
symmetryS S

Article

Feedforward Neural Networks with a Hidden Layer
Regularization Method

Habtamu Zegeye Alemu ID , Wei Wu * and Junhong Zhao

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China;
ahabtamu58@yahoo.com (H.Z.A.); zhaojunhong7510@mail.dlut.edu.cn (J.Z.)
* Correspondence: wuweiw@dlut.edu.cn

Received: 3 September 2018; Accepted: 14 October 2018; Published: 19 October 2018
����������
�������

Abstract: In this paper, we propose a group Lasso regularization term as a hidden layer regularization
method for feedforward neural networks. Adding a group Lasso regularization term into the standard
error function as a hidden layer regularization term is a fruitful approach to eliminate the redundant or
unnecessary hidden layer neurons from the feedforward neural network structure. As a comparison,
a popular Lasso regularization method is introduced into standard error function of the network. Our
novel hidden layer regularization method can force a group of outgoing weights to become smaller
during the training process and can eventually be removed after the training process. This means
it can simplify the neural network structure and it minimizes the computational cost. Numerical
simulations are provided by using K-fold cross-validation method with K = 5 to avoid overtraining
and to select the best learning parameters. The numerical results show that our proposed hidden layer
regularization method prunes more redundant hidden layer neurons consistently for each benchmark
dataset without loss of accuracy. In contrast, the existing Lasso regularization method prunes only
the redundant weights of the network, but it cannot prune any redundant hidden layer neurons.

Keywords: sparsity; feedforward neural networks; hidden layer regularization; group lasso; lasso

1. Introduction

Artificial Neural Networks (ANNs) are pretty old ideas to mimic the human brain [1]. ANNs have
been intensively studied for many years in the hope of achieving human-like performance in the fields
of speech and image recognition [2]. They are designed to solve a variety of problems in the area of
pattern recognition, prediction, optimization, associative memory, and control [3]. ANNs are also used
for approximation of phenol concentration using computational intelligence methods [4].

The Feedforward Neural Networks (FNNs) are the most fundamental part of ANNs that have
been trained by using the connectionist learning procedure called a supervised manner which requires
a teacher to specify the desired output vector [5]. An FNN is one part of a multi-layer perceptron
(MLP) with unidirectional data flow [6]. In FNNs, the neurons are arranged in the form of layers,
namely input, hidden and output layers and there exist the connections between the neurons of one
layer to those of the next layer [7]. These connections are repeatedly adjusted to minimize a measure
of the difference between the actual network output vector and the desired output vector through the
learning process [8]. The FNNs are commonly trained by using the backpropagation (BP) algorithm
which uses a gradient descent learning method, also called the steepest descent [9].

Depending on the way the weights are updating, the gradient descent method can be classified
into the following three methods: batch gradient descent method, mini-batch gradient descent method
and stochastic gradient descent method. In the batch gradient descent method, the weights are updated
after all the training examples are shown to the learning algorithm. In the stochastic gradient descent
method, the weight parameters are updated using each training example. In a mini-batch gradient

Symmetry 2018, 10, 525; doi:10.3390/sym10100525 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-2729-6134
http://www.mdpi.com/2073-8994/10/10/525?type=check_update&version=1
http://dx.doi.org/10.3390/sym10100525
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 525 2 of 18

descent method, the training examples are partitioned into small batches, and the weight parameters
are updated for each mini-batch example. In this study, we focus only on the batch gradient method.

It is well known that determining the number of input and output neurons naturally depends on
the dimension of the problem, but the main problem is determining the optimal number of neurons in
the hidden layer that can solve the specific problem [10]. Here, we mean the optimal number of the
hidden layer neurons of FNNs is one that is large enough to learn the samples and small enough to
perform well on unseen samples. There is no clear standard method to determine the optimal size of
the hidden layer neurons for the network to solve a specific problem. However, usually, the number of
hidden neurons of the neural network is determined by a trial-and-error method. This will lead to a
cost problem in computation. In addition, having too many neurons in the hidden layer may lead to
overfitting of the data and poor generalization while having too few neurons in the hidden layer may
not provide a network that learns the data [11].

Generally speaking, the constructive and destructive approaches are the two main approaches
used in literature for optimizing neural network structure [12]. The first approach, also called the
growing method, begins with a minimal neural network structure and adds more hidden neurons only
when they are needed to improve the learning capability of the network. The second approach begins
with an oversized neural network structure and then prunes redundant hidden layer neurons [13].
A disadvantage of applying the growing method is that the initial neural network with a small number
of hidden layer neurons can easily be trapped into local minima and it may need more time to get the
optimal number of hidden layer neurons. Therefore, we aimed to find the optimal number of hidden
layer neurons by using the pruning method.

Furthermore, depending on the techniques used for pruning, the pruning methods can be further
classified into the following methods [14]: regularization (penalty) methods, cross-validation methods,
magnitude base methods, evolutionary pruning methods, mutual information, significance based
pruning methods, and the sensitivity analysis method. The most popular sensitivity based pruning
algorithms are the Optimal Brain Damage [15] and the Optimal Brain Surgeon method [16]. This paper
focuses on a pruning technique called the regularization method that mainly addresses the overfitting
problem. To do this, we can add the extra regularization terms into the standard error function to
sparse the values of weight connections by assuming that sparse neural network models lead to better
performance.

Most of the existing regularization methods for FNNs can be further categorized into different
Lp regularization methods. Figure 1 indicates a graphical representation of Lp norms with different
p-values.

The Lp regularization method is widely applied as a parameter estimation technique to solve the
variable selection problem [17]. The most common Lp regularization terms are

R(W) =
1
2 ∑

i∈W
w2

i , “L2 regularization′′, (1)

R(W) = ∑
i∈W
|wi|, “L1 regularization”, (2)

R(W) = ∑
i∈W
|wi|1/2, “L1/2 regularization′′, (3)

where W is the set of all weights of the neural network and | · | represents the absolute value function.
The regularization term in Equation (1) is defined as the 2-norm (squared norm) of the network
weights. L2 regularization does not have the sparsity property, but it has the property of being smooth.
The L1 regularization term leads to an area of the convex optimization problem, which is easy to solve,
but it does not give a sufficiently sparse solution [18]. Adding the L1/2 regularization term into the



Symmetry 2018, 10, 525 3 of 18

standard error function promotes excess weights to take values close to zero. The L1/2 regularization
term performs better in the sparsity of weight connections [19–21]. Recently, the L1/2 regularization
term has been proposed to determine the redundant dimensions of the input data for the multilayer
feedforward networks by fixing the number of hidden neurons [22]. The result of this study confirms
that the L1/2 regularization method produces better performance than L1 due to its sparsity property.

