
symmetryS S

Article

Underdetermined Blind Source Separation
Combining Tensor Decomposition and Nonnegative
Matrix Factorization

Yuan Xie 1,*, Kan Xie 1, Junjie Yang 1 and Shengli Xie 1,2,*
1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China;

kanxiegdut@gmail.com (K.X.); yangjunjie0807@163.com (J.Y.)
2 Institute of Intelligent Information Processing and the Guangdong Provincial Key Laboratory for

Information Technology in Internet of Things, Guangzhou 510006, China
* Correspondence: yuanxiemath@hotmail.com (Y.X.); shlxie@gdut.edu.cn (S.X.); Tel.: +86-159-8914-6924 (S.X.)

Received: 25 September 2018 ; Accepted: 16 October 2018; Published: 18 October 2018
����������
�������

Abstract: Underdetermined blind source separation (UBSS) is a hot topic in signal processing,
which aims at recovering the source signals from a number of observed mixtures without knowing
the mixing system. Recently, expectation-maximization algorithm shows a great potential in the
UBSS. However, the final separation results depend strongly on the parameter initialization, leading
to poor separation performance. In this paper, we propose an effective algorithm that combines
tensor decomposition and nonnegative matrix factorization (NMF). In the proposed algorithm,
we first employ tensor decomposition to estimate the mixing matrix, and NMF source model is used
to estimate the source spectrogram factors. Then a series of iterations are derived to update the
model parameters. At the same time, the spatial images of source signals are estimated with Wiener
filters constructed from the learned parameters. Therefore, time-domain sources can be obtained
through inverse short-time Fourier transform. Finally, plenty of experimental results demonstrate the
effectiveness and advantages of our proposed algorithm over the compared algorithms.

Keywords: underdetermined blind source separation; nonnegative matrix factorization; expectation-
maximization algorithm; multichannel source mixtures

1. Introduction

Blind source separation (BSS) considers the recovery of source signals from observed signals
without knowing the recording environment. Recently, the use of BSS has become an active research
area. If the number of source signals is less, equal or greater than the number of microphones, BSS
can be classified as the overdetermined case [1], the determined case [2,3], or the underdetermined
case [4,5], respectively. In particular, in the natural environment, the mixing process is generally
considered to be convolutive, i.e., the channel between each source and each microphone is modeled
in a linear filter that represents multiple source-to-microphone paths because it considers the
reverberation of the channel. Therefore, underdetermined convolutive BSS is a challenging problem in
the field of BSS.

To address this underdetermined convolutive BSS problem, tensor decomposition shows great
potential, because an interesting property of higher-order tensors is that their rank decomposition
is unique. Additionally, parallel factor (PARAFAC) decomposition factorizes a tensor into a sum of
component rank-one tensors, and the factor matrices refer to the combination of the vectors from the
rank-one components. By singular value decomposition of a series of matrices, the parallel factorization
problem is transformed into a joint matrix diagonalization problem, such that the PARAFAC analysis
is solved [6,7]. Therefore, the PARAFAC method can be used to identify the mixing matrix in the
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underdetermined case, which has been proven usefully in a wide range of applications from sensor
array processing to communication, speech and audio signal processing [8,9]. In the phase of source
separation, source signals can be estimated by using the l0-norm minimization method [10] or the
binary masking algorithm [11]. However, these methods suffer from poor separation performance.
To improve separation performance, we found out that the source model includes some specific
information on the spectral structures of sources. Therefore, a better source model has the potential to
improve the source separation performance.

In BSS, the non-negative matrix factorization (NMF) source model is usually applied on the
speech/music power spectrogram, where the spectrogram is approximated by the product of two
non-negative matrices, i.e., a basis matrix and an activation matrix. The basis matrix represents the
repeating spectral patterns, and the activation matrix represents the presence of these patterns over time.
Additionally, NMF aims to decompose a non-negative factor matrix into the product of two low-rank
non-negative factor matrices [12,13]. The NMF model can be used to efficiently exploit the low-rank
nature of the speech spectrogram and its dependency across the frequencies. In some NMF-based
methods [14–17], non-negative matrix factor two-dimensional deconvolution is an effective machine
learning method in audio source separation field. In particular, in the convolutive frequency-domain
model, the well-known permutation alignment problem cannot be solved without using additional a
priori knowledge about the sources or the mixing filters. However, the NMF source model implies a
coupling of the frequency bands, and joint estimation of the source parameters and mixing coefficients,
which frees us from the permutation problem. Furthermore, NMF is well suited to polyphony as it
basically takes the source to be a sum of elementary components with characteristic spectral signatures.
Therefore, NMF source model is able to improve the source separation performance.

