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Abstract: Aggregation operators are important tools for solving multi-attribute group decision-making
(MAGDM) problems. The main challenging issue for aggregating data in a MAGDM problem
is how to develop a symmetric aggregation operator expressing the decision makers’ behavior.
In the literature, there are some methods dealing with this difficulty; however, they lack an
effective approach for multi-polar inputs. In this study, a new aggregation operator for m-polar
fuzzy soft sets (M-pFSMWM) reflecting different agreement scenarios within a group is presented
to proceed MAGDM problems in which both attributes and experts have different weights.
Moreover, some desirable properties of M-pFSMWM operator, such as idempotency, monotonicity,
and commutativity (symmetric), that means being invariant under any permutation of the input
arguments, are studied. Further, m-polar fuzzy soft induced ordered weighted average (M-pFSIOWA)
operator and m-polar fuzzy soft induced ordered weighted geometric (M-pFSIOWG) operator,
which are extensions of IOWA and IOWG operators, respectively, are developed. Two algorithms
are also designed based on the proposed operators to find the final solution in MAGDM problems
with weighted multi-polar fuzzy soft information. Finally, the efficiency of the proposed methods is
illustrated by some numerical examples. The characteristic comparison of the proposed aggregation
operators shows the M-pFSMWM operator is more adaptable for solving MAGDM problems in
which different cases of agreement affect the final outcome.

Keywords: m-polar fuzzy soft set; m-polar fuzzy soft preference relationship; aggregation operator;
multi-attribute group decision-making

1. Introduction

A group decision-making process, which is also called multi-person decision-making, is the
problem of finding the best option accepted by the majority of decision makers among a list of possible
alternatives. The basic act in the group decision-making is the process of consensus between different
decision makers. Although a unanimous consensus is the ideal case, in real situations, full agreement
rarely happens. Decision makers usually share and discuss their opinions about the alternatives
to obtain a consensus or partial agreement for making the final decision. However, sometimes,
they provide their priorities about the alternatives individually and then try to reach a consensus on
them. Regardless which approach is applied, using aggregation operators is one of the most often
used techniques to reach the process of consensus in group decision-making problems.

The aim of an aggregation operator of dimension K is to aggregate the K-tuple of objects into
a single object by a bounded non-decreasing function A :

⋃
K∈N[0, 1]K → [0, 1]. The mean value,

the median, the minimum, the maximum, the t-norms, and the t-conorms are commonly used to

Symmetry 2018, 10, 636; doi:10.3390/sym10110636 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-3205-5212
https://orcid.org/0000-0002-1217-963X
http://dx.doi.org/10.3390/sym10110636
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/11/636?type=check_update&version=3


Symmetry 2018, 10, 636 2 of 29

reach the process of consensus in group decision-making problems. To aggregate a sequence of inputs
with different importance degrees, the concept of weighting vector in aggregation operators has
been studied, such as the weighted minimum and the weighted maximum [1–3]; ordered weighted
average (OWA) [4], which is calculated based on the arithmetic mean; and ordered weighted geometric
(OWG) [5], which is formulated based on the geometric mean. The main disadvantage of OWA
and OWG operators, i.e., ignoring the importance of given arguments x1, · · · , xK for calculating the
aggregated value, leads to definition of their extensions into the induced OWA (IOWA) operator [6],
and induced OWG (IOWG) operator [7], respectively. However, these extensions have the inherent
limitations from OWA operator and OWG operator, concerning the determination of associated
weighting vector w for IOWA and IOWG operators. In practice, there is no unique strategy to find
the associated weighting vector w. Usually, a quantifier function Q : [0, 1]→ [0, 1] whose definition
may change from one case to another one is applied to compute the associated weighting vector
w = (w1, · · · , wK)

T based on the formulation wi = Q( i
K )−Q( i−1

K ) for all i [4,5,8,9].
Soft set theory (SS) [10], characterized by a set-valued function f : P → 2U , is defined by