To sum up, a major drawback of using the Lp regularization terms described above is that they
are mainly designed for removing the redundant weights from the neural network, but they cannot
remove the redundant or unnecessary hidden neurons of the neural network automatically. This study
aimed to investigate the pruning of unnecessary hidden layer neurons of FNNs.

The popular Lasso, least absolute shrinkage and selection operator, regularization method that
was originally proposed for estimation of linear models is defined in [23] as

β̂Lasso(λ) = arg min
(
‖Y− Xβ‖2

2 + λ‖β‖1

)
, (4)

where λ is a regularization parameter, Y ∈ Rm is a continuous response, X is an m× k design matrix,
β ∈ Rk is a vector parameter. Moreover, ‖·‖2

2 and ‖·‖1 stands for 2-norm (squared norm) and 1-norm,
respectively. Lasso tends to produce sparse solutions for network models.

An extension of Lasso, group Lasso was originally used to solve linear regression problems and it
is one of the most popular regularization method for variable selection [24,25]. For a given training set
that consists of M input-output pairs f (xi, yi)1≤i≤M, the following optimization problem with group
Lasso regularization term was used in [26] to sparse the network with any L numbers of layers that
consists of Nl neurons numbers each of which is encoded by parameters θn

l = [wn
l , bn

l ], wn
l is a linear

operator acting on the layer’s input and bn
l is a bias, where these parameters form the parameter set

Θ = {θl}1≤l≤L, with θ =
{

θn
l
}

1≤n≤Nl
,

min
Θ

{
1
M

M

∑
i=1

`(yi, f (xi, Θ)) +
L

∑
l=1

λl
√

pl

Nl

∑
n=1
‖θn

l ‖2

}
, (5)

where `(.) is a loss function that compares the network prediction with the ground-truth output,
such as the logistic loss for classification or the square loss for regression, pl is the size of parameters
grouped together in layer l and λl is the regularization coefficient. The regularization parameters λl
are scaled with group size

√
pl to regularize larger groups in (5). Here, tuning different regularization

parameters λl for each groups in each layer is considered as one disadvantage. However, by rescaling
the groups, we can simplify the cost function in Equation (5) into

min
Θ

{
1
M

M

∑
i=1

`(yi, f (xi, Θ)) + λ
L

∑
l=1

Nl

∑
n=1
‖θn

l ‖2

}
. (6)

Now, one can use Equation (6) that is simplified from Equation (5) to sparse the neural network
structure by penalizing each group in each layer with the same regularization parameter λ. Particularly,
it is important to prune the redundant neurons from the input and hidden layers.

Hence, developing an automated hidden layer regularization method by using the idea of
Equation (6), which can find out a small, necessary, and sufficient number of neurons in the hidden
layer of FNNs without an additional retraining process is our primary motivation. To achieve this,
there are two approaches. The first approach is considering only the norm of the total entering weights
to each hidden layer neurons. The second approach is considering only the norm of the total outgoing
weights from each hidden layer neurons. In this paper, we propose a group Lasso regularization
method by using the second approach. Here, our goal is shrinking the total outgoing weights from
unnecessary or redundant neurons of the hidden layer to zero without loss of accuracy.

Furthermore, we conduct experiments by using the benchmark datasets to compare our
proposed hidden layer regularization method with the standard batch gradient method without



Symmetry 2018, 10, 525 4 of 18

any regularization term and the popular Lasso regularization method. The numerical results
demonstrate the effectiveness of our proposed hidden layer regularization method on both sparsing
and generalization ability.

The rest of this paper is organized as follows: in Section 2, Materials and Methods are described.
In Section 3, the results are presented. In Section 4, we discuss in detail the numerical results. Finally,
we conclude this paper with some remarks in Section 5.

 

 p=1
p=2
p=0.5
p=4
p=10
p=20

Figure 1. The properties of Lp norms.

2. Materials and Methods

2.1. Neural Network Structure and Batch Gradient Method without Regularization Term

We consider an FNN with one hidden layer of the network structure p + 1− q + 1− r, consisting
of p + 1 number of neurons in the input layer, q + 1 number of neurons in the hidden layer and r number
of neurons in the output layer (including bias neurons in the input and hidden layers) (see Figure 2).
Here, the extra neuron added into both input and hidden layers represents the bias neuron with output
value +1, and it allows us to shift the activation function to the left or right, which is very important
for successful network training process. We note that this fully connected neural network structure has
q(p + 1) + r(q + 1) total number of weight connections. To perform computations for our given neural
network structure, we represent the weight connections of the neural network in the form of matrices and
vectors and apply matrix-vector operations. Let wj = (wj1, wj2, wj3, . . . , wji, . . . , wjp, wj(p+1))

T ∈ Rp+1

be the weight vector connecting the input neurons and the hidden layer neuron j(j = 1, 2, 3, . . . , q) and
w̃k = (w̃k1, w̃k2, w̃k3, . . . , w̃kj, . . . , w̃kq, w̃k(q+1))

T ∈ Rq+1 be the weight vector connecting the hidden layer
neurons and the output neuron k(k = 1, 2, 3, . . . , r), where the symbol “T” represents the transpose.
We can also represent in matrix form as shown below:

w = (w1, w2, w3, . . . , wj, . . . , wq)
T ∈ Rq×(p+1),

w̃ = (w̃1, w̃2, w̃3, . . . , w̃k, . . . , w̃r)
T ∈ Rr×(q+1).

