E symmetry MBPY

Article

Convolution and Partial Sums of Certain Multivalent
Analytic Functions Involving Srivastava—Tomovski
Generalization of the Mittag-Leffler Function

Yi-Hui Xu ! and Jin-Lin Liu >*

Department of Mathematics, Sugian College, Sugian 223800, China; yuanziqixu@126.com
Department of Mathematics, Yangzhou University, Yangzhou 225002, China
Correspondence: jlliu@yzu.edu.cn

2

*

check for

Received: 7 October 2018; Accepted: 23 October 2018; Published: 5 November 2018 updates

Abstract: We derive several properties such as convolution and partial sums of multivalent
analytic functions associated with an operator involving Srivastava—Tomovski generalization of
the Mittag-Leffler function.
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1. Introduction

The Mittag-Leffler function E,(z) [1] and its generalization E,g(z) [2] are defined by the
following series:

niran+1 (z,a € C; Re(a) > 0) (1)
and -
Z Ocn—i—,B (z,a, B € C; Re(a) > 0), 2)

respectively. It is known that these functions are extensions of exponential, hyperbolic, and
trigonometric functions, since
E1(z) = E11(z) = ¢,

Ex(z%) = Ep1(2%) = coshz

and
Ey(—2%) = Ep1(—2%) = cosz.

The functions E4(z) and E, g(z) arise naturally in the resolvent of fractional integro-differential
and fractional differential equations which are involved in random walks, super-diffusive transport
problems, the kinetic equation, Lévy flights, and in the study of complex systems. In particular,
the Mittag—Leffler function is an explicit formula for the solution the Riemann-Liouville fractional
integrals that was developed by Hille and Tamarkin.

In [3], Srivastava and Tomovski defined a generalized Mittag—Leffler function E /5( z) as follows:

Wk = nkZ
Ea ; zxn+,3 T(an+p)n!’ ®)

(a,B,7,k,z€ C; Re(a) >max{0,Re(k) —1}; Re(k) >0),
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where (x), is the Pochhammer symbol

I'(x+n)

(X)n = ) =x(x+1)---(x+n—-1) (neN, xeC)

and (x)o = 1. They proved that the function ET% ﬁ( z) given by (3) is an entire function in the complex
plane. Recently, Attiya [4] proved that, if Re(« ) > 0 with Re(k) = 1 and B # 0, the power series in (3)
converges absolutely and analytically in U = {z : |z| < 1} for all ¥ € C. We call the function Ezg (z)
the Srivastava—Tomovski generalization of the Mittag-Leffler function.

Let A(p) be the class of functions of the form

f@) =2 1Y tpip a2 (pEN) )
n=2

which are analytic in U. For p = 1, we write A := A(1). The Hadamard product (or convolution) of
two functions

f](Z> =zP + 2 an+p_1,jz”+p*1 € .A(p) (] = 1,2)
n=2

is given by
(fixfo)(z) =2F + Y apip-rpansp-122"P 1 = (fox f1)(2).

n=2

Let P denote the class of functions ¢ with ¢(0) = 1. Suppose that f and g are analytic in U. If
there exists a Schwarz function w such that f(z) = g(w(z)) for z € U, then we say that the function
f is subordinate to ¢ and write f(z) < g(z) for z € U. Furthermore, if g is univalent in U, then the
following equivalence holds true:

f(z) <¢(z) (z€U)« f(0) =¢(0) and f(U) Cg(U).
Throughout this paper, we assume that
a,B,7,ke€C; Re(x) >max{0,Re(k) —1} and Re(k) > 0.