Additionally, in order to obtain better source separation results, the estimated mixing matrix
and NMF variables need to be updated using an optimization algorithm. In most BSS optimization
algorithms, we found out that expectation-maximization (EM) algorithm [18], which is a popular
choice for Gaussian models, provided faster convergence. The EM algorithm is related to some
multichannel source separation techniques by employing Gaussian mixture model as source models.
However, it is very sensitive to initialization in source separation tasks. There had been some studies
of parameter initialization of NMF to optimize separation performance [19,20]. Therefore, we try to
take an optimization algorithm to improve the source separation performance.

In this paper, an alternative optimization algorithm is proposed to deal with the parameter
initialization problem and improve separation performance. First, we employ tensor decomposition
to detect the mixing matrix, and NMF is used to estimate the source spectrogram factors. Then these
model parameters are updated using the EM algorithm. Meanwhile, the spatial images of source
signals are estimated using Wiener filters constructed from the learned parameters. The time-domain
sources can be obtained through inverse short-term Fourier transform (STFT) using an adequate
overlap-add procedure with dual synthesis window. Thanks to the linearity of the inverse STFT,
the reconstruction is conservation in the time-domain as well. Finally, a series of experimental results
including synthetic instantaneous and convolutive music and speech source mixtures, as well as live
real recordings, show that our improved algorithm outperforms the state-of-the-art baseline methods.
We can highlight the main contributions of this article as follows.

(1) We propose an improved algorithm that combines tensor decomposition and advanced NMF to
deal with the underdetermined linear BSS. The mixing matrix is estimated using tensor decomposition,
and NMF is used to decompose the given spectrogram into several spectral bases and temporal
activations. Then the mixing matrix, NMF variables, and noise components are updated by a series
of iteration rules. The proposed algorithm combines the advantages of tensor decomposition and
NMF, which is beneficial to improve the performance of source separation. Additionally, the improved
algorithm can be extended to underdetermined convolutive BSS.

(2) We have demonstrated the superiority in the underdetermined linear and convolutive BSS
cases. Additionally, in this paper we mainly consider the audio datasets, the proposed algorithm
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demonstrates the effectiveness and superiority compared with the state-of-the-art algorithms, which
improves the source separation performance based on a series of simulation experiments.

The structure of the remaining of this paper is organized as follows. Section 2 formulates the
problem of the underdetermined blind source separation. In Section 3, an optimization algorithm
is presented based on tensor decomposition and NMF. Experimental results compared the source
separation performance with the state-of-the-art techniques in various experimental settings are shown
in Section 4. Finally, Section 5 summarizes our conclusion and the future work.

2. Problem Formulation

2.1. Linear Instantaneous Mixture Model

The signal model with noise used in this paper is described as follows:

x(t) = As(t) + v(t) (1)

in which x(t) = [x1(t), ..., xJ(t)] ∈ CJ represents the received J signals, s(t) = [s1(t), ..., sI(t)] ∈ CI

denotes the I source signals (unknown), and I > J, i.e., in the underdetermined mixture case.
A = [a1, ..., aI ] ∈ CJ×I is the unknown mixing matrix, v(t) ∈ CJ is an additional noise with zero
mean and variance σ2.

Nevertheless, for audio signals, the separation is much easier in the short-time discrete frequency
transform domain, where the source signals are sparser. Therefore, the mixture model (1) can be
expressed as follows:

x f n ≈ As f n + v f n (2)

where n = 1, 2, ..., N denotes the index of the time window for applying the Fourier transform,
f = 0, ..., F − 1 is the index of the frequency bins, x f n = [x1, f n, ..., xJ, f n]

T and s f n = [s1, f n, ..., sI, f n]
T

are the STFT of the mixtures and the sources at time-frequency point ( f , n), respectively.
v f n = [v1, f n, ..., vJ, f n]

T , the noise vj, f n is assumed to be stationary and spatially uncorrelated,
i.e., vj, f n ∼ Nc(0, σ2

j, f ) and Σv, f = diag[σ2
j, f ].

2.2. The NMF Source Model

Let K ≥ I is known in advance, and {Ki}I
i=1 be a nontrivial partition of K = 1, ..., K.