To make our presentation simple, we can rewrite all the weight parameters in a compact form
as follows: W = (w̃T

1 , w̃T
2 , w̃T

3 , . . . , w̃T
k , . . . , w̃T

r , wT
1 , wT

2 , wT
3 , . . . , wT

j , . . . , wT
q )

T ∈ Rr(q+1)+q(p+1). Let g :
R→ R be a given activation function for hidden layer neurons and output neurons which is typically



Symmetry 2018, 10, 525 5 of 18

but not necessarily a sigmoid function that squashes (limits) the outputs of the summation neurons.
For any x = (x1, x2, x3, . . . , xj, . . . , xq)T ∈ Rq, we introduce the vector-valued function

G : Rq → Rq+1, G(x) = (g(x1), g(x2), g(x3), . . . , g(xj), . . . , g(xq),+1)T , (7)

where component +1 represents the output value from bias neuron. Let {ξm, om}M
m=1 ⊂ RP+1 ×Rr

be a set of training examples, where ξm = (ξm
1 , ξm

2 , ξm
3 , . . . , ξm

i , . . . , ξm
p ,+1)T ∈ Rp+1 and om ∈ Rr are

the input and the corresponding one-hot encoded ideal output of the mth sample, respectively. Then,
for each input ξm, the actual output vector of the hidden layer neurons is G(wξm) and finally the actual
output to the network at output neuron k is:

ym
k = g(w̃k · G(wξm)). (8)

Consequently, the actual output vector to the network at output layer is: ym =

(ym
1 , ym

2 , ym
3 , . . . ym

k , . . . , ym
r )

T ∈ Rr.
Then, the standard mean square error function to the network without any regularization term is

defined as

Ẽ(W) =
1

2M

M

∑
m=1

r

∑
k=1

(om
k − ym

k )
2

=
1

2M

M

∑
m=1

r

∑
k=1

(om
k − g (w̃k · G(wξm)))2

=
M

∑
m=1

r

∑
k=1

gmk (w̃k · G(wξm)) , (9)

where
gmk(t) =

1
2M

(om
k − g(t))2

is a composite function and its derivative is

g′mk(t) ≡
−1
M

(om
k − g(t))g′(t), t ∈ R, m = 1, 2, . . . , M.

Then,

Ẽw̃kj(W) =
M

∑
m=1

g′mk (w̃k · G(wξm)) g(wjξ
m), (10a)

Ẽwji (W) =
M

∑
m=1

r

∑
k=1

g′mk (w̃k · G(wξm)) w̃kjg′(wjξ
m)ξm

i , (10b)

for i = 1, 2, 3, . . . , p, p+ 1 ; j = 1, 2, 3, . . . , q, q+ 1 and k = 1, 2, 3, . . . , r. The gradient of the error function
defined in Equation (9) with respect to the weight vector W is also defined as

ẼW(W) = (ẼT
w̃1

, ẼT
w̃2

, ẼT
w̃3

, . . . , ẼT
w̃k

, . . . , ẼT
w̃r , ẼT

w1
, ẼT

w2
, ẼT

w3
, . . . , ẼT

wj
, . . . , ẼT

wq)
T ∈ Rr(q+1)+q(p+1), (11)



Symmetry 2018, 10, 525 6 of 18

where

ẼT
w̃1

=
(

Ẽw̃11(W), Ẽw̃12(W), Ẽw̃13(W), . . . , Ẽw̃1j(W), . . . , Ẽw̃1q(W), Ẽw̃1(q+1)(W)
)

,

ẼT
w̃2

=
(

Ẽw̃21(W), Ẽw̃22(W), Ẽw̃23(W), . . . , Ẽw̃2j(W), . . . , Ẽw̃2q(W), Ẽw̃2(q+1)(W)
)

,

...

ẼT
w̃r =

(
Ẽw̃r1(W), Ẽw̃r2(W), Ẽw̃r3(W), . . . Ẽw̃rj(W), . . . , Ẽw̃rq(W), Ẽw̃r(q+1)(W)

)
,

ẼT
w1

=
(

Ẽw11(W), Ẽw12(W), Ẽw13(W), . . . , Ẽw1i (W), . . . , Ẽw1p(W), Ẽw1(p+1)(W)
)

,

ẼT
w2

=
(

Ẽw21(W), Ẽw22(W), Ẽw23(W), . . . , Ẽw2i (W), . . . , Ẽw2p(W), Ẽw2(p+1)(W)
)

,

...

ẼT
wq =

(
Ẽwq1(W), Ẽwq2(W), Ẽwq3(W), . . . , Ẽwqi (W), . . . , Ẽwqp(W), Ẽwq(p+1)(W)

)
.

Figure 2. Feedforward neural network with one hidden layer and multiple neurons at the output layer.

2.2. A Batch Gradient Method with Hidden Layer Regularization Terms

The network complexity is usually measured in terms of the number of free parameters, i.e.,
by the total number of weights in the network. By adding any regularization terms into the standard
error function we can limit the growth of the weights during network training process. In the next
section we construct the proposed hidden layer regularization terms that can remove unnecessary or
redundant hidden layer neurons of FNNs.



Symmetry 2018, 10, 525 7 of 18

2.2.1. Batch Gradient Method with Lasso Regularization Term

We first describe the popular Lasso regularization method. Here, our main concerned is to
penalize each weight connections of the neural network by using the Lasso regularization term.
The new error function E(W) with Lasso hidden layer regularization term is defined as follows:

E(W) = Ẽ(W) + λ‖W‖1, (12)

where Ẽ(W) is the standard error function defined in Section 2.1, ‖W‖1 = ∑
i∈W
| wi |, W is the set of all

weights and λ is the regularization parameter that prevents the network weights from growing too
large by penalizing each weight during network training.

The goal of the network training is to get W∗ such that

W∗ = arg min
{

Ẽ(W) + λ‖W‖1
}

. (13)

The gradients of the error function in Equation (12) with respect to wji and w̃kj are expressed,
respectively as

Ewji (W) = Ẽwji (W) + λsign(wji), (14a)

Ew̃kj(W) = Ẽw̃kj(W) + λsign(w̃kj), (14b)

where the “sign” is signum function of a real number x that can be defined as follows:

sign(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(15)

The corresponding increments of the weights wn
ji and w̃n

kj are respectively defined as follows:

4wn
ji = −η

[
Ẽwn

ji
(W) + λsign(wn

ji)
]

, (16a)

4w̃n
kj = −η

[
Ẽw̃n

kj
(W) + λsign(w̃n

kj)
]

, (16b)

where η is a positive parameter that controls the speed of learning process.
In the above equations, the minus sign indicates that the learning is taking place in the opposite

direction to the gradient descent, which is the steepest descent. Starting with initial value W0, the
weight vector Wn is updated iteratively by using the following learning algorithm:

Wn+1 = Wn +4Wn. (17)

In component form, the weights are updated iteratively by

wn+1
ji = wn

ji +4wn
ji, (18a)

w̃n+1
kj = w̃n

kj +4w̃n
kj. (18b)

