
symmetryS S

Article

An Iterated Hybrid Local Search Algorithm for
Pick-and-Place Sequence Optimization

Jinsheng Gao 1 , Xiaomin Zhu 1, Anbang Liu 1, Qingyang Meng 2 and Runtong Zhang 2,*
1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China;

jinshenggao@bjtu.edu.cn (J.G.); xmzhu@bjtu.edu.cn (X.Z.); anbangliu@bjtu.edu.cn (A.L.)
2 School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China;

qingyangmeng@bjtu.edu.cn
* Correspondence: rtzhang@bjtu.edu.cn; Tel.: +86-010-5168-3854

Received: 14 October 2018; Accepted: 9 November 2018; Published: 13 November 2018
����������
�������

Abstract: This paper shows the results of our study on the pick-and-place optimization problem.
To solve this problem efficiently, an iterated hybrid local search algorithm (IHLS) which combines
local search with integer programming is proposed. In the section of local search, the greedy
algorithm with distance weight strategy and the convex-hull strategy is developed to determine the
pick-and-place sequence; in the section of integer programming, an integer programming model
is built to complete the feeder assignment problem. The experimental results show that the IHLS
algorithm we proposed has high computational efficiency. Furthermore, compared with the genetic
algorithm and the memetic algorithm, the IHLS is less time-consuming and more suitable in solving
a large-scale problem.

Keywords: hybrid algorithm; local search; integer programming; pick-and-place sequence

1. Introduction

The Printed Circuit Board (PCB) is a vital part of electronic products such as smart phones, laptops,
and monitors. It contains large amount of components and becomes more and more complicated.
In a typical surface mount technology assembly line, PCBs go through a series of processes: solder
or adhesive application; component pick-and-place; reflowing; cleaning; testing; and inspection [1].
The pick-and-place process is the most time-consuming procedure. In order to improve production
efficiency economically, the pick-and-place sequence optimization is an economical way to reduce
production times, and it is the key point to improve production efficiency.

In previous researches, pick-and-place sequence optimization problem has drawn great attentions.
There are three sub-problems to be considered in pick-and-place problems: place sequence, feeder
assignment and nozzle assignment [2]. Basically, the place sequence (see Section 2.1 steps (2) and (5))
can be considered as the Traveling salesman problem (TSP) or the Vehicle routing problems (VRP) [3,4].
The feeder assignment (see Section 2.1 step (6)) can be viewed as the assignment problem [5]. As to the
nozzle assignment, the problem is that different components are assigned to corresponding nozzles,
and the object is to minimize the number of nozzle changes. Some researchers do not take the nozzle
assignment into consideration in some cases [6,7].

Because of the complexity of the problem, heuristic approaches, such as meta-heuristic approaches
and multi-stage heuristics strategy are widely used, while several exact methods can be found in
previous research. Meta-heuristic approaches such as genetic algorithm (GA), simulated annealing
(SA), particle swarm optimization (PSO) and ant colony optimization (ACO), which play an important
role in solving complex problems [8–12], are altered to adapt to solving the problem efficiently [13–16].
Zhu and Zhang [17] added self-variation behavior to the frog leaping algorithm, which has good
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accuracy. Multi-stage heuristics strategy, combines the advantages of several algorithm strategies with
good performance. Lin and Huang [18] aimed at minimizing total PCB assembly time, and proposed
a hybrid genetic algorithm combined with the nearest neighbor search, 2-optimization and genetic
algorithm to obtain the optimal component pick-and-place sequence. Similarly, a new mechanism to
minimize the assembly time for a multi-headed gantry and high-speed surface mounting technology
machine by determining the component assignment to feeder slots was proposed by Han and
Seo [19]. The presenting of the heuristic is based on the feeder assignment, which consists of
nearest component allocation and globally updated assignment. This algorithm leads to better
performance than genetic algorithm or 2-opt swap search. Luo and Liu [20] proposed a two-stage
mixed-integer linear programming model and a two-stage problem-solving frame with a hybrid
evolutionary algorithm (HEA). The constructive two-stage heuristics is not only determine the set
of nozzle types assigned to each head and the total number of assembly cycles, but solve all the
sub-problem respectively. As for exact methods, the conventional method is integer programming,
and the main measure is modeling and improvement of integer programming model. In research of
integer programming models, several researchers focus on the total traveling distance, while others
aim at minimizing the assembly completion time. Kumar and Li [21] developed a technique based on
integer programming to determine an optimal assignment of feeders as well as an optimal sequence
of pickup and placements, furthermore, they obtained optimal solutions based on minimum weight
matching and traveling salesman problem. Altinkemer and Kazaz et al. [22] applied an integrated
approach which tackles each sub-problems as a single problem simultaneously, and they also presented
an ε-approximation algorithm with an ε-error gap for the PCB problem. Ho and Ji [23] formulated
several mathematical models for determining the optimal sequence of component placements and
the assignment of component types to feeders simultaneously, or for determining the integrated
scheduling problem for the sequential pick-and-place machine. The objective of integrated problem
is to minimize the total distance traveled by the placement head. Luo and Liu [24] formulated the
scheduling optimization problem as a mixed integer linear programming model. And the model was
applied to the assembly sequence of placement locations and the assignment of pick-and-place heads
for locations so as to minimize the assembly time.