Following [16,17], a coefficient si, f n is modeled as the sum of latent components ck, f n, such that

si, f n = ∑
k∈Ki

ck, f n ⇔ s f n = Gc f n (3)

where G ∈ NI×K is a binary selection matrix with entries

Gik =

{
1, k ∈ Ki
0, otherwise

and c f n = [c1, f n, . . . , cK, f n] ∈ CK is the vector of component coefficients at ( f , n). Each component
ck, f n follows that

ck, f n ∼ Nc(0, w f khkn) (4)

where Nc(µ, Σ) denotes the proper multivariate complex Gaussian distribution [21] with probability
density function (pdf) (Nc(x; µ, Σ) = |πΣ|−1exp[−(x − µ)HΣ−1(x − µ)] is the proper complex
Gaussian distribution.), w f k, hkn ∈ R+, w f k represents the spectral basis of i-th source, and h f k
represents the temporal code for each spectral basis element of the i-th source. In the rest of the paper,
the quantities si, f n and ck, f n are referred to as “source" and “component", respectively. The components
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are assumed to be mutually independent and individually independent across frequency and time.
It follows that

si, f n ∼ Nc(0, ∑
k∈Ki

w f khkn) (5)

This corresponds to model the source power spectral densities (PSD) with the NMF model, i.e.,

E[|Si|2] = WiHi (6)

where Si denotes the F×N STFT matrix of source i and the matrices Wi = [w f k] f ,k∈Ki
, Hi = [hkn]k∈Ki ,n,

respectively. Then for the maximum likelihood estimation of Wi and Hi, it is shown that the minus
log-likelihood (ML) of the parameters describing Si writes

− log p(Si|Wi, Hi) = ∑
f n

dIS(|si, f n|2| ∑
k∈Ki

w f khkn) + cst (7)

where “cst" denotes constant terms and

dIS(x|y) = x
y
− log

x
y
− 1 (8)

is the Itakura-Satio (IS) Divergence (In this paper, the Itakura-Satio divergence is chosen as a measure of
fit, which is appropriate for Gamma multiplicative noise. In addition, the Euclidean distance can cope
with Gaussian additive noise and the Kullback-Leibler divergence fits multinomial distributions or
Poisson noise.).

In addition, the following two types of divergence are widely used [20]:
Squared Euclidean (EU) distance

dEU(x|y) = |x− y|2 (9)

Kullback-Leibler(KL) divergence

dKL(x|y) = x · log
x
y
− x + y (10)

Therefore, the ML estimation of Wi and Hi given source STFT Si is equivalent to NMF of the power
spectrogram |Si|2 into WiHi. In our simulation experiments, we build the initialization of the source
spectrogram estimation using the EU divergence, KL divergence, and IS divergence, respectively.

2.3. Objective

We are interested in jointly updating the source spectrogram factors Wi, Hi, the mixing matrix A,
and estimating the sources at the same time. In this paper, we propose a robust parameter initialization
scheme to optimize EM algorithm. The block diagram of our proposed BSS algorithm is shown in
Figure 1. Initially, tensor method is used to estimate the mixing matrix A. Then the time-frequency
sources are estimated and the source spectrogram factors are detected using NMF of the power
spectrogram. Finally, the model parameters are updated and the spatial images of source signals are
estimated. Detailed descriptions of each step are given in the following section.
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Figure 1. Block diagram of our proposed blind source separation algorithm.

3. The Proposed Optimization Algorithm

In the following, we will propose a robust parameters initialization scheme using tensor
decomposition and NMF to optimize the EM algorithm. First, the mixing matrix is estimated using
tensor decomposition. Second, the state-of-the-art source separation algorithms are reviewed. Finally,
the optimization algorithm is presented in detail.

3.1. Mixing Matrix Estimation Using Tensor Decomposition

Let us denote the J × J auto-correlation matrix as follows:

Rx = E[x(t)xH(t)]

= ARsAH (11)

where Rs = E[ssH ] is the auto-correlation matrix of the source signal, the superscripts ·H denotes
the complex conjugate transpose. For simplicity, we have dropped the noise terms. Let us divide
the whole data block into P non-overlapping sub-blocks, which are indexed by p = 1, ..., P. Then the
spatial covariance matrices of the observation satisfy

R1
x = A · R1

s ·AH

...

RP
x = A · RP

s ·AH

(12)

in which Rp
s = E[spsH

p ] is diagonal. The problem we want to solve is the estimation of A from the
set Rp

x . The solution will be obtained by interpreting as a tensor decomposition. It can equivalently
be written as PARAFAC decomposition of a third-order tensorRx ∈ CJ×J×P built by stacking the P
matrices {R1

x, ..., RP
x } one after each other along the third dimension. Each element of the tensorRx is

denoted by r(x)
j1,j2,p, with j1 = 1, ..., J, j1 = 1, ..., J, and p = 1, ..., P. Define the matrix C ∈ CP×I whose

element on the p-th row and i-th column, denoted cp,i, is the i-th diagonal element of Rs. Then we have

r(x)
j1,j2,p =

I

∑
i=1

aj1,icp,ia∗j2i (13)

The PARAFAC decomposition (13) of the tensorRx ∈ CJ×J×P is a decompositionRx as a linear
combination of a minimal number of rank-1 term:

Rx =
I

∑
i=1

ai ◦ ci ◦ a∗i (14)

where ◦ denotes the tensor outer product, the superscripts ·∗ denotes the complex conjugate, ai and ci
are the column of A and C, respectively.