a parameterization family of the universe U. Thus, in comparison with fuzzy set theory [11], it allows
us to have a more comprehensive description of U based on any type and number of parameters p ∈ P.
The concepts of fuzzy soft set (FSS) [12] and intuitionistic fuzzy soft set (IFSS) [13] were also studied to
handle more complicated problems. Although soft set theory was originally developed to cope with
the lack of parameterization tool in fuzzy sets, its flexibility to deal with set-valued functions makes it
a powerful tool for providing a new methodology in decision-making problems. The first adaptivity
of soft sets in decision-making was conducted by Maji et al. [14]. However, they did not discuss
the aggregation methods. Roy and Maji [15] gave an algorithm to solve a group decision-making
problem based on fuzzy soft sets. The FS minimum operator was applied for finding the consensus
of multi-source parameter sets. Later, Alcantud [16] overcame the disadvantages of Roy and Maji’s
algorithm by applying FS product operator rather than FS minimum operator. Cagman et al. [17,18]
applied FS minimum operator, FS maximum operator, and FS product operator to produce different
fuzzy soft aggregation operators in a MAGDM problem. Guan et al. [19] applied the FS intersection
operator for aggregating data. Then, a new ranking system of objects, in which the rate of objects
is computed based on the full unanimity of experts with respect to all parameters rather than the
number of parameters that are owned by each object, was constructed to rank alternatives in a group
decision problem. Zhang et al. [20] used the IFS maximum operator to check the process of consensus
in MAGDM problem. Mao et al. [21] extended IFSOWA and IFSOWG operators for intuitionistic
fuzzy soft sets under three different cases of experts’ weights called completely known, partly known,
and completely unknown. Das and Kar [22] used the IFS product and the IFS sum operators of
intuitionistic fuzzy soft matrices to obtain a collective opinion among different decision makers. Zhang
and Zhang [23] utilized the FS union operation to reach the process of consensus in MAGDM problems
based on trapezoidal interval type-2 fuzzy soft sets (TIT2FSSs). The TOPSIS approach was then applied
to select the best option. However, recently, Pandey and Kumar [24] modified this procedure so that
the complement operation that is used by Zhang and Zhang can only be applied for TIT2FSSs in which
left and right heights are equal. Tao et al. [25] proposed four aggregation functions, including the
soft maximum operator, soft minimum operator, soft average operator, and soft weighted average
operator, to aggregate data in MAGDM problems. Two selection tools based on the SAW method and
comparison matrix were also developed to obtain the optimal decision. Zhu and Zhan [26] developed
the new concept fuzzy parameterized fuzzy soft sets (FPFSS), where the parameters are considered
as fuzzy sets and then the consensus stage proceeds by using the t-norm and t-conorm products of
FPFSSs. A new choice value function is also introduced to handle the process of selection. On the
other hand, some researchers attempted to develop novel aggregation methods for FSS and IFSS.
For example, Zahedi et al. [27,28] extended the concept of fuzzy soft topology to reach the consensus
based on a collective preorder relation.



Symmetry 2018, 10, 636 3 of 29

Conventionally, soft-set-based aggregating tools have been developed for unipolar input data
where the truth value belongs to [0, 1]. Some situations require multi-polar arguments to be aggregated.
To handle the problem of multi-polarity in consensus process, some studies extended the aggregation
operators from unipolar scale into the bipolar scale (i.e., the interval [−1, 1]) [29] and multi-polar scale
(i.e., the space K × [0, 1] where K is a set of m different categories) [30,31]. These extensions allow
dealing with inputs from different categories where the output is presented by a pair (k, x) that k
shows the category of aggregated value x. However, in many decision-making problems, the attribute
set contains multi-feature or multi-polar decision parameters where the final decision should reflect the
best option based on all multi-polar attributes beyond their category. For example, in the hotel booking
problem, “Location” is one of the most important parameters for finding a good hotel to stay, which is
a multi-feature parameter depending on how close it is to the main road, city center, tourist attractions,
etc. A hotel is selected if it has the best location in terms of all features from different categories not
only one. In fact, there is no ideal category k in final solution. This issue becomes more complex when
a group of people want to choose a hotel. In this case, different cases of agreement within a group
including unanimous consensus and partial agreement, e.g., “almost all”, “most”, and “more than
50%”, are considered to obtain the collective view based on individuals’ opinions. Thus, an alternative
aggregation operator is required to deal with multi-polar fuzzy attributes in group decision-making.

In a group decision process with multi-polar inputs, the performance of alternatives are judged by
each decision maker with respect to each criterion. The main problem is to compare these judgements
and reach a consensus among them. The existing aggregation methods usually consider weighted or
unweighted cases under a unanimous agreement [15–23]. However, besides the importance degrees
of experts, the consensus degree for a fuzzy majority of the experts and different choices of experts’
judgments at a consensus level should be taken into account in the proposed alternative aggregation
operator to reach more reliable methodology. Moreover, due to the extreme applicability of FSSs
in MAGDM problems with multi-polar fuzzy soft input information, adaptability of the proposed
aggregation operator for m-polar fuzzy soft sets should be studied. To do this, an extension of fuzzy
soft sets into the m-polar fuzzy soft sets, where the values of membership functions fp are extended
from the unit interval [0, 1] into the cubic [0, 1]m, needs to be developed.

Until now, weighted aggregation operators for multi-polar fuzzy soft arguments have not been
considered. Thus, this study was carried out to develop some weighted m-polar aggregation operators
which cover different scenarios at the consensus degree for a fuzzy majority expressed by linguistic
variables, such as “most”, “much more than 70%”, and “more than half”. The main goal is to
design FS-set-based algorithms for finding the best solution in group decision-making with weighted
multi-polar input information according to the proposed aggregation methods. To achieve this goal,
the following problems are addressed in this study: (i) how to express the multi-polarity of input
data under fuzzy soft environment; (ii) how to generate an aggregation method based on the fuzzy
majority concept for weighted multi-polar inputs; (iii) how to apply the proposed aggregation method
for finding the solution in group decision-making problems; and (iv) how to analyze the final result
obtained by the proposed algorithm. Accordingly, there are four main contributions of this research as
follows: (i) to define a new concept m-polar fuzzy soft set; (ii) to introduce m-polar fuzzy soft weighted
aggregation operators based on the fuzzy majority concept; (iii) to design m-polar FS-based algorithms
for finding the solution in group decision-making; and (iv) to give some illustrative examples for
validating and comparing the results.