The former researchers widely used effective approaches, such as integer programming,
meta-heuristic approaches and hybrid heuristics, to obtain a best solution of pick-and-place sequence
optimization problem. These approaches are mainly focused on the optimality of the algorithm results,
but paid less attention on time consumption of the algorithm in solving large-scale problems. The aim
of present work is to establish an effective multi-stage method with less time-consuming and obtain the
optimal solution of the large-scale problem. Considering these restrictions, we propose an integrated
hybrid local search (IHLS) algorithm which can meet the time requirements of actual production.
Differ from conventional approach which is population based bionic algorithm, the proposed IHLS is
a two-stage algorithm which combines the local search method with integer programming method.
The main contributions of this paper are: (1) the convex-hull based adjustment strategy is developed
to adjust the sequence; (2) a simplified integer programming model of feeder assignment is developed
and integrated in the algorithm.

The rest of this paper is organized as follows. In Section 2, the machine structure and PCB
assembly process are described, and a simplified mathematical model is proposed. Section 3 is devoted
to the description of the IHLS algorithm which combines integer programming with local search.
Computational experiments are described in Section 4, which verifies that the algorithm we proposed
is superior to genetic algorithm and memetic algorithm in large-scale problems. Finally, conclusions
are drawn in Section 5.
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2. The Description of Pick-and-Place Sequence Optimization Problem

In this section, the basic structure of pick-and-place machine is described in sufficient detail,
and then the PCB assembly processes are introduced. The following description is demonstrating the
simplified pick-and-place optimization problem.

2.1. Machine Structure and PCB Assembly Process

As shown in Figure 1 PART I, the main structure of the placement machine is composed of the
body frame for fixing other structures, the PCB conveyor for transmitting the PCB, the workbench for
fixing and supporting the PCB, the mounting head with a moveable arm for mounting components in
x and y directions, and several feeder slots for laying different type of components feeders. As for PCB,
as shows in Figure 1 PART III, there is a large amount of points on PCB and each point needs to be
mounted with an electrical component. As for feeder, it is a depot for electric components and each
feeder only contains one type of electric components.
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Figure 1. The main structure of pick-and-place machine.

The assembling process of the PCB by the machine mainly involves the following steps.

(1) The PCB is transmitted to the workbench by PCB conveyor.
(2) The PCB is fixed on the workbench, and the coordinates of points on PCB (see Figure 1 PART III)

are loaded in the work coordinate system.
(3) The mounting head moves to the corresponding feeder slots according to a sequence. There are

several nozzles on the mounting head, and each nozzle can only grip one component. Thus,
the maximum number of components to be carried by the head is the nozzle number (see Figure 1
PART II).
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(4) In order to identify the type of components carried by each nozzle, the mounting head should
be scanned by camera before moving to workbench, so as to find the corresponding position
on PCB.

(5) All the components carried by the mounting head are mounted onto PCB.
(6) The mounting head after mounted moves to the corresponding feeders which are assigned feeder

slots, then the head repeat step (3) to step (5) until all the points on PCB are finished. Then, PCB
conveyor starts loading the next PCB.

Step (1) and step (2) are the preparing stage in PCB assembly process. Step (3) to step (5) can
be defined as a pick-and-place cycle which is the key point of pick-and-place optimization problem.
In order to simplify the problem, step (4) is usually ignored in the research. In general, the number of
pick-and-place cycles mainly depends on the point number and the nozzle number. The next section
will illustrate the simplified problem and notifications.

2.2. The Problem Simplification and Notifications

Step (1) to step (6) are PCB assembly process in real production environment. In researches,
the pick-and-place sequence optimization problem is usually simplified while solving the problem.
The simplification mainly involves following essential parts.

(1) Each feeder only contains one component type and can only be assigned to one feeder slot.
(2) Each point on PCB needs one component and is only allowed to mount once.
(3) The mounting head needs to pick up components among feeders first, and then the head moves

to corresponding points on PCB without scanning procedure by camera.

In addition, the problem assumes that all the nozzles on the head can grip all types of components.
Therefore, the exchange of nozzles is not considered in this paper. To better demonstrate the problem,
the notifications used in the model are explained as follows.

Parameters:

PX = (px1, . . . , pxi, . . . , pxN)T The total points’ position in x direction on PCB

PY =
(

py1, . . . , pyj, . . . , pyN

)T
The total points’ position in y direction on PCB

PT = (pt1, . . . , pti, . . . , ptN)T The total points need component type on PCB
N The total number of points on PCB
H The number of nozzles
S The total number of feeder slots
t The total number of component types
n The total number of pick-and-place cycles, n = N/H
sx The first feeder slot position in x direction
sy The first feeder slot position in y direction

gap
The fixed distance between adjacent feeder slots, because all the feeder
slots have the same coordinate in y direction, the distance is the
difference between two adjacent coordinates in x direction actually

pD(i, j) The Euclidean distance between point i and point j on PCB
psD(i, p) The Euclidean distance between point i and feeder slot p

Qk
The number of points to be mounted in kth pick-and-place cycle,
Qk = H, where k < n; Qk = N − (n− 1)H, where k = n

The distance pDij between points on PCB can be calculated by formula (1).

pD(i, j) =
√(

pxi − pxj
)2

+
(

pyi − pyj
)2, 1 ≤ i ≤ N, 1 ≤ j ≤ N (1)
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The distance psDip between point i and feeder slot p can be calculated by formula (2).

psD(i, p) =
√
(pxi − sx− (p− 1) · gap)2 + (pyi − sy)2, 1 ≤ i ≤ N, 1 ≤ 1 ≤ S (2)

Variables:

Xk =
(

xk
1, . . . , xk

i , . . . , xk
Qk

)T Xk is the pick-and-place sequence in kth pick-and-place cycle,
xk

i ∈ {1, . . . , N}, 1 ≤ i ≤ Qk, 1 ≤ k ≤ n

agq ∈ {0, 1} Whether the component type g is assigned to the feeder slot q, if g is
assigned to slot q, agq = 1; otherwise, agq = 0. 1 ≤ g ≤ t, 1 ≤ q ≤ S.