In this paper, we will use the following J2 × P matrix representation ofRx [22,23]

[Rx](j1−1)J+j2,p = [Rx]j1,j2,p (15)
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Then (14) can be written in a matrix format as

Rx = [A�A∗] · CT (16)

where � denotes the Khatri-Rao product. As a result, its reduced-size SVD can be written as

Rx = UΣVH (17)

where U ∈ CJ2×I , Σ ∈ RI×I is diagonal, and V ∈ CP×I . Then there exists a nonsingular matrix
Z ∈ CI×I , such that {

A�A∗ = UΣZ

CT = Z−1VH
(18)

where the columns of A�A∗ are the vectors ai ⊗ a∗i (⊗ denotes the Kronecker product), which are the
vectorized representations of the rank-1 matrices aiaH

i . As a consequence, the mixing matrix A can
be determined using some optimization algorithms. The standard way is by means of an alternating
least squares (ALS) algorithm [24]. To enhance the convergence of ALS algorithm, an exact line search
method is also used [25–27]. The discussion [25] is limited to the real case and the complex case is
addressed [26,27]. Additionally, the matrix Z is to impose that has a Khatri-Rao structure. It was
shown that Z diagonalizes a set of symmetric matrices by congruence. For further details on the way
these matrices are built [28]. This tensor method is uniquely identifiable in certain underdetermined
cases, thus proving uniqueness of the estimated mixing matrix.

3.2. Source Separation Using the Baseline Methods

Now the mixing matrix had been estimated using the above tensor decomposition method,
we can separate the source signals using some state-of-the-art methods. In the following, we review
two baseline methods for the source separation. One is complex lp norm minimization method [10],
the other is binary masking method [11].

3.2.1. lp Norm Minimization Method

The phases of the source STFT coefficients si, f n are assumed to be uniformly distributed,
while their magnitudes are modeled by

P(|si, f n|) = p
β1/p

Γ(1/p)
e−β|si, f n |p (19)

where the parameters p > 0 and β > 0 govern the shape and the variance of the prior, respectively.
Γ(·) is the gamma function. Therefore, the maximum a posterior source coefficients are given
as follows:

ŝ f n = arg min
s∈CI
‖s‖p

p subject to As f n = x f n (20)

where ‖s‖p is the lp norm of the source s defined by ‖s‖p
p = ΣI

i=1|si|p.

3.2.2. Binary Masking Method

We create the time-frequency mask corresponding to each source and produce the original source
time-frequency representation. For instance, defining

Mi, f n =

{
1, ŝi, f n 6= 0
0, otherwise

(21)

which is the indicator function for the support of si. Then, we obtain the time-frequency representation
of si from the mixture via
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ŝi, f n = Mi, f nxi, f n (22)

Therefore, the spectral basis and temporal code are estimated based on NMF of the source
spectrogram estimates by using the outputs of the above source separation methods. Then the mixing
matrix and the source spectrogram factors are updated jointly, the spatial images of all sources are
obtained using the following optimization EM algorithm.

3.3. The Optimization EM Algorithm

Let θ = {A, W, H, Σv} be the set of all parameters, where A is the J× I matrix with entries aji, W is
the F× K matrix with entries w f k, H is the K× N matrix with entries hkn, Σv, f is the noise covariance
parameters. We derive an optimization EM algorithm, and the set {Rxx, f , Rxs, f , Rss, f , {uk, f n}kn} f is
defined as follows:

Rxx, f =
1
N ∑

n
x f nxH

f n (23)

Rxs, f =
1
N ∑

n
x f nsH

f n (24)

Rss, f =
1
N ∑

n
s f nsH

f n (25)

uk, f n = |ck, f n|2 (26)

We select the following Minus Log-likelihood (ML) criterion:

C(θ) = ∑
f n

trace(x f nxH
f nΣ−1

x, f n) + log det Σx, f n (27)

Then the mixing matrix, noise covariance, and Wi, Hi will be updated by using the following
two-step iteration.