2.2.2. Batch Gradient Method with Group Lasso Regularization Term

Now, let us formulate our proposed hidden layer regularization method. This is done by
penalizing only the norm of total outgoing weights from each hidden layer neuron. Its new error
function is formulated as

E(W) = Ẽ(W) + λ
q+1

∑
j=1

∥∥w̃j
∥∥

2 , (19)



Symmetry 2018, 10, 525 8 of 18

where
∥∥w̃j

∥∥
2 =

(
w̃2

1j + w̃2
2j + . . . + w̃2

kj + . . . + w̃2
rj

) 1
2 is the 2- norm (not squared norm) of outgoing

weight vector from the j-th hidden layer neuron, and λ is the regularization parameter. Similarly, the
goal of the network training by using group Lasso is also to get W∗ such that

W∗ = arg min

{
Ẽ(W) + λ

q+1

∑
j=1

∥∥w̃j
∥∥

2

}
. (20)

Adding the extra group Lasso regularization term into the standard error function plays a great
role to shrink all the outgoing weights of a redundant or unnecessary hidden layer neuron j of FNNs.
Hence, any neuron j of a hidden layer with the norm of its outgoing weights is zero or near to zero
should be automatically removed without degradation of the neural network accuracy.

The corresponding gradients of the error function defined in Equation (19) with respect to wji and
w̃kj are expressed, respectively, as

Ewji (W) = Ẽwji (W), (21a)

Ew̃kj(W) = Ẽw̃kj(W) +
λw̃kj∥∥w̃j
∥∥

2

. (21b)

Thus,

4wn
ji = −ηẼwn

ji
(W), (22a)

4w̃n
kj = −η

Ẽw̃n
kj
(W) +

λw̃n
kj∥∥∥w̃n

j

∥∥∥
2

 . (22b)

By starting with initial weight vector W0, the weight vector Wn are updated iteratively by using
the learning algorithm formulated by the Equation (17). Similarly, each weight component is also
updated iteratively by using Equations (18a) and (18b).

2.3. Datasets

Four benchmark datasets from the UCI machine learning repository [27] are chosen for numerical
simulation purposes and their detail properties are described in Table 1.

The first dataset is an iris dataset, which is one of the well-known benchmark datasets in machine
learning. It contains three sets of flower types (Iris Setosa, Iris Versicolour, and Iris Virginica) and four
dimensions (sepal length in cm, sepal width in cm, petal length in cm, petal width in cm).

The second one is the zoo dataset which is one of the seven class classification datasets. It contains
101 examples, each with 17 Boolean-valued attributes. Our task is to classify animals into 7 categories
based on given information.

The third dataset is the seeds dataset, which is one of the multiclass classification datasets.
It contains 210 examples, each with seven features. Our task is to classify varieties of wheat into three
classes (i.e., Kama, Rosa and Canadian).

The fourth dataset that we use is ionosphere dataset. This radar dataset was collected by a system
in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency antennas with a
total transmitted power on the order of 6.4 kilowatts. The targets were free electrons in the ionosphere.
“Good” radar returns are those showing evidence of some type of structure in the ionosphere. “Bad”
returns are those that do not; their signals pass through the ionosphere. This data has 351 instances
and 35 attributes. All 34 predictor attributes are continuous, and the 35th attribute is either “Good” or
“Bad”. This is a binary classification task.



Symmetry 2018, 10, 525 9 of 18

Table 1. Properties of benchmark datasets.

Datasets No. of Examples No. of Attributes No. of Class

Iris 150 4 3
Zoo 101 17 7
Seeds 210 7 3
Ionosphere 351 34 2

2.3.1. K-fold Cross-Validation Method

To avoid overtraining, we use the K-fold cross-validation method [28]. The parameter K
represents the fold size. First, we shuffled the original dataset, X = {ξm, om}M

m=1 ⊂ RP+1 × Rr,
randomly. As shown in Figure 3 the shuffled dataset is divided into K roughly equal-sized
sub datasets, X1, X2, X3, . . . , Xk, . . . , XK, where Xk = {ξm, om}M′

m=1 ⊂ RP+1 × Rr and M′ = M
K is

the size of each fold. One of the K sets is used as the validation set for validating the trained
network while the remaining K − 1 datasets are used as training set. Hence the training set,
Xtrain = X1, X2, X3, . . . , Xk−1, Xk+1, . . . , XK and the validation set, Xvalidation = Xk.

Figure 3. K-fold cross-validation method.

The cross-validation process is repeated K times (K folds). The advantage of applying K-fold is
that each fold is used exactly once as the validation set. Finally, the K results are averaged to obtain a
single average accuracy result.

For a given set of learning parameters {W, η, λ, K}, we compute the training accuracy for each
k = 1, 2, 3, . . . , K as follows:

TrainingAccuracy(k) =
1

M′(K− 1)

M′(K−1)

∑
m=1

I(arg max
k=1,2,...,r

ym, arg max
k=1,2,...,r

om), (23)

where, the indicative function I(a, b) =

{
1, if a = b,

0, if a 6= b,
and ym and om are predicted vector of all output layer neurons and a one-hot encoded ideal output of
Xtrain, respectively. The corresponding testing accuracy is computed as

TestingAccuracy(k) =
1

M′
M′

∑
m=1

I(arg max
k=1,2,...,r

ym, arg max
k=1,2,...,r

om). (24)



Symmetry 2018, 10, 525 10 of 18

Similarly, ym and om are predicted vectors of all output layer neurons and a one-hot encoded ideal
output of Xvalidation. Finally, the average training and testing accuracy of all K results are computed
respectively as

TrainingAccuracy =
1
K

K

∑
k=1

TrainingAccuracy(k), (25)

TestingAccuracy =
1
K

K

∑
k=1

TestingAccuracy(k). (26)

All numerical simulations were run on a MacBook Air laptop designed by apple in California
assembled in China with the processor running at 1.6 GHz Intel Core i5, Memory 8 GB 1600 NHz
DDR3 and Graphics Intel HD Graphics 6000 1536 MB of RAM by using MATLAB R2014a (MathWorks,
Inc., Natick, MA, USA).