The rest of this paper is organized as the following. Section 2 represents some basic definitions
and concepts from the related works. Section 3 gives a new aggregation operator, called M-pFSMWM,
for weighted m-polar fuzzy soft data. This new procedure aggregates the experts’ judgments based on
their importance degrees, a linguistic or numerical consensus level between the experts, and different
choices of experts’ judgments at the consensus level. Some of its desirable properties as well as special
families of M-pFSMWM operator according to different values of consensus degree α and weighting
vector ω are studied. In Section 4, a new score value function is developed to design an algorithm for
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ranking alternatives in MAGDM problems based on the M-pFSMWM operator and a new m-polar
fuzzy soft preference relation. To compare the proposed M-pFSMWM operator with some existing
aggregation methodologies, in Section 5, the m-polar fuzzy soft induced ordered weighted average
(M-pFSIOWA) operator and the m-polar fuzzy soft induced ordered weighted geometric (M-pFSIOWG)
operator, which are the extensions of IOWA and IOWG operators, respectively, are developed and
their properties are considered. We also present an algorithm to solve MAGDM problems based on
M-pFSIOWA and M-pFSIOWG operators. Section 6 focuses on the efficiency of proposed techniques
by some numerical examples. Finally, in Section 7, we discuss the advantages and limitations of
our approach.

2. Preliminaries

This section recalls some definitions about the weighted aggregation operators, m-polar fuzzy
sets, and fuzzy soft sets to achieve our main aim, proposing new algorithms for solving group
decision-making based on alternative m-polar fuzzy soft aggregation operators, in the next sections.

2.1. Weighted Aggregation Operator

The weighted minimum and the weighted maximum are two important aggregation operators
dealing with objects having non-negative weights ω1, · · · , ωK such that ∑K

i=1 ωi = 1. However, there is
no unique solution to formulate them. For instance, Fagin and Wimmers [2] introduced the below
formula to obtain the weighted minimum and the weighted maximum, respectively.

min⊗ω1,··· ,ωK
(x1, · · · , xK) =

K

∑
i=1

[
i · (ωσ(i) −ωσ(i+1)) ·min(xσ(1), · · · , xσ(i))

]
(1)

max⊗ω1,··· ,ωK
(x1, · · · , xK) =

K

∑
i=1

[
i · (ωσ(i) −ωσ(i+1)) ·max(xσ(1), · · · , xσ(i))

]
(2)

where σ is a permutation that orders the weights as follows: ωσ(1) ≥ ωσ(2) ≥ · · · ≥ ωσ(K) and
ωσ(k+1) = 0.

The IOWA operator, introduced by Yager and Filev [6], and the IOWG operator, given by Xu and
Da [7], are also some commonly used tools for aggregating weighted objects. The IOWA operator is
defined by

IOWA(〈ω1, x1〉, · · · , 〈ωK, xK〉) =
K

∑
j=1

wj · yj (3)

where yj is the value of xi that has the jth largest ωi and ωi in 〈ωi, xi〉 is referred to as the order inducing
variable and xi as the argument variable. The weights w1, · · · , wK such that ∑K

i=1 ωi = 1 are the
associated weights to the IOWA operator that can be defined by a quantifier function Q : [0, 1]→ [0, 1].
Here, the re-ordering step of xis is carried out by the variable ωi rather than the value of xi, that is
used to handle the re-ordering step in OWA operator, i.e., the collection x1, · · · , xK is re-ordered as
〈max{ωi}, y1〉 ≥ · · · ≥ 〈min{ωi}, yK〉.

An IOWG operator is defined by

IOWG(〈ω1, x1〉, · · · , 〈ωK, xK〉) =
K

∏
j=1

yj
wj (4)

where yj is the value of xi that has the jth largest ωi and ωi in 〈ωi, xi〉 is referred to as the order
inducing variable and xi as the argument variable. Note that here also the re-ordering step is based on
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the inducing variable ωi and weights w1, · · · , wK such that ∑K
i=1 ωi = 1 are the associated weights to

the IOWG operator.

2.2. Fuzzy Sets

Today, fuzzy sets are known as an effective tool for modeling vague data [32–35]. If U is
a non-empty set of elements, then a fuzzy subset X of U is a set of ordered pairs (u, µX(u)) such
that u ∈ U and µX : U → [0, 1] is a membership function where µX(u) shows the membership
degree of element u in X. Any fuzzy set R in U ×U is called a fuzzy relation on U. If R represents
a fuzzy preference relation on U, then, for each pair (u, v) ∈ U × U, the value µR(u, v) shows
the preference degree of u over v. Here, µR(u, v) = 0.5 indicates indifference between u and v
(u ∼ v), while µR(u, v) ∈ (0.5, 1] shows u is preferred to v (u � v). Moreover, generally, we have
µR(u, v) + µR(v, u) = 1.