• E-step: Conditional Expectations of Natural Statistics

The minimum mean square error estimates ŝ f n of the source STFT are directly retrieved, and the
spatial images of all source signals are obtained by using Wiener filtering, which is expressed as follows:

ŝ f n = Σs, f nAHΣ−1
x, f nx f n (28)

and the component estimates is
ĉ f n = Σc, f nAHΣ−1

x, f nx f n (29)

where

Σx, f n = AΣs, f nAH + Σv, f (30)

Σs, f n = diag
([

∑
k∈Ki

w f khkn

]
i

)
(31)

Σc, f n = diag
([

w f khkn

]
k

)
(32)

•M-step: Update of Parameters

In the linear instantaneous mixture case, the mixing matrix is real-valued. Therefore, we obtain
the updated mixing matrix

A = real
{

∑
f

R̂xs, f

}
real
{

∑
f

R̂ss, f

}−1

(33)
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and
Σv, f = diag(R̂xx, f −AR̂H

xs, f − R̂xs, f AH + AR̂xs, f AH) (34)

w f k =
1
N ∑

n

ûk, f n

hkn
, h f k =

1
F ∑

n

ûk, f n

w f k
(35)

where

R̂xx, f = Rxx, f , R̂xs, f =
1
N ∑

n
x f n ŝH

f n (36)

R̂ss, f =
1
N ∑

n
ŝ f n ŝH

f n + Σs, f n − Σs, f nAHΣ−1
x, f nAΣs, f n (37)

ûk, f n =
[
ĉ f n ĉH

f n + Σc, f n − Σc, f nAHΣ−1
x, f nAΣc, f n

]
kk (38)

• Normalize A, W, and H.

Finally, by conservativity of Wiener reconstruction the spatial images of the estimated sources
and noise sum up to the original mixture in the STFT domain. Then the inverse STFT can be used to
transform them to the time-domain due to the linearity of the STFT. The source separation algorithm
in the linear mixture case is outlined in Algorithm 1.

Algorithm 1: Proposed Algorithm for Underdetermined Linear BSS.
• Underdetermined Linear Mixture Case (I > J)
Step 1. Estimate the mixing matrix A by using the time-domain tensor decomposition.
Step 2. Perform STFT on x(t) to get x f n.
Step 3. Estimate the sources using (20) and detect the source spectrogram factors employing
the NMF method with (7).

Step 4. Initialize the updated matrix, the spectral basis, and temporal code, then update these
parameters using EM algorithm. i.e.,
repeat

(i). Update A with (33) in the linear mixture case.
(ii). Alternately update w f k and hkn with (35).

until convergence
Step 5. Estimate ŝ f n by using Wiener filter of (28).
Step 6. Transform ŝ f n into time-domain to obtain s(t) through inverse STFT.
• end

3.4. Convolutive Mixed Sources Case

The derivation of optimization EM algorithm for convolutive model is more complex since each
mixing filter boils down to the combination of a delay so that the updated mixing matrix cannot be
expressed using (33) in the M-step. In the following, we consider the underdetermined multichannel
convolutive mixture model, namely

x(t) =
L

∑
l=0

A(l)s(t− l) + v(t) (39)

in which A(l) is the mixing system’s impulse response matrix at the time-lag l, and L denotes the
maximum channel length. Then the convolutive mixtures can be decoupled into a series of linear
instantaneous mixtures by applying STFT on consecutive time windows. Therefore, (39) can be
expressed as follows:

x f n ≈ A f s f n + v f n (40)
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where A f is the frequency component of the mixing filter A(l) at frequency f , and x f n, s f n are defined
by the same way as in the linear instantaneous mixture model. In this case, the updated mixing
matrix (33) needs to be replaced by

A f = R̂xs, f R̂−1
ss, f (41)

In the convolutive mixture model, the mixing matrix is estimated in the Fourier domain. Therefore,
the main difficulty is the need to deal with the permutation and scaling ambiguities. In our algorithm,
the minimal distortion principle is used to compensate the scaling ambiguity, and K-mean clustering
algorithm is employed to deal with the frequency-dependent permutation ambiguity problem. Finally,
the source separation algorithm in the convolutive mixture case is outlined in Algorithm 2.

Algorithm 2: Proposed Algorithm for Underdetermined Convolutive BSS.
• Underdetermined Convolutive Mixture Case (I > J)
Step 1. Perform STFT on x(t) to get x f n
Step 2. Estimate the mixing matrix A f by using frequency-domain tensor decomposition.
Step 3. Estimate the sources using (22), and detect the source spectrogram factors employing
the NMF method with (7).