2.3.2. Data Normalization

In the data mining area, data preprocessing is a crucial technique to clean the data before we
are using it for the neural network training process. The normalization is needed to improve the
performance of numerical computation and obtain better neural network output results by avoiding
the influence of one attribute over another. A min-max normalizing method [29] is one of the most
common data normalizing methods and it is defined as

zi =

(
xi −min(x)

max(x)−min(x)

)
(maxnew −minnew) + minnew, (27)

where x = [x1, x2, x3, . . . , xn]T is original data values of a single feature of dataset, xi is i-th original
data value and zi is i-th normalized data value. The maxnew and minnew represent the maximum range
and minimum range for normalized dataset, respectively. Thus, each of the original benchmark dataset
is normalized in a range of 0 to 1. All class attributes of the benchmark dataset are also encoded by
one-hot representation.

2.3.3. Activation Function

A pure linear (purelin) activation function with the range (−∞, ∞) is the most common activation
function for the output layer in MATLAB. Herein, after we normalized our datasets, we choose the
logistic sigmoid function as a transfer function for all neurons in the hidden layer and output layer
and it is expressed as

logsig(x) =
1

1 + exp(−x)
. (28)

The logistic sigmoid activation function has the range (0, 1). This function can work well for
classification tasks by giving the output results at the output layer in the range 0 to 1.

2.4. Hidden Neuron Selection Criterion

To determine whether a neuron j in the hidden layer will survive or remove after training,
the strategy that we used as a neuron selection criterion is just computing the norm of total outgoing
weights from the neuron j. In literature, there is no standard threshold value to remove unnecessary
weight connections and redundant neurons from the initially assumed neural network structure.
According to [20,30], the sparsity of the learning algorithm was measured by using the number of
weights whose absolute values are ≤0.0099 and ≤0.01, respectively. In this study, we have arbitrary
chosen 0.00099 as a threshold value which is more less than the existing thresholds in literature.



Symmetry 2018, 10, 525 11 of 18

Training algorithm and heuristics for FNN parameter selection

1. Use a K-fold cross-validation method to split the dataset into a training set and validation set.
2. Pick large fully connected FNNs with structure p + 1− q + 1− r, where p + 1 is neuron number

in the input layer, q + 1 is neuron number in the hidden layer, and r is neuron number in
the output layer (including bias neuron). The number of the input layer and output layer
neurons are set equal to the numbers of attributes and classes for each dataset, respectively.
Likewise, the number of hidden layer neurons initially is set randomly in a way that it needs to
be remarkably bigger than the numbers of attributes and classes.

3. Randomly initialize network weights w and w̃ in [−0.5, 0.5].
4. For each k = 1, 2, 3, . . . , K train the network using a training set with the standard batch gradient

method without any regularization term (i.e., λ = 0) as a function learning rate η and pick the
best η that gives the best learning.

5. Use the best learning rate η obtained from step 3 and start the training process further by
increasing the regularization coefficient λ up to too many numbers of hidden layer neurons are
removed, and the accuracy of the network is degraded.

6. Compute the norm of the total outgoing weights from each neuron j in the hidden layer; if the
norm of total outgoing weights from neuron j in the hidden layer is less or equal to the threshold
value, then remove the neuron j from the network else the neuron j will survive.

7. Compute the training accuracy using Equation (23).
8. Evaluate the trained network using a validation set.
9. Compute the testing accuracy using Equation (24).

10. Compute the average training and average testing accuracy of the overall results of K using
Equations (25) and (26), respectively.

11. Compute the average number of redundant or unnecessary hidden layer neurons.
12. Select the best regularization parameter λ that gives the best average results.

3. Results

In this section, we present the numerical results of our proposed batch gradient method with a
group Lasso regularization term (BGGLasso) compared to the existing learning methods (i.e., standard
batch gradient method without any regularization term (BG) and batch gradient method with a
Lasso regularization term (BGGLasso)) using benchmark datasets. Accuracy and sparsity are our
major metrics to compare the performance of our proposed method with existing learning methods.
As shown in Tables 2–6, the sparsity of the proposed hidden layer regularization method is measured
by using the average number of pruned weights (AVGNPWs) and the average number of pruned
hidden layer neurons (AVGNPHNs). Similarly, the average accuracy of the neural network for each
datasets is measured by using average training accuracy (Training Acc. (%)) and average testing
accuracy (Testing Acc. (%)). For each benchmark dataset, the 5-fold cross-validation method is
employed to obtain numerical results. We also find out the best learning rate η by using the baseline
BG (batch gradient method without any regularization term).

3.1. The Iris Results

The numerical results in Figure 4 represents all 5-fold results obtained by using standard BG
only. We started the training process with the oversized initial network structure, namely 5− 16− 3
(including bias neurons in the input and hidden layers). The network was trained until the prespecified
maximum number of iteration epochs of 7000 is met. We select the best learning rate η = 0.050.
In Figure 4a, we demonstrate all the training errors with their corresponding cross validation errors
of all 5-folds. Similarly, in Figure 4b, all of the training accuracies with their corresponding testing
accuracies of all 5-folds are demonstrated.



Symmetry 2018, 10, 525 12 of 18

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of iterations

er
ro

r

5−fold cross−validation

 

 
Training error
Cross validation error

(a)

0 1000 2000 3000 4000 5000 6000 7000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

ac
cu

ra
cy

5−fold cross−validation

 

 

Training accuracy
Testing accuracy

(b)

Figure 4. Best learning curves for iris dataset only with standard BG by using η = 0.050: (a) error and
(b) accuracy.

After this, for the sake of comparison and simplicity, we only present the best learning curves
using validation sets in terms of average results. The best learning curves for average cross-validation
error results and average testing accuracy of our proposed BGGLasso learning method with BG and
BGLasso learning methods by using the iris dataset are displayed in Figure 5a,b, respectively. In Table 2,
the average sparsity result and average accuracy result with the best learning rate η and the best
regularization parameter λ over 5-fold-cross validation for the iris dataset are recorded.

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of iterations

A
ve

ra
ge

 c
ro

ss
−v

al
id

at
io

n 
er

ro
r 

5−fold cross−validation

 

 
BG
BGLasso
BGGLasso

(a)

0 1000 2000 3000 4000 5000 6000 7000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

A
ve

ra
ge

 te
st

in
g 

ac
cu

ra
cy

5−fold cross−validation

 

 

BG
BGLasso
BGGLasso

(b)

Figure 5. Best learning curves for iris dataset by using BG, BGLasso and BGGLasso regularization
methods with η = 0.050, λ = 0.010: (a) average cross-validation error and (b) average testing accuracy.

Table 2. Comparison of best average results for the iris dataset.