Theorem 1 (Multiplicative transitivity). [36] If u(.) is a utility function on the set X = {x1, · · · , xn} such
that the value u(xi) = ui shows the utility of alternative xi ∈ X, then the fuzzy preference relation R defined by
µR(xi, xj) = rij =

ui
ui+uj

, which is a fuzzy preference relation satisfying multiplicative transitivity condition,

i.e.,
rji
rij

rkj
rjk

= rki
rik

for all i, j, k ∈ {1, · · · , n}.

To extend the traditional fuzzy sets dealing with unipolar data into the multi-polar information,
the concept of m-polar fuzzy set is defined as below.

Definition 1 (m-polar fuzzy set). [37] An m-polar fuzzy set (M-pFS) X on U is a mapping µ : U →
[0, 1]m, where [0, 1]m refers to as the multiplication of [0, 1] × · · · × [0, 1] m-times, such that µ(u) =(
(µ1(u), · · · , µm(u)

)
, 0 = (0, 0, · · · , 0) and 1 = (1, 1, · · · , 1) are the least and greatest elements, respectively,

and µc(u) = (1− µ1(u), · · · , 1− µm(u)) shows its complement. The set of all m-polar fuzzy sets over U is
represented by m(U).

If {µk}k is a family of M-pFSs over the universe U, then for any u ∈ U:

1. If µs
i (u) ≤ µs

j (u) for all s = 1, · · · , m, then µi ≤ µj.
2. (

∨
kµk)(u) = supk{µk(u)} = (supk{µ1

k(u)}, · · · , supk{µm
k (u)}).

3. (
∧

kµk)(u) = infk{µk(u)} = (infk{µ1
k(u)}, · · · , infk{µm

k (u)}).

2.3. Fuzzy Soft Sets

Theory of soft sets is presented based on the approximate descriptions of the set U. A soft set is
characterized by a set-valued mapping f : P→ 2U where P is a set of parameters and 2U shows the
power set of U. By combining the definitions of fuzzy sets and soft sets a new concept called fuzzy
soft set is proposed.

Definition 2 (Fuzzy soft set). [12] A fuzzy soft set (FSS), denoted by fP or ( f , P), is a mapping f : P →
[0, 1]U where for every p ∈ P, f (p) is a fuzzy subset of U with membership function fp : U → [0, 1] where
0̃ and 1̃, defined by 0̃(p)(u) = 0 and 1̃(p)(u) = 1 ∀u ∈ U and p ∈ P, is called the null fuzzy soft set and
the absolute fuzzy soft set, respectively. Moreover, the complement of ( f , P), denoted by ( f c, P), is defined by
f c : P→ [0, 1]U where ∀p ∈ P, f c

p(u) = 1− fp(u) for all u ∈ U.

If {( fk, Pk)}k is a family of FSSs over the universe U, then, for any u ∈ U:

1. If Pi ⊂ Pj and fi(p)(u) ≤ f j(p)(u) for all p ∈ Pi, then ( fi, Pi)≤̃( f j, Pj).
2. (

∨̃
k fk)(p)(u) = supk{ fk(p)(u)} for all p ∈ ∪kPk.

3. (
∧̃

k fk)(p)(u) = infk{ fk(p)(u)} for all p ∈ ∩kPi.
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3. A New Weighted Aggregation Operator for M-pFSSs

In this section, we introduce a new weighted aggregation operator, called M-pFSMWM operator,
to improve the aggregating tools for multi-polar inputs with non-negative weights under fuzzy soft
environment. The advantages of this new operator is also demonstrated by some theorems and
properties. To this end, we first develop the new concept of m-polar fuzzy soft sets (M-pFSS) and then
introduce the M-pFSMWM operator in the domain of m-polar fuzzy soft sets.

3.1. m-Polar Fuzzy Soft Sets

Motivated by m-polar fuzzy sets given in Definition 1, the notion of m-polar fuzzy soft set is
developed to model data dealing with multi-polar or multi-feature attributes. Basic operations of
m-polar fuzzy soft sets are also discussed in this section.

Definition 3 (m-polar fuzzy soft set). Let U and P be two non-empty sets of alternatives and parameters,
respectively. The pair ( f , P) where f is the mapping f : P → m(U) such that for any p ∈ P the f (p) is an
m-polar fuzzy subset of U can be defined as an m-polar fuzzy soft set (M-pFSS) over U. It means, for each
p ∈ P and any u ∈ U, f (p)(u) is an m-tuple fp(u) = ( f 1

p(u), f 2
p(u), · · · , f m

p (u)) such that the f s
p(u),

for s = 1, 2, · · · , m, represents the relation between object u ∈ U and feature s of parameter p.

The set of all m-polar fuzzy soft sets is shown by m f s(U). Furthermore, an m-polar fuzzy soft
set ( f , P) is called a null M-pFSS, shown by 0̃, or an absolute M-pFSS, shown by 1̃, if for any p ∈ P,
f s(p)(u) = 0 and f s(p)(u) = 1, respectively, for all u ∈ U and 1 ≤ s ≤ m. The complement of M-pFSS
( f , P) is also an M-pFSS, shown by ( f c, P), where for any p ∈ P and u ∈ U: f sc(p)(u) = 1− f s(p)(u)
for all s = 1, 2, · · · , m.