Step 4. Initialize the updated matrix, the spectral basis, and temporal code, then update these
parameters using EM algorithm. i.e.,
repeat

(i). Update A f with (41) in the convolutive mixture case.
(ii). Alternately update w f k and hkn with (35).

until convergence
Step 5. Estimate ŝ f n by using Wiener filter of (28).
Step 6. Transform ŝ f n into time-domain to obtain s(t) through inverse STFT.
• end

4. Experiments

In this section, all the simulation experiments are conducted on a computer with Inter (R) Xeon
(R) CPU E5-2630 v3 @ 2.40GHz, 32.00 GB memory under Ubuntu 15.04 operational system and the
programs are coded by Matlab R2016b installed in a personal computer.

First, we describe the test datasets and evaluation criteria, and proceed with experiments including
the music mixture signals and speech mixture signals. Based on these criteria, we select two models
for further study, namely the linear instantaneous mixture model and convolutive mixture model.
Second, we compare the proposed algorithm with the baseline algorithms over synthetic reverberant
speech/music mixtures and the real-world speech/music mixtures. Finally, numerous simulation
examples are shown to illustrate the performance of our proposed algorithm.

4.1. Datasets

We talk about four audio datasets, i.e., two synthetic stereo linear instantaneous mixture (Dataset A
and Dataset B) and two convolutive mixture (Dataset C and Dataset D). In the linear instantaneous
mixture case, Dataset A matches with the development dataset dev2 (dev2-wdrums-inst-mix) of the
2008 Signal Separation Evaluation Campaign “under-determined speech and music mixtures” task
development datasets (SiSEC’08) (http://www.sisec.wiki.irisa.fr), which consists of one synthetic
stereo mixture, including three musical sources with drums which consist of percussive instruments.
Dataset B comes from the development dataset dev1 (dev1-female3-inst-mix) of SiSEC’08 which consists
of three speech mixtures.

In the convolutive mixture case, Dataset C comes from the music data with drums in dataset
dev2 (dev2-wdrums-liverec-250ms-1m-mix), which has 250 ms of reverberation time with 1 m space
between their microphones in the live real-recording environment. Dataset D is from the dataset dev1

http://www.sisec.wiki.irisa.fr
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(dev1-male3-synthconv-130ms-1m-mix) of the SiSEC’08 which has 130 ms of reverberation time with 1 m
space between their microphones.

4.2. Source Signal Separation Evaluation Criteria

In order to evaluate our proposed algorithm in the blind audio source separation, we use several
objective performance criteria [29] which compare the reconstructed source signal images with the
original ones. Now we define numerical performance criteria by computing energy ratios expressed in
decibels (dB) from estimated source decomposition to global performance.

The criteria derive from the decomposition of an estimated source image as

ŝimg
ij = simg

ij (t) + espat
ij (t) + einter f

ij (t) + earti f
ij (t) (42)

where simg
ij (t) is the true source image of source i(1 ≤ i ≤ I) on channel j(1 ≤ j ≤ 2). espat

ij (t), einter f
ij (t)

and earti f
ij (t) are distinct error components representing distortion, interference, and artifacts in the

channel j, respectively. Therefore, these criteria are defined as follows:
The Signal to Distortion Ratio (SDR)

SDRi = 10 log10

∑J
j=1 ∑t simg

ij (t)2

∑J
j=1 ∑t(e

spat
ij + einter f

ij + earti f
ij )2

(43)

The Source Image to Spatial Distortion Ratio (ISR)

ISRi = 10 log10

∑J
j=1 ∑t simg

ij (t)2

∑J
j=1 ∑t(e

spat
ij (t))2

(44)

The Source to Interference Ratio (SIR)

SIRi = 10 log10

∑J
j=1 ∑t(s

img
ij (t) + espat

ij (t))2

∑J
j=1 ∑t(e

inter f
ij (t))2

(45)

The Source to Artifacts Ratio (SAR)

SARi = 10 log10

∑J
j=1 ∑t(s

img
ij + espat

ij + einter f
ij )2

∑J
j=1 ∑t earti f

ij (t)2
(46)

In our paper, we employ the above measures (SDR, ISR, SIR, SAR) to evaluate the performance of
our proposed algorithm and compare with the baseline methods. Finally, a series of simulation results
verify the competence of our proposed algorithm.

4.3. Algorithm Parameters

The proposed algorithm will be compared with the EM, MU algorithms [16], and full-rank
algorithm [30]. In the linear instantaneous case, the initial values of the NMF parameters for
the MU and EM algorithms are based on a mixing matrix estimate obtained with the method of
Arberet et al. [31]. In the convolutive case, the initial values are based on frequency-dependent
complex-valued mixing matrix estimation [32]. For verifying the effective of our proposed algorithm,
we employ the time-domain tensor decomposition to estimate the linear mixing matrix and the
frequency-domain tensor decomposition to estimate the convolutive mixing matrix. Additionally,
we build the initialization of the source spectrogram estimation Wi and Hi based on EU-NMF, KL-NMF,
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and IS-NMF, respectively. The initial values for the NMF parameters {w f k, hkn}, k ∈ Ki of a given
source i are calculated by applying the NMF algorithm to mono-channel power spectrogram of source.

