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Abstract: The generalized Kuramoto–Sivashinsky equation is investigated using the modified
Kudryashov method for the new exact solutions. The modified Kudryashov method converts
the given nonlinear partial differential equation to algebraic equations, as a result of various steps,
which upon solving the so-obtained equation systems yields the analytical solution. By this way,
various exact solutions including complex structures are found, and their behavior is drawn in the
2D plane by Maple to compare the uniqueness and wave traveling of the solutions.

Keywords: generalized Kuramoto–Sivashinsky equation; modified Kudryashov method; exact
solutions; Maple graphs

1. Introduction

In engineering and science, the problems arising from the wave propagation of communication
between two (or) more systems such as electromagnetic waves in wireless sensor networks, water
flow in dams during an earthquake, stability of the output in electricity current, viscous flows in
fluid dynamics, magneto hydro dynamics, turbulence in microtides and other physical phenomena
are described by the non-linear evolution equations (NLEE). In modeling such aforesaid media
continuously described by the generalized Kuramoto–Sivashinsky equation (GKSE) [1] given by the
nonlinear partial differential equation for u = u(x, t) and non-zero constants α, β and γ:

ut + uux + αuxx + βuxxx + γuxxxx = 0. (1)

The GKSE and its solutions play huge roles in flowing in viscous fluids, feedback in the output of
self-loop controllers, trajectory systems and gas dynamics. The process of solving NLEE analytically
and numerically uses symbolic computation procedures such as exact solution techniques and cardinal
function methods such as wavelet transforms, respectively. When α = γ = 1 and β = 0, Equation (1)
leads to the Kuramoto–Sivashinsky equation (KSE). N. A. Kudryashov solved Equation (1) by the
method of Weiss–Tabor–Carnevale and obtained exact solutions in [1]. E. J. Parkes et al. applied
the tanh method for Equation (1) by taking α = β = 1 and solving using the Mathematica
package; they also solved Equation (1) by taking α = −1 and β = 1 in [2]. B. Abdel-Hamid
in [3] assumed the initial solution as the PDE for u and solved exactly for α = 1 and β = 0 in
Equation (1). D. Baldwin et al. [4] applied the tanh and sech methods to Equation (1) with α = γ = 1
and solved using the Mathematica package. C. Li et al. [5] solved Equation (1) of the form
ut + βuαux + γuτuxx + δuxxxx = 0 using the Bernoulli equation as the auxiliary differential equation.
By the simplest equation method, again, N. A. Kudryashov solved Equation (1) by considering
ux = umux and obtained the solution for general m with some restrictions in [6]. A. H. Khater et al.
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in [7] used Chebyshev polynomials and applied the collocation points to solve approximations of
Equation (1). M. G. Porshokouhi et al. in [8] solved Equation (1) for different values of constants and
approximately solved by the variational iteration method. In [9], C.M. Khalique reduced Equation (1)
by Lie symmetry and solved exactly by the simplest equation method with Riccati and Bernoulli
equations separately. D. Feng in [10] by taking β = 0 and uux = γuux in Equation (1) solved
using the Riccati equation as the auxiliary differential equation. M. Lakestani et al. used the B-spline
approximation function and solved Equation (1) numerically in [11], where they used tanh exact
solutions for error estimations. J. Yang et al. in [12] used the sine-cosine method and dynamic
bifurcation method to solve the more generalized GKSE and its related equations to Equation (1).
In [13], J. Rashidinia et al. solved Equation (1) by Chebyshev wavelets. O. Acan et al. applied the
reduced differential transform method to solve Equation (1) by taking β = 0 in [14].