2.3. Mathematical Model of the Problem

The aim of this paper is to minimize the total movement distance of mounting head. The object
function of the mathematical model of pick-and-place problem is mainly divided into three parts.
The first part is component placement distance on PCB, f1(x); the second part is the component pick
up distance among feeders, f2(x); the third part is the movement distance of mounting head between
points on PCB and feeders in feeders slots, f3(x).

The object function of the model can be described by formulas (3)–(10).

F(x) = min ( f1(x) + f2(x) + f3(x)) (3)

f1(x) =
n

∑
k=1

Qk

∑
i=2

pD(xk
i , xk

i−1) (4)

f2(x) =
n

∑
k=1

Qk

∑
i=2

gap · |
S

∑
q=1

q · apt
xk

i
,q −

S

∑
q=1

q · apt
xk

i−1
,q| (5)

f3(x) =
n

∑
k=1

psD(xk
1,

S

∑
q=1

q · apt
xk

i
,q) +

n−1

∑
k=1

psD(xk
H ,

S

∑
q=1

q · apt
xk+1

i ,q
) (6)

Subject to
t

∑
g=1

agq ≤ 1, q = 1, . . . , S (7)

S

∑
q=1

agq = 1, g = 1, . . . , t (8)

t

∑
g=1

S

∑
q=1

agq = t (9)

n

∑
k=1

Qk = N (10)

agq ∈ {0, 1}, g = 1, . . . , t, q = 1, . . . , S (11)

xk
i ∈ {1 , . . . , N}, i = 1, . . . , Qk (12)

where, formula (7) assures that each feeder slot can be assigned to one type of component feeder at
most. Formula (8) assures that each type of component feeder must be assigned to one feeder slot.
Formula (9) assures that all the component feeders must be assigned. Formula (10) assures that all the
points on PCB must be mounted.

The value of f1(x) depends on the place sequence xk
i , and the value of f2(x) and f3(x) also depend

on variable agq. Similarly, xk
i affects the place sequence agq, which is apt

xk
i

,q. The model of this problem



Symmetry 2018, 10, 633 6 of 17

is complicated, which has motivated a lot of researchers to develop kinds of approaches to solve this
problem. Generally, it is difficult to solve the problem in an integrated method. Therefore, we propose
an algorithm which solves the model in two-stage. The first stage is obtaining the pick-and-place
sequence Xk (k = 1, . . . , n) while the value of f1(x) is minimum. The second stage is obtaining the
feeder assignment agq(g = 1, . . . , t, q = 1, . . . , S) while the value of f2(x) + f3(x) is minimum.

3. Iterated Hybrid Local Search Algorithm

The iterated hybrid local search algorithm, a two-stage based algorithm, mainly consists of
local search and integer programming method. In the first stage, the local search method obtains
the pick-and-place sequence Xk(1 ≤ k ≤ n) while the value of f1 (x) is minimum. Based on the
obtained Xk(1 ≤ k ≤ n), in the second stage, the integer programming aims at obtaining the value
of agq(1 ≤ g ≤ t, 1 ≤ q ≤ S) while the value of f2(x) + f3(x) is minimum. The measures of the local
search include greedy strategy with distance weight, adjustment strategy based on convex-hull,
termination criteria, and the feeder assignment problem based on the integer programming method.
The details of these parts will be explained in the following section. In the algorithm, there are several
parameters adopted, and they are explained below.

f1(x) The solution of pick-and-place distance in each interaction.
f ′1(x) The best solution of pick-and-place total distance in iterations.

X
′k
(1 ≤ k ≤ n) The best solution of pick-and-place sequence in iterations.

G′(a) The best object function value of feeder assignment model in iterations.
a′gq(1 ≤ g ≤ t, 1 ≤ q ≤ S) The best solution of feeder assignment in iterations.

ω(i)(1 ≤ i ≤ H)

The distance weight which is proposed based on splitting unit circle.
ω(i) is used to generate initial pick-and-place sequences and it can be
obtained by formula (13).

As shown in Figure 2, a circle with a radius of 1 (r = 1) is divided into H parts, the circumference
of circle is 2π, therefore the arc length of each part is dARC = 2π

H . Similarly, the angle of each part is

θ = 2π
H , the angle between point i and 1 is (i− 1)θ which equals to 2π(i−1)

H . The distance from point
i to point 1 is si in the circle. The relationship between the distance si and (i− 1)θ can be expressed

as an equation, cos((i− 1)θ) = r2+r2−s2
i

2r . The distance si =

√
2− 2cos

(
2π(i−1)

H

)
(2 ≤ i ≤ H) can be

determined. Therefore, ω(i) = dARC
dARC+si

, the ratio which equals to the distance between the point i and
point i− 1 divide by the sum distance, including the distance between point i and point 1 as well as the
distance between point i and point i− 1, in a unit circle. For example in Figure 2, the angle between

point 3 and point 1 is 2π
3 , the relationship equation is cos

( 2π
3
)
=

1+1−s2
3

2 , the distance from point 3 to

point 1 is s3 =
√

2− 2 cos
( 2π

3
)
, while dARC = 2π

3 , then ω(3) = π/3
π/3+s3

.