Example 1. Let us suppose a person wants to rate four restaurants {x1, x2, x3, x4} according to the parameters
{p1 = Location, p2 = Meal, p3 = Services}. Let he/she considers the different aspects of these parameters as
follows: The location of the restaurants includes close to the main road, in green surroundings, and in shopping
mall. The meal of the restaurants includes main course, appetizer (starter), and dessert. The services of the
restaurants include parking lot, live music, and free Wi-Fi connectivity.

Assume that the person uses the linguistic variables “No” (0), “Yes” (1), “Very Poor” (0), “Poor” (0.1),
“Medium Poor” (0.3), “Medium” (0.5), “Medium Good”(0.7), “Good” (0.9), “Very Good” (1) “Very Far” (0),
“Far” (0.1), “Medium Far” (0.3), “Medium Close”(0.7), “Close” (0.9), and “Very Close” (1) shown in Table 1 for
describing the performance of each alternative with respect to these parameters.

Table 1. Linguistic variables for describing each alternative with respect to the parameters.

U x1 x2 x3 x4

p1:
p1

1 Close Far Very Far Very Close
p2

1 No No Yes Yes
p3

1 Yes Yes No No

p2:
p1

2 Very Good Medium Medium Poor Good
p2

2 Very Poor Good Medium Good
p3

2 Medium Very Good Poor Medium

p3:
p1

3 Yes Yes Yes No
p2

3 No Yes Yes Yes
p3

3 Medium Good Medium Poor Good
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Thus, a three-polar fuzzy soft set (that is shown in Table 2) can help he/she to explain his/her opinion about
these four restaurants.

Table 2. Tabular representation of M-pFSS ( f , P).

U p1 p2 p3

x1 (0.9,0,1) (1,0,0.5) (1,0,0.7)
x2 (0.1,0,1) (0.5,0.9,1) (1,1,0.5)
x3 (0,1,0) (0.3,0.5,0.1) (1,1,0.1)
x4 (1,1,0) (0.9,0.9,0.5) (0,1,0.9)

For example, if the person considers the meal of the restaurant x1, then the 3-tuple (1,0,0.5) means
that the main course of the restaurant x1 is very good while the starter and the dessert are very poor and
medium, respectively.

Definition 4. Let {( fk, Pk)}k be a family of M-pFSSs over the common universe U and parameter sets Pk.
Then, for any u ∈ U:

1. ( fi, Pj)≤̃( f j, Pj) if Pi ⊆ Pj and f s
i (a)(u) ≤ f s

j (a)(u) for all a ∈ Pi and s = 1, 2, · · · , m.
2. (

∨̃
k fk)(a)(u) = supk{ fk(a)(u)} = (supk{ f 1

k (a)(u)}, · · · , supk{ f m
k (a)(u)}), for all a ∈ ⋃k∈KPk.

3. (
∧̃

k fk)(a)(u) = infk{ fk(a)(u)} = (infk{ f 1
k (a)(u)}, · · · , infk{ f m

k (a)(u)}), for all a ∈ ⋂k∈KPk.

Proposition 1. Let U and F be the universal sets of objects and parameters, respectively, and P, Q, and E
are some subsets of F. Assume that ( f , P), (g, Q), and (h, E) are some m-polar fuzzy soft sets over U where
fp, gq, he ∈ m(U) for all p ∈ P, q ∈ Q, and e ∈ E. Then:

1. ( f , P)∨̃0̃ = ( f , P), ( f , P)∧̃0̃ = 0̃ and ( f , P)∨̃1̃ = 1̃ and ( f , P)∧̃1̃ = ( f , P).
2. (Idempotent) ( f , P)∨̃( f , P) = ( f , P) and ( f , P)∧̃( f , P) = ( f , P).
3. (Commutative) ( f , P)∨̃(g, Q) = (g, Q)∨̃( f , P) and ( f , P)∧̃(g, Q) = (g, Q)∧̃( f , P).
4. (Associative) ( f , P)∨̃

[
(g, Q)∨̃(h, E)

]
=
[
( f , P)∨̃(g, Q)

]
∨̃(h, E) and

( f , P)∧̃
[
(g, Q)∧̃(h, E)

]
=
[
( f , P)∧̃(g, Q)

]
∧̃(h, E).

5. (Distributive) ( f , P)∨̃
[
(g, Q)∧̃(h, E)

]
=
[
( f , P)∨̃(g, Q)

]
∧̃
[
( f , P)∨̃(h, E)

]
and

( f , P)∧̃
[
(g, Q)∨̃(h, E)

]
=
[
( f , P)∧̃(g, Q)

]
∨̃
[
( f , P)∧̃(h, E)

]
.

Proof. Trivial by Definitions 3 and 4.

Proposition 2 (De Morgan Law). Let U and F be the universal sets of objects and parameters, respectively.
Assume that ( f , P) and (g, Q) are two m-polar fuzzy soft sets over U where P and Q are the subsets of F and
fp, gq ∈ m(U) for all p ∈ P and q ∈ Q. Then:

1.
[
( f , P)∨̃(g, Q)

]c
= ( f c, P)∧̃(gc, Q).

2.
[
( f , P)∧̃(g, Q)

]c
= ( f c, P)∨̃(gc, Q).