For solving the nonlinear partial differential equations, there have been many schemes applied
such as the Kudryashov method by M. Foroutan et al. in [15] and K. K. Ali et al. in [16]; the modified
Kudryashov method by K. Hosseini et al. in [17,18], D. Kumar et al. in [19], A. K. Joardar et al. in [20]
and A.R. Seadawy et al. in [21]; the generalized Kudryashov method by F. Mahmud et al. in [22],
S. T. Demiray et al. in [23] and S. Bibi et al. in [24]; the sine-cosine method by K. R. Raslan et al. in [25];
the sine-Gordon method by H. Bulut et al. in [26]; the sinh-Gordon equation expansion method
by H. M. Baskonus et al. in [27], Y. Xian-Lin et al. in [28] and A. Esen et al. in [29]; the extended
trial equation method by K. A. Gepreel in [30], Y. Pandir et al. in [31] and Y. Gurefe et al. in [32];
the Exp-function method by L.K. Ravi et al. in [33], A. R. Seadawy et al. in [34] and M. Nur Alam
et al. in [35]; the Jacobi elliptic function method by S. Liu et al. in [36]; the F-expansion method by

A. Ebaid et al. in [37]; and the extended
(

G
′

G

)
method by E. M. E. Zayed and S. Al-Joudi et al. in [38].

The GKSE Equation (1) does not have the solution for general α and β; however, for the different
values of α and β, the solution exists for (1), which can be found in [1–14]. In this work, we apply
the modified Kudryashov method (MKM) to solve the GKSE in which we compute the constants α

and β by the MKM. Then, for the each solution, a two-dimensional graph is drawn to show the wave
traveling.

2. Analysis of the Modified Kudryashov Method

The modified Kudryashov method involves the following steps in solving the nonlinear partial
differential equations (NLPDE) [17–21]:

Step 1. Consider the given NLPDE of the following form u = u(x, t).

P (u, ut, ux, utt, uxx, uxt, · · · ) = 0. (2)

Step 2. Apply the wave transformation u(x, t) = u(η) in Equation (2), where:

η = µ(x− λt). (3)

Here, µ is the wave variable and λ is the velocity; both are non-zero constants. Hence, Equation (2)
transforms to the following ODE:

O
(

u, u
′
, u
′′
, uu

′
, · · ·

)
= 0, (4)

where the prime represents the derivative with respect to η.
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Step 3. Let the initial solution guess of Equation (4) be,

u(η) = A0 +
N

∑
i=1

Ai [Q(η)]i , (5)

where N is a non-zero and positive constant calculated by the principle of homogeneous balancing of
Equation (4), Ai; i = 0, 1, 2, · · · are unknowns to be calculated and Q(η) is the solution of the following
auxiliary ODE:

dQ(η)

dη
= Q(η) [Q(η)− 1] ln(a); a 6= 1, (6)

given by,

Q(η) =
1

1 + Daη , (7)

where D is the integral constant and we assume D = 1.

Step 4. Substituting Equations (5) and (6) in Equation (4) leads to the polynomial in Q(η)i; i =

0, 1, 2, · · · . As Q(η)i 6= 0, so collecting its coefficients and then equating to zero give the systems of
overdetermined algebraic equations, which upon solving give the unknowns of Equations (3) and (5).

Step 5. Finally, substituting the values of Step 4 in Equation (5) and then in Equation (3) gives the
solution u(x, t) of Equation (2).

3. MKM Application to Solve the Generalized Kuramoto–Sivashinsky Equation

Applying the wave transformation with Equation (3) to Equation (1) leads to the ODE, and then,
integrating once the ODE by taking integration constant to zero transforms to the following ODE:

−λu +
u2

2
+ αµu(1) + βµ2u(2) + γµ3u(3) = 0, (8)

where u = u(η) and the superscripts (.) represent the derivatives w. r. t. η. By the homogeneous
balancing of Equation (8), N = 3, and hence, the initial guess solution of Equation (8) from Equation (5)
is given by,

u(η) = A0 + A1Q(η) + A2 (Q(η))2 + A3 (Q(η))3 . (9)

Substituting Equations (6) and (9) in Equation (8) results in the sixth order polynomial of
Q(η). Collecting the coefficients of (Q(η))i ; i = 0, 1, · · · , 6 and equating each coefficient to zero
gives the systems of algebraic equations, which upon solving by Maple give the unknowns in
Equations (9), (3) and (α, β) in Equation (8). The resulting values are substituted in Equation (9)
along with Equations (3) and (7), which give the exact solution of Equation (1) for the specific values of
constants α and β. Substituting the α and β values in Equation (1) and the unknowns Ai; i = 0, 1, 2, 3 in
Equation (9) where Q(η) is given by Equation (7) yields the following exact solutions. Let δ1 = γµ ln(a),
δ2 = γµ2 ln(a)2 and δ3 = γµ3 ln(a)3 in the following cases.