ω(i) =
√

2π
√

2π + H
√

1− cos
(

2π(i−1)
H

) ; 2 ≤ i ≤ H (13)

where, i is the index of nozzles in mounting head.
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3.1. The Greedy Strategy with Distance Weight

The pick-and-place sequence initialization is aimed at obtaining initial sequences Xk(k = 1, .., n)
which have better qualities. During the iterations of heuristic method, obtaining a better feasible
solution contributes to the improvement of efficiency at the beginning. In this section, we propose a
greedy strategy with distance weight to initialize the sequences.

After determining ω(i), the weighted distance can be represented as formula (14), if point j as the
ith sequence in Xk.

σk
j,i = ω(i)pD

(
j, xk

i−1

)
+ (1−ω(i))pD

(
j, xk

1

)
; 2 ≤ i ≤ Qk, xk

i−1 ∈ Xk, j ∈ {1, . . . , N}, j /∈ Xk (14)

where σk
j,i is the value of weighted distance, j represents the point which is not allocated to Xk, and i

represents the ith sequence in Xk.

xk
i = j, j satisfies min

1≤j≤N,j/∈Xk
σk

j,i (15)

Formula (15) represents that the ith sequence in Xk is the encoding of the point which has a
minimum value of σk

j,i. The pick-and-place sequence initial pseudo code is given below.

Step 1: Start calculate kth pick-and-place cycle where k = 1.
Step 2: If the first iteration involves this process, x1

1 = 1 and xk
1(2 ≤ k ≤ n) is other random encoding

of points; else, x1
1 = iterx (See Section 3.4) and xk

1(2 ≤ k ≤ n) is other random encoding
of points.

Step 3: In kth pick-and-place cycle, as xk
1(2 ≤ k ≤ n) is confirmed, calculate each σk

j,i by formula (14)

and let xk
i = j while the corresponding j satisfies min

1≤j≤N,j/∈Xk
σk

j,i, from i = 2 to i = Qk.

Step 4: If k = n, output the initial sequence Xk(1 ≤ k ≤ n); otherwise, k = k + 1 and repeat from
step 3 to step 4.

For example, the total number of points on PCB is 6, the coordinates of points are shown in Table 1.
The number of nozzles is 6, the pick-and-place sequence cycle number is 1, as shown in Figure 2.
In order to initialize X1, ω(i)(2 ≤ i ≤ 6) can be determined, which are ω(2) = 0.5115, ω(3) = 0.3767,
ω(4) = 0.3435, ω(5) = 0.3765, ω(6) = 0.5108. As x1

1 = 1, the next sequence x1
2 need to be determined

based on the values of σ1
2,2, σ1

3,2, σ1
4,2, σ1

5,2 and σ1
6,2. The values of above items are σ1

2,2 = 2.0, σ1
3,2 = 10.4,

σ1
4,2 = 12.0, σ1

5,2 = 7.8 and σ1
6,2 = 2.2. According to formula (15), x1

2 = 2, which is the minimun among
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σ1
2,2, σ1

3,2, σ1
4,2, σ1

5,2 and σ1
6,2. The next squence x1

3 depends on the value of σ1
3,2, σ1

4,2, σ1
5,2 and σ1

6,2. In this
way, the sequence of X1 can be determined. This strategy is aimed at initializing the sequence Xk so
that it is a better feasible solution, but the length of each sequence Xk is not the minimum. So the
adjusting strategy is needed to get a sequence of minimum distance.

Table 1. The example of greedy strategy with distance weight.

No. x y

1 16 2
2 18 2
3 19 12
4 17 14
5 11 8
6 15 4

3.2. The Adjusting Strategy Based on Convex-Hull

To adjust the sequence, each initial pick-and-place sequence can be regarded as a small size
traveling salesman problem (TSP). For the traveling salesman problem, there are several classifications
and extensions, such as symmetric traveling salesman problem (STSP), asymmetric traveling salesman
problem (ATSP) and multiple traveling salesman problem (MTSP). Laszlo Barna Iantovics [25]
proposed a novel universal metric and solved STSP by intelligent cooperative multi-agent systems.
Furqan Hussain Essani [26] presented an algorithm combined colored petri nets and guaranteed a
feasible solution to the MTSP with asymmetric cost matrix. Differ from above methods, the TSP in this
section needs several simple measures to guarantee the efficiency of the algorithm and obtain a better
feasible solution. Based on convex-hull algorithms [27], an approximate method is developed, and the
details are explained below.

ρ(a, b, c) = pD(a, b) + pD(a, c)− pD(b, c), a, b, c ∈ Xk (16)

where ρ(a, b, c) represents the additional length, if line bc is replaced by line ab and line ac.
The pick-and-place sequence adjustment pseudo code of each cycle is given below.

Step 1: Let A =
(

xk
1, xk

2, xk
3

)T
, U =

(
xk

4, . . . , xk
Qk

)T
.

Step 2: Select each item xk
p from U, xk

p ∈ U; Select each pair of items xk
p, xk

p+1 from A, xk
p, xk

p+1 ∈ A.

Calculate the value of ρ
(

xk
p, xk

q, xk
q+1

)
.

Step 3: Find the corresponding xk
p, where xk

p satisfies min
xk

p∈U and xk
q ,xk

q+1∈A
ρ
(

xk
p, xk

q, xk
q+1

)
; put xk

p into A

between xk
q and xk

q+1, remove xk
p from U.

Step 4: If U = φ, turn to step 7; otherwise, repeat from step 2 to step 3.
Step 5: Update Xk, let Xk = A.