We define the function QZ;(Z) € A(p) associated with the Srivastava-Tomovski generalization
of the Mittag—Leffler function by

Qpf@ = B (Eke) - s ) e ®
For f € A(p), we introduce a new operator HZE : A(p) — A(p) by
HY5f(z) = QU4 (2) *f(Z)

v+ nk)I'(a + B) -
= zF 2 n+p—1
=2 F 'y+k (xn+ﬁ)n!a"+pflz ' ©)

Note that Hé,'/lg f(z) = f(z). From (6), we easily have the following identity:

2 (HIAF@) = (T+1) B M) — (T +1- p) HIEF2) %

It is noteworthy to mention that the Fox-Wright hypergeometric function 4% is more general
than many of the extensions of the Mittag-Leffler function.
Now, we introduce a new subclass of A(p) by using the operator HZ;;
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Definition 1. A function f € A(p) is said to be in Q

aﬁ( ;@) if it satisfies the first-order
differential subordination:

. A /
(1— )z PHY5f(2) + S (HISf(2) < o(2), (8)
where A € Cand ¢ € P.

Lemma 1. ([5]). Let g(z) =1+ Y, buz" (m € N) be analytic in U. If Re(g(z)) > 0 (z € U), then

Re (3(z)) > 2"

Z 5 (z € U).

The study of the Mittag—Leffler function is an interesting topic in Geometric Function Theory. Many
properties of the Mittag—Leffler function and the generalized Mittag—Leffler function can be found, e.g., in [6-22].
In this paper we shall make a further contribution to the subject by showing some interesting properties such as

. . . . Yk,
convolution and partial sums for functions in the class Q) 8 (A @).

2. Properties of the Class QV’ﬂ(A @)
Theorem 1. Let A > 0and

%) 3 " )
f](Z) =zl + Z an+p71,jzn+p le Qz,ﬁ(/\; (Pj) (] = 1/2)/ )
n=2
where 144
iz
9i(z) = 7 5o and —1<B <A <1 (10)

]
If f € A(p) is defined by

K K &
HIsf(2) = (HI3AE) « (HIAE) (1)
then f € QZ”E(/\; @), where
1+z
p(z)=p+1—p)3— (12)
and p is given by
p
4(A1—B1)(A2—Bo) 14x!
o= 1= A (1-k otwdf) (A>0), 13
2(A;1-B1)(A2—By) _
L= 505 (A =0).
The bound p is sharp when By = By = —1.
Proof. We consider the case when A > 0. Since f; € Q;’Z (A; @j), it follows that
(z) = (1— pH’Yk L-pt1 (rk '
pj(z) = (1 =A)z"PH, s fj(2) + a57(2)
1+A
< OE (=1,2) (14)

1+BjZ
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and
k _pa=A) % p_
HY3fi(z) = Lot /o“ Upi(t)dt
P [ mar (=1,2)
B J= e
Now, if f € A(p) is defined by (11), we find from (14) that
k K k
HI5f(2) = (HI3A(E)) « (HI3AE)
1 1
= <f\z7’/0 tﬁlpl(tz)dt> * (f\z”/O tilpz(tz)dt)
1
= %z”/O t%*lpo(tz)dt

where

po(z) = %/01 tg*l(pl * pp)(tz)dt.

Further, by using (14) and the Herglotz theorem, we see that
P1(2>—pl> (1 Pz(Z)—pz>}
Re —_— | % | =+ >0 (zel),
{< L—p 2 2(1-po) ( )

Re{(p1+p2)(2)} > po=1-2(1—-p1)(1 —p2) (z€0),

which leads to

where

0<p = <1 (j=1,2).

Moreover, according to Lemma, we have

Re{(p1+p2)(2)} = po+ (1 —po)7
Thus, it follows from (16) to (18) that
Re{ (1= 0z PHI3 ) + 527 (HI3F) | = Re(m(2)}
/ Hi Re{ (py * p2) (12)

p_ 1—|z|t
1 N
Z /\/ t)‘ (P +(1 pO) |Z|t> dt

p(1 —Po)/ P
>p0+7/\ Ot 71+tdt

lt§—1
=1—4<1—p1><1—p2>< -1/ tht)

:p,

which proves that f € QZ;(A, ¢) for the function ¢ given by (12).