Case 1. For α = δ2 and β = 4δ1 in Equation (1), the unknown coefficients are given by,

A0 = A1 = 0, A2 = 120δ3, A3 = −120δ3, λ = 6δ3.
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Therefore, the exact solution of Equation (1) is given by (Figure 1),

u1(x, t) :=
120δ3aµx−6δ3µt(
1 + aµx−6δ3µt

)3 . (10)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = −12δ3, A1 = 0, A2 = 120δ3, A3 = −120δ3, λ = −6δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 1),

u2(x, t) := −
12δ3

(
1 + a3µxe3(6δ3µ ln(a)t) + 3a2µxe2(6δ3µ ln(a)t) − 7aµxe6δ3µ ln(a)t

)
(
1 + aµxe6δ3µ ln(a)t

)3 . (11)

(a) u1(x, t) (b) u2(x, t)

Figure 1. Solutions in Case 1, Equations (10) and (11), respectively from left to right for a = 5, µ = 1
and t = 1 in x ∈ [−15, 15] for different values of γ.

Case 2. For α = δ2 and β = −4δ1 in Equation (1), the unknown coefficients are given by,

A0 = 0, A1 = −120δ3, A2 = 240δ3, A3 = −120δ3, λ = −6δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 2),

u3(x, t) := −120δ3a2(µx+6δ3µt)(
1 + aµx+6δ3µt

)3 . (12)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 12δ3, A1 = −120δ3, A2 = 240δ3, A3 = −120δ3, λ = 6δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 2),

u4(x, t) :=
12δ3

(
a3(µx−6δ3µt) − 7a2(µx−6δ3µt) + 3aµx−6δ3µt + 1

)
(
1 + aµx−6δ3µt

)3 . (13)
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(a) u3(x, t) (b) u4(x, t)

Figure 2. Solutions in Case 2, Equations (12) and (13), respectively from left to right for a = 5, µ = 1
and t = 1 in x ∈ [−15, 15] for different values of γ.

Case 3. For α = −19δ2 and β = 0 in Equation (1), the unknown coefficients are given by,

A0 = −60δ3, A1 = 0, A2 = 180δ3, A3 = −120δ3, λ = −30δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 3),

u5(x, t) := −
60δ3e2(30δ3µ ln(a)t)

(
a3µxe30δ3µ ln(a)t + 3a2µx

)
(
1 + aµxe30δ3µ ln(a)t

)3 . (14)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = A1 = 0, A2 = 180δ3, A3 = −120δ3, λ = 30δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 3),

u6(x, t) :=
60δ3

(
1 + 3aµx−30δ3µt)(

1 + aµx−30δ3µt
)3 . (15)

Case 4. For α = 47δ2 and β = 12δ1 in Equation (1), the unknown coefficients are given by,

A0 = A1 = A2 = 0, A3 = −120δ3, λ = −60δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 4),

u7(x, t) := − 120δ3(
1 + aµx+60δ3µt

)3 . (16)

Further, for the same α and β, the second set of unknown coefficients are given by,

A0 = 120δ3, A1 = A2 = 0, A3 = −120δ3, λ = 60δ3.
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Therefore, the exact solution of Equation (1) is given by (Figure 4),

u8(x, t) :=
120δ3

(
3aµxe2(60δ3µ ln(a)t) + 3a2µxe60δ3µ ln(a)t + a3µx

)
(
aµx + e60δ3µ ln(a)t

)3 . (17)

(a) u5(x, t) (b) u6(x, t)

Figure 3. Solutions in Case 3, Equations (14) and (15), respectively from left to right for a = 5, µ = 1
and t = 1 in x ∈ [−40, 40] for u5(x, t) and in x ∈ [−50, 50] for u6(x, t) for different values of γ.