Methods λ η
Sparsity ‖EW (W)‖ Accuracy

AVGNPWs AVGNPHNs Training Acc. (%) Testing Acc. (%)

BG 0.000 0.050 0.000 0.000 0.010 98.500 98.000
BGLasso 0.010 0.050 53.200 0.000 0.060 97.800 93.300
BGGLasso 0.010 0.050 18.400 6.000 0.020 98.300 97.300



Symmetry 2018, 10, 525 13 of 18

3.2. The Zoo Results

To check the sparsity ability of the group Lasso and Lasso regularization terms using the zoo
dataset, we randomly started with big neural network structure 18− 26− 7 (the number of input
neurons, the number of hidden layer neurons, and the number of output layer neurons), including the
bias neurons in the input and hidden layers. For zoo dataset, the selected best learning rate η and the
best regularization parameter λ are 0.040 and 0.030, respectively. The maximum number of training
iteration is 7000. The best learning curves for the zoo dataset with average cross-validation error result
and average testing accuracy result are shown in Figure 6a,b. Table 3 summarizes the average results
with best learning parameters.

0 1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of iterations

A
ve

ra
ge

 c
ro

ss
−v

al
id

at
io

n 
er

ro
r 

5−fold cross−validation

 

 
BG
BGLasso
BGGLasso

(a)

0 1000 2000 3000 4000 5000 6000 7000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

A
ve

ra
ge

 te
st

in
g 

ac
cu

ra
cy

5−fold cross−validation

 

 

BG
BGLasso
BGGLasso

(b)

Figure 6. Best learning curves for zoo dataset by using BG, BGLasso and BGGLasso regularization
methods with η = 0.040, λ = 0.030: (a) average cross-validation error and (b) average testing accuracy.

Table 3. Comparison of best average results for zoo dataset.

Methods λ η
Sparsity ‖EW (W)‖ Accuracy

AVGNPWs AVGNPHNs Training Acc .(%) Testing Acc. (%)

BG 0.000 0.040 0.000 0.000 0.0200 99.800 93.100
BGLasso 0.030 0.040 314.400 0.000 0.200 86.600 79.300
BGGLasso 0.030 0.040 47.800 6.800 0.030 93.600 87.100

3.3. The Seed Results

Similarly, to test the sparsity ability of the group Lasso and Lasso regularization terms using the
seeds dataset, we started from a large network structure 8− 16− 3 (including bias neurons in the
input and hidden layers), and the maximum number of training epochs is 7000. The best learning
rate η and the best regularization parameter λ for the seeds dataset are 0.080 and 0.009, respectively.
The best learning curves for seeds dataset with average cross-validation error results and average
testing accuracy results are shown in Figure 7a,b.



Symmetry 2018, 10, 525 14 of 18

0 1000 2000 3000 4000 5000 6000 7000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of iterations

A
ve

ra
ge

 c
ro

ss
−v

al
id

at
io

n 
er

ro
r 

5−fold cross−validation

 

 
BG
BGLasso
BGGLasso

(a)

0 1000 2000 3000 4000 5000 6000 7000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

A
ve

ra
ge

 te
st

in
g 

ac
cu

ra
cy

5−fold cross−validation

 

 

BG
BGLasso
BGGLasso

(b)

Figure 7. Best learning curves for seeds dataset by using BG, BGLasso and BGGLasso regularization
methods with η = 0.080, λ = 0.009: (a) average cross-validation error and (b) average testing accuracy.

3.4. The Ionosphere Results

Here, we started with two different initial network structures (35− 41− 2 and 35− 50− 2) (each
network includes bias neurons in the input and hidden layers), and both took 7000 training epochs. We
trained these two different network structures with the same learning parameters and the selected best
learning rate η and λ are 0.050 and 0.007, respectively. The best learning curves for cross-validation
error and average testing accuracy of the first network structure are shown in Figure 8a,b, respectively.
Similarly, the best learning curves for average cross-validation error and average testing accuracy of
the second network structure are also shown in Figure 9a,b, respectively.

0 1000 2000 3000 4000 5000 6000 7000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of iterations

A
ve

ra
ge

 c
ro

ss
−v

al
id

at
io

n 
er

ro
r 

5−fold cross−validation

 

 
BG
BGLasso
BGGLasso

(a)

0 1000 2000 3000 4000 5000 6000 7000

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

A
ve

ra
ge

 te
st

in
g 

ac
cu

ra
cy

5−fold cross−validation

 

 

BG
BGLasso
BGGLasso

(b)

Figure 8. Best learning curves for ionosphere dataset by using BG, BGLasso and BGGLasso
regularization methods with η = 0.050, λ = 0.007 and network structure 35− 41− 2: (a) average
cross-validation error and (b) average testing accuracy.



Symmetry 2018, 10, 525 15 of 18

0 1000 2000 3000 4000 5000 6000 7000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of iterations

A
ve

ra
ge

 c
ro

ss
−v

al
id

at
io

n 
er

ro
r 

5−fold cross−validation

 

 
BG
BGLasso
BGGLasso

(a)

0 1000 2000 3000 4000 5000 6000 7000

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

A
ve

ra
ge

 te
st

in
g 

ac
cu

ra
cy

5−fold cross−validation

 

 

BG
BGLasso
BGGLasso

(b)

Figure 9. Best learning curves for ionosphere dataset by using BG, BGLasso and BGGLasso
regularization methods with η = 0.050, λ = 0.007 and network structure 35− 50− 2: (a) average
cross-validation error and (b) average testing accuracy.

4. Discussion

The main goal of this study is to prune the redundant or unnecessary hidden layer neurons of the
FNNs. In this respect, the regularization terms are often introduced into the error function and have
shown to be efficient to improve the generalization performance and decrease the magnitude of the
network weights [31]. In particular, Lp regularizations are used to regularize the sum of the norm of
the weights during training. Lasso [23] is one of the most popular Lp regularization terms that is used
to remove the redundant weights. However, Lasso regularization is mainly introduced for removing
the redundant weights, and a neuron can be removed only if all of its outgoing weights have been
close to zero. As shown in Tables 2–6, the batch gradient method with Lasso regularization (BGLasso)
can find more redundant weights, but it cannot find any redundant hidden layer neurons.