For example, as shown in Figure 3, A = (1, 2, 6), and U = (3, 4, 5). The dashed lines represent
the additional length when the point is added to A, the solid lines represent the length between two
adjacent points in A sequence. Each additional length of item in U (xp = 5, 4 or 3) and line 2–6 in A
(xq = 2, xq+1 = 6) can be obtained, which are ρ(5, 6, 2), ρ(3, 6, 2) and ρ(4, 6, 2). The smallest value
of ρ is ρ(3, 6, 2), and then A = (1, 2, 3, 6), U = (4, 5).
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During the sequence adjustment, the additional length of each adjusting measure (step 3) is
considered, and only the adjustment of minimum length will be accepted in this strategy. In other
words, all cases of adjustment can be accepted based on formula (16). Therefore, the length of initial
Xk is minimum after the adjusting strategy.

3.3. Feeder Slots Selection

The feeder slots selection is based on the pick-and-place sequence Xk(1 ≤ k ≤ n). In order to
improve efficiency, a new feeder assignment integer programming model is built in this section, and the
model is solved by integer programming method. This model is modified based on the mathematical
model (Section 2), replaced several variables, and retained the original constraints. As Xk(1 ≤ k ≤ n)
is determined, we generate parameters link f g and boundr.

link f g The number of links between component type f and g, where 1 ≤ f , g ≤ t and f 6= g.
boundr The first or last point in each pick-and-place cycle Xk, where 1 ≤ r ≤ 2n.

Because xk
i ∈ Xk is the encoding of points, ptxk

i
represents the corresponding component

type of xk
i . As Xk =

(
xk

1, xk
2, . . . , xk

i , . . . , xk
Qk

)
is known, the corresponding component types

of Xk are
(

ptxk
1
, ptxk

2
, . . . , ptxk

i
, . . . , ptxk

Qk

)
, which ptxk

i
∈ {1, . . . , t}. In the component type

vector
(

ptxk
1
, ptxk

2
, . . . , ptxk

i
, . . . , ptxk

Qk

)
, ptxk

1
, ptxk

2
is a link between component type ptxk

1
and ptxk

2
.

The parameter link f g is the total number of links between component type f and g, and it can
be obtained by result Xk. Initialize link f g = 0 (1 ≤ f , g ≤ t), then link f g can be obtained from(

ptxk
1
, ptxk

2
, . . . , ptxk

i
, . . . , ptxk

Qk

)
as formula (17).

linkpt
xk

i
,pt

xk
i+1

= linkpt
xk

i
,pt

xk
i+1

+ 1, ptxk
i
6= ptxk

i+1
, 1 ≤ i ≤ Qk − 1, 1 ≤ k ≤ n (17)

For example, the component type vector is (pt2, pt1, pt4, pt4, pt2, pt2), the corresponding links can
be obtained as following Table 2.

Table 2. The corresponding link f g.

linkfg pt1 pt2 pt3 pt4

pt1 0 0 0 1
pt2 1 0 0 0
pt3 0 0 0 0
pt4 1 1 0 0
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As for boundr, formula (18) demonstrates the relationship between boundr and Xk.{
bound2k−1 = xk

1, 1 ≤ k ≤ n
bound2k = xk

Qk
, 1 ≤ k ≤ n

(18)

In the second stage, the object function should be f2(x) + f3(x) (formulas (5) and (6) in Section 2.1).

It can be expressed as
n
∑

k=1

Qk
∑

i=1
gap

∣∣∣∣∣ S
∑

q=1
q·apt

xk
i ,q
−

S
∑

q=1
q·apt

xk
i−1,q

∣∣∣∣∣ + n−1
∑

k=1
psD

(
xk

H ,
S
∑

q=1
q·apt

xk−1
i ,q

)
.

S
∑

q=1
q·apt

xk
i ,q

represents the corresponding component type, when xk
i is obtained in first stage.

Based on above works,
S
∑

q=1
q·a f g·link f g replaces

S
∑

q=1
q·apt

xk
i ,q

, and boundr replaces xk
H . Without

modifying of constraints, the new local integer programming model is described as follows:

G(a) = min
t

∑
f=1

t

∑
g=1

gap · link f g

∣∣∣∣∣ S

∑
q=1

qa f q −
S

∑
q=1

qagq

∣∣∣∣∣+ 2n

∑
r=1

S

∑
q=1

t

∑
g=1

agq · psD(boundr, q) (19)

Subject to
t

∑
g=1

agq ≤ 1, g = 1, . . . , t

t

∑
q=1

agq = 1, g = 1, . . . , t

t

∑
g=1

S

∑
q=1

agq = t

agq ∈ {0, 1}; g = 1, . . . , t, q = 1, . . . , S

Binary variable agq represents whether the ith component type feeder is in the slot q, and
S
∑

q=1
q · agq

represents the corresponding sequence of gth component type. Therefore,

∣∣∣∣∣ S
∑

q=1
q · a f q −

S
∑

q=1
q · agq

∣∣∣∣∣
indicates the number of feeders between slot f and g. While

t
∑

f=1

t
∑

g=1
gap·link f g

∣∣∣∣∣ S
∑

q=1
qa f q −

S
∑

q=1
qagq

∣∣∣∣∣
demonstrates the total distance of the mounting head movements among feeders, it is the same
as f2(x) in Section 2.3. boundr(1 ≤ r ≤ 2n) is encoded of first or last point in each sequence,
while psD(boundr, q) is the distance between the point boundr and feeder slot q. Therefore,

psD(boundr, q)·
t

∑
g=1

agq represents the distance between point boundr and the corresponding feeder

type slot.
2n
∑

r=1

S
∑

q=1

t
∑

g=1
psD(boundr, q)·

t
∑

g=1
agq demonstrates the total moving distance of mounting head

between points on PCB and feeders in slots, which is the same as f3(x) in Section 2.3.
The object function is to minimize the total distance of mounting head based on the pick-and-place

sequence Xk(1 ≤ k ≤ n). And the constraints of this model are as same as the model in Section 2.3.