Proof. It is proved easily by Definitions 3 and 4.

3.2. The M-pFSMWM Operator

In this subsection, we develop the M-pFSMWM operator in the domain of M-pFSSs. This new
aggregation operator is used to reach the process of consensus in group decision-making problems
with weighted m-polar fuzzy soft inputs. Additionally, we show the M-pFSMWM is a well-defined
operator having the behavioral properties.

Let DK = {( fk, P)| fk : P→ m(u), fk ∈ m f s(U), k = 1, 2, · · · , K} be a collection of m-polar fuzzy
soft sets over U and P, such that for all k: fk(p)(u) = ( f 1

k (p)(u), · · · , f m
k (p)(u)) ∈ [0, 1]m for p ∈ P and

u ∈ U where [0, 1]m refers to as the multiplication of [0, 1]× · · · × [0, 1] m-times, with non-negative
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weights ω1, · · · , ωK ∈ [0, 1] where ∑K
k=1 ωk = 1. In the following, we develop a new weighted

aggregation operator for m-polar fuzzy soft sets (M-pFSMWM operator) based on the weighted
minimum operator given in Equation (1) and M-pFS maximum defined in Definition 4.

Definition 5 (M-pFSMWM Operator). Let DK = {( fk, P) ∈ m f s(U)|k = 1, 2, · · · , K} be a collection of
m-polar fuzzy soft sets over U and P with non-negative weights ω1, · · · , ωK ∈ [0, 1] such that ∑K

k=1 ωk = 1.
Let value α where α ∈ {1, 2, · · · , K} be the required consensus degree. An M-pFSMWM operator of dimension
K and at consensus degree α is a mapping M − pFSMWM(K,α,m) :

⋃
K∈N(m f s(U))K → m f s(U) that is

defined by

M− pFSMWM(K,α,m)
〈

f1, · · · , fK
〉
(p)(u) =

〈
CK,α
max
l=1

{ α

∑
k=1

k · (ωσ(δk(l)) −ωσ(δk+1(l)))·

min{ f 1
σ(δ1(l))

(p)(u), · · · , f 1
σ(δk(l))

(p)(u)}
}

δk(l)∈∆K,α(l)
, · · · ,

CK,α
max
l=1

{ α

∑
k=1

k · (ωσ(δk(l)) −ωσ(δk+1(l)))·

min{ f m
σ(δ1(l))

(p)(u), · · · , f m
σ(δk(l))

(p)(u)}
}

δk(l)∈∆K,α(l)

〉
(5)

for u ∈ U and p ∈ P where the sum ∑α
k=1[...] refers to as the weighted minimum over different choices α of

K, σ is the permutation operator, CK,α = K!
α!(K−α)! is the binomial coefficient, and ∆K,α(l) is an indexing set,

where card(∆K,α(l)) = α, including lth α-combination from a set of K elements. Thus, {δ1(l) · · · , δα(l)}
CK,α
l=1

traverses all the α-combinations of the set {1, 2, · · · , K} and f s
δk(l)

(p)(u) represents the δkth element in lth
α-combination of K for feature s; s = 1, 2, · · · , m.

In the following, the various properties of M-pFSMWM operator including idempotency,
boundedness, monotonicity, and commutativity (symmetry) are discussed.

Theorem 2. Let {( fk, P)}K
k=1 and {(gk, P)}K

k=1, for k = 1, 2, · · · , K, be two collections of some m-polar fuzzy
soft sets over U and P with non-negative weights ωk that for all k: ωk ∈ [0, 1] and ∑K

k=1 ωk = 1. Let the
required consensus degree α is given. Then, the M-pFSMWM operator has the following properties.

1. (Idempotency) If ( fk, P) = ( f , P) for all k, then

M− pFSMWM(K,α,m)〈( f1, P), · · · , ( fK, P)〉 = ( f , P)

2. (Boundary Conditions)
M− pFSMWM(K,α,m)〈0̃, · · · , 0̃〉 = 0̃

and
M− pFSMWM(K,α,m)〈1̃, · · · , 1̃〉 = 1̃

3. (Monotonicity) If ( fk, P)≤̃(gk, P) for all k, then

M− pFSMWM(K,α,m)〈( f1, P), · · · , ( fK, P)〉≤̃M− pFSMWM(K,α,m)〈(g1, P), · · · , (gK, P)〉

4. (Boundedness)

min
k
{( fk, P)}K

k=1≤̃M− pFSMWM(K,α,m)〈( f1, P), · · · , ( fK, P)〉≤̃max
k
{( fk, P)}K

k=1
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5. (Commutativity or Symmetry)

M− pFSMWM(K,α,m)〈( f1, P), · · · , ( fK, P)〉 = M− pFSMWM(K,α,m)〈( fσ(1), P), · · · , ( fσ(K), P)〉

where σ is any permutation of {1, 2, · · · , k};

Proof. 1. Let for all k: ( fk, P) = ( f , P). Thus, it is clear that the distinct α-combinations of K
objects is reduced to the trivial case K-combination of K with CK,K = 1 and ωk = 1