In order to show that the bound p is sharp, we take the functions f; € A(p) (j =

7k . . B _p(1-p) "Z P_q 1+A]t .
Hfi(z) = £ 2 /0 B (Sl ) de (=12),

40f 8

(15)

(16)

(17)

(18)

1,2) defined by

(19)
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for which we have

pi(z) = (1= N2 THI () + 527 (HIEf()

1+AjZ
=—"17 (j=1,2
1_Z (] /)

and

1+ A1z 1+ Arz

=1-(1+A)(1+ A2) +

(1+A1)(1+ Ap)
1—z '

Hence, for the function f given by (11), we have

(1= Nz P HEf @)+ 52 (HEE (@)

:X/O th-1 (1—(1+A1)(1+A2)+(1+z;11_)(t12+142> 0

—p (as z— —1),

which shows that the number p is the best possible when B; = By = —1.
For the case when A = 0, the proof of Theorem 1 is simple, and we choose to omit the details
involved. Now the proof of Theorem 1 is completed. [

Theorem 2. Let a, B, 7y, k, and A be positive real numbers. Let f(z) = zF 4+ Lorp ayyp12" P71 € A(p),
s1(z) = 2P, and sy, (z) = 28 + Y Ansp—12" TP~ (m > 2). Suppose that

Z Cn|an+p71| <1, (20)
n=2
where 1-B T(y+nk)I'(a+p) A
. — ) Y n 14 A .
T AZB T(B+na)l(y+k)n! (H " 1)) @1

and -1 < B < A<I1.

01 < 0 (1)

(i) If {cn}l is nondecreaszng, then

4 @) 1
R {Sm (Z)} >1- 22)
and
Re{sm(z>} S _Cmi1 (23)
f(z) 1+cpp

for z € U. The estimates in (22) and (23) are sharp for each m € N.

Proof. From the assumptions of Theorem 2, we have ¢, > 0 (n € N). Let
7k +1 (rk !
J(z) = (1= Nz PHIsf(2) + z 1 (H(2)

_ O T(y+nk)T (ac+ﬁ) A .
a X:: T'(B+ na)L(y +k)n! (1+P(n1)> An+p-12 L (24)
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(i) For —1 < B < 0and z € U, it follows from (20), (21), and (24), that
J(z) -

A—B](z)

+nk)I (a+p) A -

Loz Fipommtremn (14 51— 1) anpaz™™

+nk)l(a+ e
A= B—BY, rem gt (14 2(n = 1)) apyp 12!

< Ll g
1-B+ Banz Cn|an+p71|

which implies that
1+ Az
1+ Bz

(1= Nz PHIEFE) + 52 (HIG@) <

vk 1+ Az
Hence, f € Q“ﬂ (/\, B

(ii)) Under the hypothe51s in part (ii) of Theorem 2, we can see from (21) that ¢,11 > ¢, > 1
(n € N). Therefore, we have

m [ee] [o¢]
Z ’”n+p71| + Cm+1 2 |an+p71‘ < Z Cn|an+p71| <1l (25)
n=2 n=m+1 n=2

Upon setting

00 n—1
Pl(Z) — it { f(Z) _ (1 B 1 )} —14 Crm+1 Lnmmt1 Antp—12 )

Sm (Z) Cm+1 1+ Z;O:2 an+pflzn_1

and applying (25), we find that

‘Pl(z) - 1’ < _ Crmt1 L1 |‘1n+r;ofl| <1 (zel),
pi(z) +1 2-2), |an+p71| — Cmt1 Lpmg1 [Antp-1]
which readily yields (22).
If we take
Z"tp
flz) =2 - 6)
Cm+1
then "
f(z): -2 - and z—17,
sm(z) Cm+1 Cm+1

which shows that the bound in (22) is the best possible for each m € N.
Similarly, if we put

= (351 22).

then we can deduce that

pZ(Z) -1 ‘ < (1 + Cm+1) Zzo:m-«—l |an+p71|
2200 lanp-l = (emr1 = 1) By |antp—1
<1 (ze€U),

which yields (23).
The bound in (23) is sharp for each m € N, with the extremal function f given by (26). The proof
of Theorem 2 is thus completed. O
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