(a) u7(x, t) (b) u8(x, t)

Figure 4. Solutions in Case 4, Equations (16) and (17), respectively from left to right for a = 5, µ = 1
and t = 1 in x ∈ [−15, 15] for different values of γ.

Case 5. For α = 47δ2 and β = −12δ1 in Equation (1), the unknown coefficients are given by,

A0 = 0, A1 = −360δ3, A2 = 360δ3, A3 = −120δ3, λ = −60δ3.
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Therefore, the exact solution of Equation (1) is given by (Figure 5),

u9(x, t) := −
120δ3

(
3a2µxe2(60δ3µ ln(a)t) + 3aµxe60δ3µ ln(a)t + 1

)
(
1 + aµxe60δ3µ ln(a)t

)3 . (18)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 120δ3, A1 = −360δ3, A2 = 360δ3, A3 = −120δ3, λ = 60δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 5),

u10(x, t) :=
120δ3a3(µx−60δ3µt)(

1 + aµx−60δ3µt
)3 . (19)

(a) u9(x, t) (b) u10(x, t)

Figure 5. Solutions in Case 5, Equations (18) and (19), respectively from left to right for a = 5, µ = 1
and t = 1 in x ∈ [−15, 15] for different values of γ.

Case 6. For α = 73δ2 and β = 16δ1 in Equation (1), the unknown coefficients are given by,

A0 = 180δ3, A1 = 0, A2 = −60δ3, A3 = −120δ3, λ = 90δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 6),

u11(x, t) :=
60δ3

(
8aµxe2(90δ3µ ln(a)t) + 9a2µxe90δ3µ ln(a)t + 3a3µx

)
(
e90δ3µ ln(a)t + aµx

)3 . (20)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = A1 = 0, A2 = −60δ3, A3 = −120δ3, λ = −90δ3.
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Therefore, the exact solution of Equation (1) is given by (Figure 6),

u12(x, t) := −
60δ3

(
3 + aµx+90δ3µt)(

1 + aµx+90δ3µt
)3 . (21)

(a) u11(x, t) (b) u12(x, t)

Figure 6. Solutions in Case 6, Equations (20) and (21), respectively from left to right for a = 5, µ = 1
and t = 1 in x ∈ [−15, 15] for u11(x, t) and x ∈ [−20, 20] for u12(x, t) for different values of γ.

Case 7. For α = 73δ2 and β = −16δ1 in Equation (1), the unknown coefficients are given by,

A0 = 180δ3, A1 = −480δ3, A2 = 420δ3, A3 = −120δ3, λ = 90δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 7),

u13(x, t) :=
60δ3

(
a2µxe90δ3µ ln(a)t + 3a3µx

)
(
e90δ3µ ln(a)t + aµx

)3 . (22)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 0, A1 = −480δ3, A2 = 420δ3, A3 = −120δ3, λ = −90δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 7),

u14(x, t) := −
60δ3

(
8a2µxe2(90δ3µ ln(a)t) + 9aµxe90δ3µ ln(a)t + 3

)
(
1 + aµxe90δ3µ ln(a)t

)3 . (23)
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(a) u13(x, t) (b) u14(x, t)

Figure 7. Solutions in Case 7, Equations (22) and (23), respectively from left to right for a = 5, µ = 1
and t = 1 in x ∈ [−20, 20] for different values of γ.

Case 8. For α = 19
11 δ2 and β = 0 in Equation (1), the unknown coefficients are given by,

A0 =
60
11

δ3, A1 = −720
11

δ3, A2 = 180δ3, A3 = −120δ3, λ =
30
11

δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 8),

u15(x, t) :=
60δ3a(µx− 30

11 δ3µt)
(

a2(µx− 30
11 δ3µt) − 9a(µx− 30

11 δ3µt) + 12
)

11
(

1 + a(µx− 30
11 δ3µt)

)3 . (24)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 0, A1 = −720
11

δ3, A2 = 180δ3, A3 = −120δ3, λ = −30
11

δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 8),

u16(x, t) := −
60δ3

(
1− 9a(µx+ 30

11 δ3µt) + 12a2(µx+ 30
11 δ3µt)

)
11

(
1 + a(µx+ 30

11 δ3µt)
)3 . (25)

Case 9. For α = −δ2 and β = 4iδ1 in Equation (1), the unknown coefficients are given by,

A0 = 0, A1 = −60µ3 ln(a)3 (γ− iγ) , A2 = 60(3− i)δ3, A3 = −120δ3, λ = 4iδ3.