Group Lasso [26] was used for imposing the sparsity on group level to eliminate the redundant
neurons of the network. As shown in Tables 2–6, the batch gradient method with group Lasso
regularization term (BGGLasso) can identify unnecessary or redundant hidden layer neurons.
The average number of pruned hidden layer neurons (AVGNPHNs) by BGGLasso is higher for
each dataset. In these tables, the average norm of the gradient of the error function ‖EW(W)‖ for our
proposed learning method is also smaller than BGLasso. This tells us that the BGGLasso converges
better than BGLasso. Tables 4 and 6 are the results of ionosphere dataset using the same parameters
except that the initial number of hidden layer neurons are different (i.e., 35− 41− 2 and 35− 50− 2),
respectively. Here, we confirm that the results are not significantly different.

Table 4. Comparison of best average results for seeds dataset.

Methods λ η
Sparsity ‖EW (W)‖ Accuracy

AVGNPWs AVGNPHNs Training Acc. (%) Testing Acc. (%)

BG 0.000 0.080 0.000 0.000 0.0200 92.500 91.400
BGLasso 0.009 0.080 101.600 0.000 0.060 89.500 89.100
BGGLasso 0.009 0.080 24.600 8.200 0.040 91.700 90.900



Symmetry 2018, 10, 525 16 of 18

Table 5. Comparison of best average results for ionosphere dataset with network structure 35− 41− 2.

Methods λ η
Sparsity ‖EW (W)‖ Accuracy

AVGNPWs AVGNPHNs Training Acc. (%) Testing Acc. (%)

BG 0.000 0.050 0.000 0.000 0.020 98.800 92.000
BGLasso 0.007 0.050 1327.800 0.000 0.090 94.000 88.900
BGGLasso 0.007 0.050 45.600 22.800 0.040 97.100 91.400

Table 6. Comparison of best average results for ionosphere dataset with network structure 35− 50− 2.

Methods λ η
Sparsity ‖EW (W)‖ Accuracy

AVGNPWs AVGNPHNs Training Acc. (%) Testing Acc. (%)

BG 0.000 0.050 0.000 0.000 0.020 98.000 90.900
BGLasso 0.007 0.050 1646.400 0.000 0.100 94.500 89.800
BGGLasso 0.007 0.050 60.400 30.200 0.050 96.900 90.000

Moreover, Figures 5a, 6a, 7a, 8a and 9a, display comparison results of the average cross-validation
error obtained by different hidden layer regularization methods for iris, zoo, seeds, and ionosphere
datasets, respectively. The x-axis represents the maximum number of iterations and the y-axis
represents the average cross-validation error of every iteration. As we can see from these figures,
BGGLasso is monotonically decreasing and converges more quickly with a smaller cross-validation
error compared to the popular BGLasso regularization method. Similarly, Figures 5b, 6b, 7b, 8b and 9b
depict the average testing accuracy results of hidden layer regularization methods for iris, zoo, seeds
and ionosphere datasets, respectively. In each learning curves of these figures, the x-axis represents the
maximum number of iterations and y-axis represents the average testing accuracy. From these learning
curves, we can see that BGGLasso always has better classification performance on the validation sets
as compared to BGLasso regularization method.

As seen from the above discussion, we find that our proposed BGGLasso regularization method
outperforms the existing BGLasso regularization method in all numerical results. The importance
of applying BGGLasso regularization method does not only result in more sparsity in hidden layer
neurons but also achieves a much better test accuracy results than BGLasso. From the results of
BGGLasso in Tables 2–6, the number of the redundant weights and the number of the redundant
hidden layer neurons are proportional. This phenomenon indicates that the batch gradient method
with a group Lasso regularization term has limitations on removing weight connections from surviving
hidden layer neurons. All of our numerical results are obtained by applying our proposed method
using one hidden layer of FNNs. One can extend our proposed approach for sparsification of FNNs
that contains any number of hidden layers.

5. Conclusions

We have developed an efficient approach to eliminate the redundant or unnecessary hidden
layer neurons from a feedforward neural network. To this end, we have proposed a group Lasso
regularization method by considering only the outgoing weights from each hidden layer neuron. This
method can easily help us to identify that the number of redundant or unnecessary hidden layer
neurons with the norm of outgoing weight connections is less than the predefined threshold value.
Not only does our proposed method identify the redundant hidden neurons, but it also yields a sparse
network. The numerical simulations show that our proposed method outperforms the existing learning
methods on the sparsity of hidden layer neurons and the results are consistent for each benchmark
dataset. One key advantage of our proposed hidden layer regularization method is that it can sparse
the redundant hidden neurons. By contrast, one disadvantage of our proposed regularization method
is that it cannot sparse any redundant weights from the surviving hidden layer neurons. To fill this
gap, in the future, we have intended to develop more regularization methods that can ultimately solve



Symmetry 2018, 10, 525 17 of 18

this problem. Furthermore, we plan to test our proposed hidden layer regularization method with big
datasets by using deep neural networks.

Author Contributions: H.Z.A. developed the mathematical model, carried out the numerical simulations and
wrote the manuscript; W.W. advised on developing the learning algorithms and supervised the work; J.Z.
contributed to analysis of the results.

Acknowledgments: This work is partially supported by the Natural Science Foundation of China: 61473059,
11401076 and 61473328; the Fundamental Research Funds for the Central Universities: DUT13-RC(3)068,
DUT18JC02 and DUT17LK46; and the Dalian High Level Talent Innovation Support Program: 2015R057.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Upper Saddle River, NJ, USA,
1994.

2. Lippmann, R. An introduction to computing with neural nets. IEEE ASSP Mag. 1987, 4, 4–22. [CrossRef]
3. Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44.

[CrossRef]
4. Plawiak, P.; Tadeusiewicz, R. Approximation of phenol concentration using novel hybrid computational

intelligence methods. Int. J. Appl. Math. Comput. Sci. 2014, 24, 165–181. [CrossRef]
5. Hinton, G.E. Connectionist learning procedures. Artif. Intell. 1989, 40, 185–234. [CrossRef]
6. Pławiak, P.; Rzecki, K. Approximation of phenol concentration using computational intelligence methods

based on signals from the metal-oxide sensor array. IEEE Sens. J. 2015, 15, 1770–1783.
7. Plagianakos, V.P.; Sotiropoulos, D.G.; Vrahatis, M.N. An Improved Backpropagation Method with Adaptive

Learning Rate. In Procceedings of the 2nd International Conference on: Circuits, Systems and Computers,
Iraeus, Greece, 26–28 October 1998.

8. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature
1986, 323, 533. [CrossRef]

9. Wilson, D.R.; Martinez, T.R. The general inefficiency of batch training for gradient descent learning. Neural
Netw. 2003, 16, 1429–1451. [CrossRef]

10. Sietsma, J.; Dow, R.J. Neural net pruning-why and how. In Procceedings of the IEEE International Conference
on Neural Networks, ISan Diego, CA, USA, 24–27 July 1988; Volume 1, pp. 325–333.

11. Setiono, R. A penalty-function approach for pruning feedforward neural networks. Neural Comput. 1997,
9, 185–204. [CrossRef] [PubMed]

12. Aran, O.; Yildiz, O.T.; Alpaydin, E. An Incremental Framework Based on Cross-Validation for Estimating
the Architecture of a Multilayer Perceptron. IJPRAI 2009, 23, 159–190, doi:10.1142/S0218001409007132.
[CrossRef]

13. Augasta, M.G.; Kathirvalavakumar, T. A Novel Pruning Algorithm for Optimizing Feedforward Neural
Network of Classification Problems. Neural Process. Lett. 2011, 34, 241–258, doi:10.1007/s11063-011-9196-7.
[CrossRef]

14. Augasta, M.G.; Kathirvalavakumar, T. Pruning algorithms of neural networks,a comparative study. Cent. Eur.
J. Comput. Sci. 2013, 3, 105–115. [CrossRef]

15. LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal brain damage. Adv. Neural Inf. Process. Syst. 1990, 2, 598–605.
16. Hassibi, B.; Stork, D.G.; Wolff, G.J. Optimal brain surgeon and general network pruning. In Proceedings of

the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993;
pp. 293–299.

17. Chang, X.; Xu, Z.; Zhang, H.; Wang, J.; Liang, Y. Robust regularization theory based on Lq(0 < q < 1)
regularization: The asymptotic distribution and variable selection consistence of solutions. Sci. Sin. Math.
2010, 40, 985–998.

18. Xu, Z.; Zhang, H.; Wang, Y.; Chang, X.; Liang, Y. L 1
2

Regularizer. Sci. China Inf. Sci. 2010, 53, 1159–1169.
[CrossRef]

19. Wu, W.; Fan, Q.; Zurada, J.M.; Wang, J.; Yang, D.; Liu, Y. Batch gradient method with smoothing L 1
2

regularization for training of feedforward neural networks. Neural Netw. 2014, 50, 72–78. [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/MASSP.1987.1165576
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.2478/amcs-2014-0013
http://dx.doi.org/10.1016/0004-3702(89)90049-0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/S0893-6080(03)00138-2
http://dx.doi.org/10.1162/neco.1997.9.1.185
http://www.ncbi.nlm.nih.gov/pubmed/9117898
http://dx.doi.org/10.1142/S0218001409007132
http://dx.doi.org/10.1007/s11063-011-9196-7
http://dx.doi.org/10.2478/s13537-013-0109-x
http://dx.doi.org/10.1007/s11432-010-0090-0
http://dx.doi.org/10.1016/j.neunet.2013.11.006
http://www.ncbi.nlm.nih.gov/pubmed/24291693


Symmetry 2018, 10, 525 18 of 18

20. Liu, Y.; Li, Z.; Yang, D.; Mohamed, K.S.; Wang, J.; Wu, W. Convergence of batch gradient learning algorithm
with smoothing L 1

2
regularization for Sigma–Pi–Sigma neural networks. Neurocomputing 2015, 151, 333–341.

[CrossRef]
21. Fan, Q.; Wu, W.; Zurada, J.M. Convergence of batch gradient learning with smoothing regularization and

adaptive momentum for neural networks. SpringerPlus 2016, 5, 295. [CrossRef] [PubMed]
22. Li, F.; Zurada, J.M.; Liu, Y.; Wu, W. Input Layer Regularization of Multilayer Feedforward Neural Networks.

IEEE Access 2017, 5, 10979–10985. [CrossRef]
23. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996,

58, 267–288.
24. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B

(Stat. Methodol.) 2006, 68, 49–67. [CrossRef]
25. Meier, L.; Van De Geer, S.; Bühlmann, P. The group lasso for logistic regression. J. R. Stat. Soc. Ser. B (Stat.

Methodol.) 2008, 70, 53–71. [CrossRef]
26. Alvarez, J.M.; Salzmann, M. Learning the number of neurons in deep networks. In Advances in Neural

Information Processing Systems, Proceedings of the Annual Conference on Neural Information Processing Systems,
Barcelona, Spain, 5–10 December 2016; Neural Information Processing Systems Foundation, Inc.: La Jolla, CA,
USA, 2016; pp. 2270–2278.

27. Dua, D.; Taniskidou, E.K. UCI Machine Learning Repository. University of California, Irvine, School
of Information and Computer Sciences. Available online: http://archive.ics.uci.edu/ml (accessed on
14 October 2018).

28. Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error
estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [CrossRef] [PubMed]

29. Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: New York, NY, USA, 2011.
30. Zhang, H.; Tang, Y.; Liu, X. Batch gradient training method with smoothing L0 regularization for feedforward

neural networks. Neural Comput. Appl. 2015, 26, 383–390, doi:10.1007/s00521-014-1730-x. [CrossRef]
31. Reed, R. Pruning algorithms—A survey. IEEE Trans. Neural Netw. 1993, 4, 740–747, doi:10.1109/72.248452.

[CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2014.09.031
http://dx.doi.org/10.1186/s40064-016-1931-0
http://www.ncbi.nlm.nih.gov/pubmed/27066332
http://dx.doi.org/10.1109/ACCESS.2017.2713389
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1111/j.1467-9868.2007.00627.x
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/TPAMI.2009.187
http://www.ncbi.nlm.nih.gov/pubmed/20075479
http://dx.doi.org/10.1007/s00521-014-1730-x
http://dx.doi.org/10.1109/72.248452
http://www.ncbi.nlm.nih.gov/pubmed/18276504
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Neural Network Structure and Batch Gradient Method without Regularization Term 
	A Batch Gradient Method with Hidden Layer Regularization Terms
	Batch Gradient Method with Lasso Regularization Term
	 Batch Gradient Method with Group Lasso Regularization Term

	Datasets
	K-fold Cross-Validation Method
	Data Normalization
	Activation Function

	Hidden Neuron Selection Criterion

	Results
	The Iris Results
	The Zoo Results
	The Seed Results
	The Ionosphere Results

	Discussion
	Conclusions
	References