3.4. Initialization Update and Termination Criteria

In this algorithm, we obtain a feasible solution including pick-and-place sequence Xk(1 ≤ k ≤ n)
and feeder assignment agq(g = 1, . . . , t, q = 1, . . . , S). To improve the quality of solution, selecting Xk

based on the maximum length and resetting sequence Xk are crucial iteration strategy. During each
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iteration, Xk needs to be recorded if the value of the length is maximum, and this sequence needs to be
reset first in next iteration, which is x1

1 = iterx (see Section 3.1). iterx can be generated by formula (20).

iterx = xk
1, k satis f ies max

1≤k≤n

Qk

∑
i=2

pD
(

xk
i , xk

i−1

)
(20)

The IHLS algorithm is terminated when the number of iterations equals to the maximum number
of iterations. The flowchart of the IHLS (Figure 4) and pseudo code are given below.

Step 1: Initialize the parameters.
Step 2: Initialize the pick-and-place sequence Xk with ω(i) according to greedy strategy, where

1 ≤ k ≤ n.
Step 3: Adjust the pick-and-place sequence Xk by adjustment strategy, where 1 ≤ k ≤ n.
Step 4: Calculate the fitness value f1(x).
Step 5: If the best solution f ′1(x) > f (x), turn to step 6; otherwise, repeat from step 3 to step 5.

Step 6: Update the record best solution f ′1(x), let f ′1(x) = f (x) and X′k = Xk.

Step 7: According to X′k, relevant parameters (link f g and boundr) are prepared and input to feeder
assignment model.

Step 8: Update the best solutions G′(a) and a′gq, let G′(a) = G(a) and a′gq = agq.

Step 9: If termination criteria was satisfied, turn to step 10; otherwise, repeat from step 3 to step 8.
Step 10: Output the best solutions.
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4. Experimental Results and Analysis

In order to verify the effectiveness of IHLS algorithm, three other test algorithms are selected
for comparison. The three baseline algorithms are genetic algorithm (GA), memetic algorithm and
integer programming method. The algorithms are implemented in MATLAB and run with the 2.8 GHz
computer with 16 GB RAM. The integer programming models are solved by Yalmip with Cplex1263.

4.1. Comparison with Exact Algorithm

As for integer programming, because integer programming method can only solve very
small-scale problems, the place sequence integer programming model and several small instances
except instance 4 are generated based on the research of Ho and Ji [2].
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The IHLS is executed on very small-scale instances and the results are obtained by integer
programming method, Cplex. Three small-scale instances with 6 feeder slots are given in Table 3.
The results show that IHLS is near to the optima as the average gap is 6.29%. While the instance 4
(the nozzle number of instance 4 is 1) shows that the integer programming method cannot solve the
problem with a larger scale.

Table 3. Comparison of the IHLS results with the optimal solutions.

(PN, TN) No.
Object Function Value (mm) CUP Times

DIHLS DCplex
DIHLS−DCplex

DCplex
×100% CTIHLS CTcplex

(6, 5) 1 280.12 263.37 6.45 0.35 0.27
(8, 6) 2 409.41 383.71 6.78 0.98 0.83

(10, 6) 3 598.34 566.02 5.65 2.21 2.09
(82, 3) 4 3766 Unsolved - 22.3 -

4.2. Comparison of the Heuristics in Different Size Instances and Analysis

In this experiment, the performance of the algorithm is tested on 9 PCB instances. These 9 PCB
instances are generated based on industrial data.

(1) Set the model parameters

The model parameters, such as N, t, n, PX, PY and PY, are based on the test instances, and other
parameters, such as H, S, sx, sy, gap and Qk, are based the pick-and-place machine parameters.
The parameters are introduced in Table 4.

Table 4. The size of instances.

No. N t H n S (sx, sy) gap Qk

1 82 3 10 9 60 (−120, −72) 12 (10, 10, . . . , 3)
2 100 4 10 10 60 (−120, −72) 12 (10, 10, . . . , 10)
3 145 5 10 15 60 (−120, −72) 12 (10, 10, . . . , 5)
4 163 4 10 17 60 (−120, −72) 12 (10, 10, . . . , 3)
5 184 5 10 19 60 (−120, −72) 12 (10, 10, . . . , 4)
6 200 5 10 20 60 (−120, −72) 12 (10, 10, . . . , 10)
7 240 6 10 24 60 (−120, −72) 12 (10, 10, . . . , 10)
8 264 7 10 27 60 (−120, −72) 12 (10, 10, . . . , 4)
9 300 9 10 30 60 (−120, −72) 12 (10, 10, . . . , 10)

The total number of components (N) ranges from 82 to 300 and the component type (t) ranges
from 3 to 9. The solving complexity of instances mainly depend on the number of components. With the
increasing of N, the difference between algorithms performance can be more and more significant.

