
αα − κN)† = iLN

αα. The right-hand side of this equation is expressed by means of
the generalized bracket in Equation (74): Hα

N and any general function f (Hα
N) are constants of motion

under the action of iLN
αα. The phase space compressibility κN associated with the generalized bracket

in the case of Nosè dynamics is

κN
α = −β

d
dt

(
P2

2M
+

P2
η

2Mη
+ Eα(R)

)
= −βN

Pη

Mη
= −βN

d
dt

HT
α ,

(A44)

where N is the number of classical momenta P in the Hamiltonian.
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To ensure that a solution to Equation (A43) exists, one must invoke the theorem of Fredholm
alternative, requiring that the right-hand side of Equation (A43) is orthogonal to the null space
of (iLN

αα)
† = −iLN

αα − κN [143]. The null-space of this operator is defined by the equation
(iLN

αα + κN)Gα(X) = 0, with Gα(X) = f (HN
α ) exp(−wN

α ). Hence, the condition to be satisfied is∫
dXNe−wα ∑

β>β′
2Re

(
Tαα,ββ′W

N,e,(k)
ββ′

)
f (HN

α ) = 0 . (A45)

The fact that 2 exp(−wα)Re
(
Tαα,ββ′W

N,e,(k)
ββ′

)
and f (Hα

N) are, respectively, an odd and an even
function of P guarantees the validity of Equation (A45).

The formal solution of Equation (A43) can then be written as

WN,e,(k)
αα = (iLN

αα + κN)−1 ∑
β>β′

2Re
(
Tαα,ββ′W

N,e,(k)
ββ′

)
, (A46)

and the formal solution of Equation (A42) for α 6= α′ as

WN,e,(n+1)
αα′ =

i
Eαα′

(iLN
αα′ + κN)WN,e,(k)

αα′ − i
HN

αα′
∑
ββ′
Tαα′ ,ββ′W

N,e,(k)
ββ′ . (A47)

Equations (A46) and (A47) allow one to calculate WN,e
αα′ to all orders in h̄ once WN,e,(0)

αα′ is given.

This order zero term is obtained by the solution of (iLN
αα + κN)WN,e,(0)

αα = 0. All higher order terms
are obtained by the action of HN

αα′ , the imaginary unit i and Tαα′ββ′ (involving factors of dαα′ , P and

derivatives with respect to P. Hence, one can conclude that functional dependence of W(0)αα
Ne on

the Nosè variables Qη and Pη is preserved in higher order terms WN,e,(n)
αα′ . One can find a stationary

solution to order h̄ by considering the first two equations of the set given by Equations (A41) and (A42):[
ĤN, ŴN,e,(0)

]
= 0 (for k = 0) , (A48)

i
[

ĤN, ŴN,e,(1)
]

= +
1
2

(
ĤN←−∇BN−→∇ŴN,e,(0) + ŴN,e,(0)←−∇BN−→∇ ĤN

)
(for k = 1) . (A49)

For the h̄0 term, one can make the ansatz

ŴN,e,(0)
αβ =

1
ZN ewN

α δ
(
Eα − HN

α

)
δαβ , (A50)

where ZN is

ZN = ∑
α

∫
dM δ

(
Eα − HN

α

)
(A51)

and obtain

ŴN,e,(1)
αα′ = −i

P
M

dαα′Ŵ
N,e,(0)
αα

[
1− e−β(Eα′−Eα)

Eα − Eα′
+

β

2

(
1 + e−β(Eα′−Eα)

)]
(A52)

for the h̄ term.
Equations (A50) and (A52) give the explicit form of the stationary solution of the Nosè-Liouville

equation up to order O(h̄). One can now prove that, when calculating averages of quantum-classical
operators depending only on physical phase space variables, Gα(R, P), the canonical form of the
stationary density is obtained. It can be noted that it will suffice to prove this result for the
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h̄0 term since, as discussed before, the differences with the standard case are contained therein.
Indeed, when calculating

〈Gα(R, P)〉 ∝ = ∑
α

∫
dXNe−wN

α Gα(R, P)δ(Eα − HT
α − NkBTQη) , (A53)

considering the integral of the delta function over Nosè variables, one has∫
dPηdQη e−Nηδ(Eα − HT

α − NkBTQη) = const× exp[−βHT
α ] , (A54)

where the property δ( f (s)) = [d f /ds]−1
s=s0

δ(s− s0) has been used (s0 is the zero of f (s)).
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