Finally, we set the following parameters for our optimization algorithm, the number of
components is Ki = 4 for every experiment. Furthermore, since the choice of the STFT window
size and the number of iteration are rather important, so we use the STFT with the half-overlapping
sine windows (typically a Hanning Window), these parameters are reported in Table 1.

Table 1. The parameter setting of all the algorithms.

Dataset
Window Length Sampling

Iterations
Samples Milliseconds Freq. (Hz)

A-inst 1024 64 16000 200
B-inst 1024 64 16000 200

C-conv 2048 128 16000 500
D-conv 2048 128 16000 500

4.4. Underdetermined BSS in the Linear Instantaneous Case and Convolutive Mixture Case

In the first place, we consider underdetermined music mixtures and speech mixtures in the linear
case, and compare our proposed algorithms (Tensor-EU, Tensor-KL, Tensor-IS) with the baseline
algorithms (l0 min [10], EM [16], MU [16]). Additionally, we run the EM and MU from 100 different
random initializations (EM, MU), and select the average as the results for the tasks of underdetermined
music and speech mixtures in the linear instantaneous case, respectively.

In the second place, we test the performance of our proposed algorithms in the realistic
underdetermined convolutive mixture case. For example, music mixtures are the live recording
dataset which are more complicated than the synthetic convolutive case, and the speech recorded in
an indoor environment are often convolutive, due to multipath reflections. We compare our proposed
algorithms with the methods [11,16,30]. In addition, the separation result obtained with the EM and
MU methods depends on the initial values, we conducted 100 trials with random initializations and
selected the average as the results.

4.4.1. Music Signal Mixtures in the Linear Instantaneous Case

In Dataset A, we first select the music signal mixtures in the linear case. The average SDR, ISR,
SIR, and SAR are depicted in Figures 2 and 3 based on the MU, EM with the random initialization,
MU [16], EM [16], l0 min [10], and our proposed algorithm (Tensor-EU, Tensor-KL, Tensor-IS). Finally,
the waveforms of the estimated sources are shown in Figure 4.
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Figure 2. The average SDR and ISR results in the linear music signal mixture case.
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Figure 4. A numerical example demonstrating that (a) Waveforms of music source signals with drum in
the linear mixture case; (b) Waveforms of the mixture sources; (c) Waveforms of the estimated sources
using MU algorithm for drum case [16]; (d) Waveforms of the estimated sources using EM algorithm
for drum case [16]; (e) Waveforms of the estimated sources using l0 minimization algorithm for drum
case [10]; and (f) Waveforms of the estimated sources using our proposed algorithm (Tensor-IS) in the
linear instantaneous mixture case.

4.4.2. Speech Signal Mixtures in the Linear Instantaneous Case

In Dataset B, we select the speech signal mixtures in the linear instantaneous case. The average
SDR, ISR, SIR, and SAR are depicted in Figures 5 and 6 based on the MU, EM with the random
initialization, MU [16], EM [16], l0 min [10], and our proposed algorithm (Tensor-EU, Tensor-KL,
Tensor-IS), respectively.
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Figure 5. The average SDR and ISR results in the linear speech signal mixture case.
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Figure 6. The average SIR and SAR results in the linear speech signal mixture case.

4.4.3. Music Signal Mixtures in the Convolutive Case

In Dataset C, we select the real live recording convolutive dataset which consists of vocal and
musical instrument with drum. The average SDR, ISR, SIR, and SAR are depicted in Figures 7 and 8
based on the MU, EM with the random initialization, MU [16], EM [16], Full-rank [30], Bm [11] and
our proposed algorithm (Tensor-EU, Tensor-KL, Tensor-IS), respectively. Finally, the waveforms of the
estimated sources are shown in Figure 9.
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Figure 7. The average SDR and ISR results in the convolutive music signal mixture case.
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Figure 8. The average SIR and SAR results in the convolutive music signal mixture case.