Therefore, the exact complex solution of Equation (1) is given by,

u17(x, t) :=
60δ3aµx−4iδ3µt (i + 1 + (i− 1) aµx−4iδ3µt)(

1 + aµx−4iδ3µt
)3 . (26)

The 2D graph of real and imaginary parts of u17(x, t) are drawn in Figure 9.
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Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = −8iδ3, A1 = −60µ3 ln(a)3 (γ− iγ) , A2 = 60(3− i)δ3, A3 = −120δ3, λ = −4iδ3.

Therefore, the exact complex solution of Equation (1) is given by,

u18(x, t) := − 8δ3(
1 + aµx+4iδ3µt

)3

[
i(1 + a3(µx+4iδ3µt)) +

(
15− 9i

2

)
a2(µx+4iδ3µt) −

(
15 + 9i

2

)
aµx+4iδ3µt

]
. (27)

where i =
√
−1. The 2D graphs of the real and imaginary parts of u18(x, t) are drawn in Figure 10.

(a) u15(x, t) (b) u16(x, t)

Figure 8. Solutions in Case 8, Equations (24) and (25), respectively from left to right for a = 5, µ = 1
and t = 1 in x ∈ [−20, 20] for different values of γ.

(a) Real part of u17(x, t) (b) Imaginary part of u17(x, t)

Figure 9. Real and imaginary part of the solution in Case 9, Equation (26), respectively from left to
right for a = 5, µ = 1 and t = 1 in x ∈ [−3, 3] for different values of γ.
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(a) Real part of u18(x, t) (b) Imaginary part of u18(x, t)

Figure 10. Real and imaginary part of the solution in Case 9, Equation (27), respectively from left to
right for a = 5, µ = 1 and t = 1 in x ∈ [−3, 3] for different values of γ.

Case 10. For α = −δ2 and β = −4iδ1 in Equation (1), the unknown coefficients are given by,

A0 = 0, A1 = −60µ3 ln(a)3(γ + iγ), A2 = 60(3 + i)δ3, A3 = −120δ3, λ = −4iδ3.

Therefore, the exact complex solution of Equation (1) is given by,

u19(x, t) := −
60δ3aµx+4iδ3µt (i− 1 + (i + 1)aµx+4iδ3µt)(

1 + aµx+4iδ3µt
)3 . (28)

The 2D graphs of real and imaginary parts of u19(x, t) are drawn in Figure 11.

(a) Real part of u19(x, t) (b) Imaginary part of u19(x, t)

Figure 11. Real and imaginary part of the solution in Case 10, Equation (28), respectively from left to
right for a = 5, µ = 1 and t = 1 in x ∈ [−3, 3] for different values of γ.
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Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 8iδ3, A1 = −60µ3 ln(a)3(γ + iγ), A2 = 60(3 + i)δ3, A3 = −120δ3, λ = 4iδ3.

Therefore, the exact complex solution of Equation (1) is given by,

u20(x, t) :=
8δ3(

1 + aµx−4iδ3µt
)3

[
i(1 + a3(µx−4iδ3µt))−

(
15 + 9i

2

)
a2(µx−4iδ3µt) +

(
15− 9i

2

)
aµx−4iδ3µt

]
. (29)

where i =
√
−1. The 2D graphs of the real and imaginary parts of u20(x, t) are drawn in Figure 12.

(a) Real part of u20(x, t) (b) Imaginary part of u20(x, t)

Figure 12. Real and imaginary part of the solution in Case 10, Equation (29), respectively from left to
right for a = 7, µ = 1 and t = 1 in x ∈ [−3, 3] for different values of γ.