K for all k,
i.e., the unweighted case. Thus,

M− pFSMWM(K,α,m)
〈

f1, · · · , fK
〉
(p)(u) = M− pFSMWM(K,K,m)

〈
f , · · · , f

〉
(p)(u)

= ( f 1(p)(u), · · · , f m(p)(u)) = f (p)(u)

since ∑K
k=1 k.(ωk − ωk+1). min{ f 1(p)(u), · · · , f 1(p)(u)} = ∑K−1

k=1 k.( 1
K −

1
K ). f 1(p)(u) +

K. 1
K . f 1(p)(u).

2. First, assume for all k: ( fk, P) = 0̃. Then, by Property 1 of Theorem 2, we have M −
pFSMWM(K,α,m)〈0̃, · · · , 0̃〉 = 0̃. The property M − pFSMWM(K,α,m)〈1̃, · · · , 1̃〉 = 1̃ follows
the similar way for ( fk, P) = 1̃, ∀k.

3. Let ( fk, P)≤̃(gk, P) for all k. Then, for each s = 1, 2, · · · , m: f s
k (p)(u) ≤ gs

k(p)(u).
Thus, the condition is hold since min{ f s

σ(δ1(l))
(p)(u), · · · , f s

σ(δk(l))
(p)(u)}δk(l)∈∆K,α(l) ≤

min{gs
σ(δ1(l))

(p)(u), · · · , gs
σ(δk(l))

(p(u))}δk(l)∈∆K,α(l): s = 1, 2, · · · , m, for any l of the CK,α possible
choices of K.

4. Let for p ∈ P and u ∈ U: mink f s
k (p)(u) = B∗s and maxk f s

k (p)(u) = B∗s for each s = 1, 2, · · · , m.
Then, for all k: B∗ ≤ fk(p)(u) ≤ B∗ where B∗ = (B1

∗, · · · , Bm
∗ ) and B∗ = (B∗1, · · · , B∗m). Hence,

by Properties 1 and 3 of Theorem 2, the inequality holds.
5. It is trivial from Definition 5.

Theorem 3. Let ( f1, P), · · · , ( fK, P), where K ≥ 2, be some m-polar fuzzy soft sets over U and P
such that for all k: fk(p)(u) = ( f 1

k (p)(u), · · · , f m
k (p)(u)) ∈ [0, 1]m for p ∈ P and u ∈ U,

with non-negative weights ω1, · · · , ωK ∈ [0, 1] where ∑K
k=1 ωk = 1. Then, the aggregated value

M− pFSMWM(K,α,m)
〈
( f1, P), · · · , ( fK, P)

〉
is still an m-polar fuzzy soft set over U.

Proof. Let DK = {( fk, P)| fk(p)(u) = ( f 1
k (p)(u), · · · , f m

k (p)(u)) ∈ [0, 1]m; k = 1, 2, · · · , K, p ∈ P}
be a set of m-polar fuzzy soft arguments. Since, for each k, 0 ≤ fk(p)(u) ≤ 1, then clearly
by Theorem 2 we have 0 ≤ M − pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) ≤ 1. This means that
M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) ∈ [0, 1]m. Now, define the function F : P→ m(U) such that
for any p ∈ P and u ∈ U, F(p)(u) = M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u), given by Equation (5),
which is an m-tuple of real numbers in the unit interval [0, 1]. This shows the M− pFSMWM operator
of m-polar fuzzy soft sets is still an m-polar fuzzy soft set.

Remark 1. According to Definition 5 and Theorem 3, weights in M-pFSMWM operator first re-order the
position of arguments, means in the re-ordered list the first object has the biggest weight. Then, the aggregated
value is computed based on the weighting vector ω = (ω1, · · · , ωK)

T related to the m-polar fuzzy soft sets
( f1, P), · · · , ( fK, P). Thus, the weights reflect positions and importance degrees of input arguments in the
aggregated value in comparison with IOWA and IOWG operators where weights only show the position of
arguments. Moreover, if α shows the consensus degree, then the α-combinations of set {1, 2, · · · , K} express
different scenarios of agreement among K decision makers where the decision of first, second, ... , and last α

individuals are checked one by one. Further, by choosing l = 1, 2, · · · , CK,α, all possible choices of agreement
between K experts at consensus degree α are considered. Thus, the concept of fuzzy majority, expressed by
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linguistic variables such as “half plus one”, “more than 75%”, “most”, and “almost all” can be taken into
account by choosing K

2 + 1 ≤ α ≤ K if K is an even number and K+1
2 ≤ α ≤ K if K is an odd number.

From Theorems 2 and 3, the M− pFSMWM operator degenerates to some special aggregation
operators as follows.

Theorem 4. Let {( fk, P)}K
k=1 be a set of m-polar fuzzy soft sets over U with non-negative weights ωk that,

for all k, ωk ∈ [0, 1] and ∑K
k=1 ωk = 1. Then, the M − pFSMWM operator degenerates to some special

aggregation operators as follows.