(2) Comparison with the heuristics

In the GA algorithm, the chromosome structure is decimal code, and each chromosome includes
PCB placement sequence part and feeder assignment part. The chromosome structure can be found in
Kulak, Yilmaz and Günther [13]. The population size is 2000, the crossover rate is 90%, and the mutation
rate is 10%. As for memetic algorithm, based on Carlos’ research [28], the memetic algorithm used GA
frame in population-based search, and the greedy strategy is used in local search part. The parameters
of the memetic algorithm are the same as GA’s. The three algorithms, IHLS, GA and memetic algorithm,
solve these instances based on the mathematical model in Section 2. The optimization results of each
instance are the average values of 5 independent runs. The solutions are presented in Table 5. DGA,
DIHLS and DMA represent the total distance of GA, IHLS and memetic algorithm respectively. CTGA,
CTIHLS and CTMA represent the CPU times of each algorithm.
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Table 5. Experimental results of different size data.

No.
GA IHLS Memetic Algorithm

Dbest Minimum CT DGA(mm) CTGA DIHLS (mm) CTIHLS DMA(mm) CTMA

1 3511 22.3 3542 1534.0 3766 22.3 3511 1485.7
2 5509 29.5 5377 1512.4 5844 29.5 5509 1508.2
3 7473 52.4 7655 1743.5 7740 52.4 7473 1485.0
4 8166 65.0 8352 1744.0 8479 65.0 8166 1846.8
5 8813 78.4 10,439 1766.8 8813 78.4 9430 2020.5
6 9882 93.4 11,541 1923.4 9882 93.4 10,249 2195.0
7 11,218 124.2 14,745 2043.8 11,218 124.2 11,725 2596.0
8 13,591 174.2 17,610 2142.0 13,591 174.2 13,837 2802.0
9 14,854 247.0 20,745 2689.4 14,854 247.0 15,007 3310.7

(3) Experimental results analysis

There are different iteration strategies in three algorithms. The three algorithms obtain the optimal
solution when the iteration achieves the maximum iteration number. But the solutions are different
among the three algorithms. As shown in the second, forth, sixth and eighth column in Table 5,
from instance 1 to instance 4 except instance 2, the minimum distance value obtained by memetic
algorithm can be found. As for GA and IHLS, the two algorithms’ value of distance is larger than
memetic algorithm’s. From instance 5 to instance 9, the distance of IHLS is the minimum, and memetic
algorithm’s value of distance is close to that of IHLS algorithm. However, as for GA, the distance is
much larger than IHLS’s and memetic algorithm’s.

Considering the CPU times of each algorithm in Figure 5, IHLS is the most efficient one among
the three algorithms. As shown in Figure 5, the swarm based algorithms, GA and memetic algorithm,
are more time-consuming. With the increasing of instance size, the CPU time of memetic algorithm is
getting larger, and memetic algorithm become the most time-consuming one.
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In respect of optimality, IHLS algorithm has an advantage in large-scale instances, while the
solution of IHLS is slightly inadequate in small one. In respect of CPU times, IHLS algorithm has a
great advantage in both small-scale and large-scale instances. To show the convergence of different
heuristics, the stopping criteria is set as 2000 iterations. The convergence plot comparisons of the three
algorithms are shown in Figures 6 and 7. Figure 6 shows the convergence plot in solving instance 1, 2
and 3 which are small-size data, while Figure 7 shows the convergence plot in solving instance 7, 8
and 9 which are large-size data. More analysis details will be explained in the following.

τ =
DHILS − Dbest

Dbest
× 100% (21)
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To measure IHLS performance, a relative quality measure DHILS−Dbest
Dbest

× 100%, where Dbest is the
best among the solutions obtained by the three algorithms and DHILS is IHLS. The closer to 0 the
measure value τ is, the better the according algorithm will be.

As shown in Figure 6, from instance 1 to instance 3, the number of points N < 150, there is
a flaw in IHLS’ solutions. GA obtained minimum object function value which is the best feasible
solution in instance 2, memetic algorithm obtained the best feasible solution in instance 1 and instance
3. In Figure 6 (instance 1), the best solution is 3511 mm, the feasible solution of IHLS is 3766 mm,
τ = 7.26%. Similarly, the measure value τ is 8.68% in Figure 6 (instance 2). While the measure value
τ = 3.57% in Figure 6 (instance 3), which becomes smaller. Although IHLS lacks good performance
in Figure 6, the difference between the IHLS’ object function and the best solution is less than 700.
As shown in Figure 7, from instance 7 to instance 9, the number of points N > 200, IHLS’s solution is
the best among three heuristics. Obviously, the measure value τ is 0 in Figure 7. In Figure 7, memetic
algorithm also has a good performance, but the quality of solution is slightly worse than that of IHLS.
The difference between memetic algorithm’s and IHLS’ solution values are 507, 240 and 157 in instance
7, 8 and 9 respectively, while the difference of GA are more than 3000. Figures 6 and 7 show that IHLS
lacks good performance in solving small-scale problem, while with the increasing of points number,
it demonstrates that IHLS has a better performance in solving large-scale problem.

From instance 1 to 9, both IHLS and memetic algorithm achieve a better convergence value in the
first iteration, while the GA’s first convergence value is worse. The solutions of IHLS and memetic
algorithm converges relatively rapidly. In addition, IHLS is more suitable for real-time application in
operation workshop because of its higher computational efficiency. Considering the time-consuming
and optimality, IHLS is superior to memetic algorithms.