4. Conclusions

In this work, the generalized Kuramoto–Sivashinsky equation is solved, and the exact solutions
have been found. The aforesaid GKSE has solutions for the different values of α and β, which we
obtained by the application of the modified Kudryashov method, and we found 10 classes of (α, β)

pairs and their corresponding two distinct exact solutions for each pair of Equation (1) in Cases 1–10.
The two-dimensional simulations of the solutions in Figures 1–12 show their behavioral pattern
and wave train traveling for different values of γ. However, the wave structures vary when the
values of a, µ, t and the domain changes in the 2D plane. The solutions found in this work will
be useful in studying electromagnetic waves, fluid flows and the areas where GKSE plays a vital
role. All the solutions are validated in the Maple computer algebra system by substituting them
in the original equation. Our new solutions are compared with the previous solutions of GKSE in
Appendices A and B.
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Appendix A. GKSE in the Previous Studies

N.A. Kudryashov in [6] solved for the exact solution of Equation (1). Based on the homogeneous
balancing, he has taken the following initial solution.

u(η) = A0 + A1g(η) + A2g(η)2 + A3g(η)3.

where g(η) is the solution of dg(η)
dη = b− g(η)2, and obtained the following values.

1.

A0 = − β3

576γ2 , A1 =
5β2

4γ
, A2 = −15β, A3 = 120γ, α =

47β2

144γ
, b =

β2

576γ2 , C0 = − 5β3

144γ2 .

2.

A0 =
30β3

128γ2 , A1 = − 30β2

16γ
, A2 = −30β, A3 = 120γ, α =

β2

16γ
, b =

β2

64γ2 , C0 =
3β3

32γ2 .

In the same work, he solved Equation (1) with the auxiliary equations
(

dg(z)
dz

)2
+ 4g(z)3 −

ag(z)2 − 2bg(z) + d = 0 and d2g(z)
dz2 + 6g(z)2 − ag(z)− b = 0 and obtained other values for unknowns.

C.M. Khalique in [9] solved Equation (1) by taking the Bernoulli equation dh(η)
dη = ah(η) + bh(η)2

and Riccati equation dh(η)
dη = ah(η)2 + bh(η)+ c as the auxiliary ODE and obtained the following values

respectively by using each ODE. For both the auxiliary equation the constant values are a = 1, b = 3
and c = 1:

1.

A0 = ν− 6a3γ, A1 = −120a2bγ, A2 = 240ab2γ, A3 = −120b3γ, α = a2γ, β = 4aγ.

2.

A0 = −990γ + 60γk + ν, A1 = 60γ + 180γk, A2 = 60γk, A3 = −120γ, α = 365γ, β = −36γ− 4γk.

While comparing the above values, our solutions of Equation (1) in this work are new to the
surveyed literature.

Appendix B. Studying GKSE by GKM and SGEEM

1. For solving Equation (1) by the generalized Kudryashov method [22–24], the homogeneous
balancing of Equation (8) gives N = M + 3, which has infinite solutions. For the value M = 1,
this gives N = 4. Therefore,

u(η) =
A0 + A1Q(η) + A2 (Q(η))2 + A3 (Q(η))3 + A4 (Q(η))4

B0 + B1Q(η)
.

where Q(η) is the solution of dQ(η)
dη = Q(η)(Q(η)− 1), Applying these equations to Equation (8)

leads to the polynomial in Q(η) and its powers. Collecting the coefficients of (Q(η))i; i =

0, 1, 2, · · · and attempting to solve the overdetermined equations results in the continuous
execution of Maple. Hence, we conclude that Equation (1) cannot be solved by the generalized
Kudryashov method.

2. Next, for solving Equation (1) by the sine-Gordon equation expansion method [26],
the homogeneous balancing is the same as the MKM given by N = 3. Thus,

u(η) = A0 + A1 tanh(η) + B1sech(η) + A2 tanh2(η) + B2 tanh(η)sech(η) + A3 tanh3(η) + B3 tanh2(η)sech(η).
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Substituting the above equation u(η) in Equation (8) and following the steps in [26] lead to the
polynomials in sin(w), cos(w), their products and powers. Collecting the coefficients, equating
them to zero and solving in Maple result in the continuous execution. Thus, we conclude that
Equation (1) cannot be solved by the sine-Gordon equation expansion method either.
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