Symmetry 2018, 10, 521 16 of 20

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

s1

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

s2

0 2 4 6 8 10 12 14 16

x 10
4

−0.2

0

0.2

 sources signals

 

 

s3

0 2 4 6 8 10 12 14 16

×10
4

-0.1

-0.05

0

0.05

0.1

Channel-1

0 2 4 6 8 10 12 14 16

Mixture sources ×10
4

-0.1

-0.05

0

0.05

0.1

Channel-2

(a) Sources (b) Mixture sources

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

Seps1

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

Seps2

0 2 4 6 8 10 12 14 16

x 10
4

−0.2

0

0.2

Separated sources via MU NMF method

 

 

Seps3

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

0 2 4 6 8 10 12 14 16

x 10
4

−0.2

0

0.2

Separated sources via EM NMF method

 

 

Seps1

Seps2

Seps3

(c) MU (d) EM

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

Seps1

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

Seps1

0 2 4 6 8 10 12 14 16

x 10
4

−0.2

0

0.2

Separated sources via binary masking method

 

 

Seps1

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

Seps1

0 2 4 6 8 10 12 14 16

x 10
4

−0.05

0

0.05

 

 

Seps1

0 2 4 6 8 10 12 14 16

x 10
4

−0.2

0

0.2

Separated sources by our proposed algorithm

 

 

Seps1

(e) bm (f) Proposed algorithm

Figure 9. A numerical example demonstrating that (a) Waveforms of music source signals with drum in
the convolutive mixture case; (b) Waveforms of the mixture sources [16]; (c) Waveforms of the estimated
sources using MU algorithm [16]; (d) Waveforms of the estimated sources using EM algorithm;
(e) Waveforms of the estimated sources using binary masking algorithm [11]; and (f) Waveforms
of the estimated sources using the proposed algorithm (Tensor-IS) in the convolutive mixture case.

4.4.4. Speech Signal Mixtures in the Convolutive Case

In Dataset D, we select the synthetic convolutive mixtures including three speech sources and two
mixing channels. The average SDR, ISR, SIR, and SAR are depicted in Figures 10 and 11 based on the
MU, EM with the random initialization, MU [16], EM [16], Full-rank [30], Bm [11] and our proposed
algorithm (Tensor-EU, Tensor-KL, Tensor-IS), respectively.
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Figure 10. The average SDR and ISR results in the convolutive speech signal mixture case.
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Figure 11. The average SIR and SAR results in the convolutive speech signal mixture case.

Discussion 1. According to the above experimental results of Dataset A, Dataset B, Dataset C,
and Dataset D, it can be seen that our proposed algorithm can separate music signal mixtures and
speech signal mixtures in the underdetermined linear and convolutive case. What is more, according to
the average value of source separation results, it is also shown that our proposed algorithm outperforms
the baseline algorithms.

4.5. The Runtime of All Algorithms

The corresponding runtimes of the algorithms are shown in Table 2. It can be seen that the
proposed algorithm takes more time than the MU and EM methods. It is mainly because the time
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consuming on estimation of mixing matrix based on tensor decomposition. However, compared
with the full-rank algorithm, our proposed algorithm takes less time. Additionally, as for the source
separation results, the proposed algorithms exhibit better separation performance than the compared
algorithms. In our future work, it is still necessary to develop a better algorithm to reduce time cost.

Table 2. The runtime of all algorithms (sec.).

Linear BSS Case Convolutive BSS Case

Algorithm Runtime Algorithm Runtime

l0 min [10] 21.3982 bm [11] 38.5658
MU [16] 65.5909 MU [16] 70.3608
EM [16] 90.5785 EM [16] 182.2820
− − Full-rank [30] 346.5758

Proposed 114.6651 Proposed 208.8797

5. Conclusions and Future Work

In this paper, we proposed an optimization underdetermined multichannel BSS algorithm based
on tensor decomposition and NMF. Because the EM method is very sensitive to the parameter
initialization, we first estimated the mixing matrix employing tensor decomposition; meanwhile,
the source spectrogram factors were estimated using NMF source model, and produced an optimization
parameter initialization scheme. Then the model parameters were updated using the EM algorithm.
The spatial images of all sources were obtained in the minimum mean square error sense by
multichannel Wiener filtering. The time-domain sources can be obtained through inverse STFT.
Finally, a series of experimental results showcase that our proposed optimization algorithm improves
the separation performance compared with the baseline algorithms.

In addition, there are some aspects that deserve further study. Firstly, the estimation of number
of components of NMF model is an open topic. There have been some articles to solve this problem,
such as the automatic order selection [33], Information Theoretic Criteria [34], and N-way Probabilistic
Clustering [35]. Secondly, the window length used in the STFT has been taken advantage to match the
characteristics of audio signals, and different window lengths have different effects on the separation
results. Furthermore, taking into account source or microphone motions [36,37], i.e., convolutive
mixture corresponding to source-to-microphone channel that can change over time, is a challenging
problem. Therefore, these problems would be the focus of our future work.
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