The results of instance 9 are demonstrated in Table 6. In the table, the second column shows the
pick-and-place sequence in each cycle, and other columns show the assignment of feeders. The path of
instance 9 is shown in Figure 8.
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Table 6. Results of IHLS in instance 9.

k Xk agq
Corresponding

Feeder Type

Corresponding
Feeder

Coordinates

1 X1 = (146, 219, 13, 27, 185, 224, 284, 259, 215, 233) a1,27 = 1 100004652 (192, −72)
2 X2 = (93, 72, 113, 165, 177, 204, 87, 31, 89, 152) a2,23 = 1 100004697 (144, −72)
3 X3 = (108, 237, 153, 174, 101, 69, 210, 140, 126, 62) a3,24 = 1 100004795 (156, −72)
4 X4 = (105, 48, 58, 186, 143, 129, 77, 57, 231, 176) a4,26 = 1 100004883 (180, −72)
5 X5 = (66, 104, 128, 268, 214, 184, 276, 280, 239, 238) a5,16 = 1 100005022 (16, −72)
6 X6 = (63, 234, 179, 131, 65, 75, 183, 132, 47, 264) a6,3 = 1 100006424 (−96, −72)
7 X7 = (144, 74, 59, 213, 158, 159, 98, 99, 270, 45) a7,22 = 1 100008025 (132, −72)
8 X8 = (245, 29, 226, 187, 241, 251, 190, 188, 253, 260) a8,25 = 1 100030843 (168, −72)
9 X9 = (244, 271, 265, 200, 203, 266, 209, 212, 211, 230) a8,15 = 1 100031371 (48, −72)

10 X10 = (293, 235, 269, 205, 206, 267, 279, 202, 236, 199)
11 X11 = (141, 156, 68, 21, 207, 180, 168, 110, 246, 111)
12 X12 = (232, 181, 295, 257, 258, 229, 208, 248, 17, 262)
13 X13 = (26, 247, 220, 194, 242, 243, 193, 217, 256, 10)
14 X14 = (223, 197, 282, 281, 196, 218, 263, 225, 164, 161)
15 X15 = (44, 95, 52, 119, 147, 162, 198, 27, 49, 71)
16 X16 = (22, 7, 189, 123, 122, 83, 9, 216, 135, 138)
17 X17 = (252, 11, 255, 191, 227, 250, 249, 221, 182, 254)
18 X18 = (195, 137, 134, 86, 170, 125, 80, 81, 192, 8)
19 X19 = (240, 32, 222, 149, 155, 107, 36, 228, 167, 16)
20 X20 = (173, 92, 12, 201, 171, 150, 116, 54, 24, 261)
21 X21 = (291, 286, 33, 61, 6, 172, 117, 103, 35, 145)
22 X22 = (287, 274, 37, 67, 28, 136, 114, 91, 120, 154)
23 X23 = (4, 70, 55, 163, 2, 112, 30, 157, 300, 299)
24 X24 = (42, 73, 96, 151, 40, 94, 3, 133, 277, 273)
25 X25 = (46, 76, 51, 148, 34, 64, 5, 169, 296, 292)
26 X26 = (19, 88, 50, 127, 90, 115, 43, 121, 290, 283)
27 X27 = (14, 288, 139, 23, 100, 18, 142, 97, 102, 294)
28 X28 = (285, 289, 78, 85, 20, 124, 53, 106, 15, 130)
29 X29 = (297, 278, 84, 79, 60, 160, 56, 118, 41, 175)
30 X30 = (298, 38, 82, 166, 1, 39, 178, 109, 25, 275)Symmetry 2018, 10, x FOR PEER REVIEW  15 of 17 
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14 𝐗𝟏𝟒 = (223, 197, 282, 281, 196, 218, 263, 225, 164, 161)    
15 𝐗𝟏𝟓 = (44, 95, 52, 119, 147, 162, 198, 27, 49, 71)    
16 𝐗𝟏𝟔 = (22, 7, 189, 123, 122, 83, 9, 216, 135, 138)    
17 𝐗𝟏𝟕 = (252, 11, 255, 191, 227, 250, 249, 221, 182, 254)    
18 𝐗𝟏𝟖 = (195, 137, 134, 86, 170, 125, 80, 81, 192, 8)    
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21 𝐗𝟐𝟏 = (291, 286, 33, 61, 6, 172, 117, 103, 35, 145)    
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24 𝐗𝟐𝟒 = (42, 73, 96, 151, 40, 94, 3, 133, 277, 273)    
25 𝐗𝟐𝟓 = (46, 76, 51, 148, 34, 64, 5, 169, 296, 292)    
26 𝐗𝟐𝟔 = (19, 88, 50, 127, 90, 115, 43, 121, 290, 283)    
27 𝐗𝟐𝟕 = (14, 288, 139, 23, 100, 18, 142, 97, 102, 294)    
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5. Conclusions 

In this paper, we deal with the pick-and-place optimization problem efficiently by a new algorithm 
(IHLS) combining local search with integer programming. In the section of local search, the greedy with 
distance weight strategy and the convex-hull strategy are developed to determine the pick-and-place 
sequence; in the section of integer programming, an integer programming model is built to solve the 
feeder assignment. The experimental result shows that the IHLS we proposed has a higher 
computational efficiency. The IHLS is less time-consuming and more suitable in solving large scale 
problems. In our future work, in order to improve the accuracy of IHLS in small size data, some other 
solving techniques could be integrated and the mathematical model should be improved. 
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5. Conclusions

In this paper, we deal with the pick-and-place optimization problem efficiently by a new algorithm
(IHLS) combining local search with integer programming. In the section of local search, the greedy with
distance weight strategy and the convex-hull strategy are developed to determine the pick-and-place
sequence; in the section of integer programming, an integer programming model is built to solve
the feeder assignment. The experimental result shows that the IHLS we proposed has a higher
computational efficiency. The IHLS is less time-consuming and more suitable in solving large scale
problems. In our future work, in order to improve the accuracy of IHLS in small size data, some other
solving techniques could be integrated and the mathematical model should be improved.
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