1. If ω = (0, · · · , 1︸︷︷︸
j−th

, · · · , 0)T i.e., ωj = 1 for k = j and ωk = 0 for k 6= j, then

M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = f j(p)(u)

2. When K = α, we have

M− pFSMWM(K,α,m)〈 f1 · · · , fK〉(p)(u) = 〈
⊗

min
ω1,··· ,ωK

{ f 1
k (p)(u)}K

k=1, · · · ,
⊗

min
ω1,··· ,ωK

{ f m
k (p)(u)}K

k=1〉

which is called the M-pFS weighted minimum operator.
3. When K = α: if ω = ( 1

K , 1
K , · · · , 1

K )
T , then

M− pFSMWM(K,α,m)〈 f1 · · · , fK〉(p)(u) = 〈min
k
{ f 1

k (p)(u)}K
k=1, · · · , min

k
{ f m

k (p)(u)}K
k=1〉

which is the M-pFS minimum operator.
4. When K = α: if fσ(1)≥̃ · · · ≥̃ fσ(K); and ωσ(1) = 1 and ωσ(k) = 0 for all k 6= 1, then

M− pFSMWM(K,α,m)〈 f1 · · · , fK〉(p)(u) = 〈max
k
{ f 1

k (p)(u)}K
k=1, · · · , max

k
{ f m

k (p)(u)}K
k=1〉

which is the M-pFS maximum operator.
5. When K = α: If fσ(1)≥̃ · · · ≥̃ fσ(K); and ωσ(K) = 1 and ωσ(k) = 0 for all k 6= K, then

M− pFSMWM(K,α,m)〈 f1 · · · , fK〉(p)(u) = 〈min
k
{ f 1

k (p)(u)}K
k=1, · · · , min

k
{ f m

k (p)(u)}K
k=1〉

Proof. 1. Let ω = (ω1, · · · , 1, · · · , ωK)
T , then in any lth α-combination of K objects involving

jth element, the value of f j(p)(u) for p ∈ P and u ∈ U is interpreted as the first object, i.e.,
fσ(δ1(l))(p)(u), where ωσ(δ1(l)) = ωj = 1 and for rest ωk = 0. Thus, by using Equation (5):
M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = ( f 1

j (p)(u), · · · , f m
j (p)(u)) = f j(p)(u).

2. Let K = α. Then, we have CK,K = 1 (only one trivial combination) and thus ∆K,K(1) = {1, · · · , K}.
Hence, by Equation (5):

M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = M− pFSMWM(K,K,m)〈 f1, · · · , fK〉(p)(u)

=
〈 ⊗

min
ω1,··· ,ωK

{ f 1
1 (p)(u), · · · , f 1

K(p)(u)}, · · · ,

⊗
min

ω1,··· ,ωK
{ f m

1 (p)(u), · · · , f m
K (p)(u)}

〉
3. When ω = ( 1

K , 1
K , · · · , 1

K ), then the resultant weighted minimum in Part 2 of Theorem 4 acts as
the standard (unweighted) minimum operator. Thus, the M− pFMWM operator is derived by
the minimum operator, easily.
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4. When ωσ(1) = 1 and ωσ(k) = 0 for all k 6= 1, then by Part 1 of Theorem 4 we have
M − pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = fσ(1)(p)(u) that is the largest argument since
fσ(1)≥̃ · · · ≥̃ fσ(K), i.e., the M− pFMWM operator is derived by the maximum operator.

5. When ωσ(K) = 1 and ωσ(k) = 0 for all k 6= K, then by Part 1 of Theorem 4 we have
M − pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = fσ(K)(p)(u) that is the lowest argument since
fσ(1)≥̃ · · · ≥̃ fσ(K), i.e., the M− pFMWM operator is derived by the minimum operator.

4. Application of M-pFSMWM Operator in Group Decision-Making

In this section, the M-pFSMWM operator is applied to handle group decision-making problems
with weighted m-polar fuzzy soft inputs.

In a group decision-making problem with m-polar fuzzy soft information, let U =

{u1, u2, · · · , uN} and P = {p1, p2, · · · , pM} be the finite sets of alternatives and parameters,
respectively, where λ = (λp1 , λp2 , · · · , λpM )T is the weighting vector for the parameter set P such that
∀y: λpy ∈ [0, 1] and ∑M

y=1 λpy = 1. Additionally, let each py be a multi-polar parameter with m different
aspects or features such that λpy = (λ1

py , λ2
py , · · · , λm

py)
T is the weighting vector for the parameter

py ∈ P where ∀s: λs
py ∈ [0, 1] and ∑m

s=1 λs
py = 1. Suppose that DK = { f1, f2, · · · , fK} is the set of

decision makers and ω = (ω1, ω2, · · · , ωK)
T is the weighting vector of fk where, for all k: ωk ∈ [0, 1]

and ∑K
k=1 ωk = 1. Assume that each decision maker fk applies an m-polar fuzzy soft set to present the

linguistic evaluation about alternatives such that fk(py)(ui) = ( f 1
k (py)(ui), · · · , f m

k (py)(ui)) ∈ [0, 1]m

and each f s
k (py)(ui) shows the satisfaction degree of alternative ui about feature s of attribute py.

Moreover, let the required consensus degree α mean an alternative may be selected if it is acceptable
for at least α individuals.

After each expert prepares a linguistic or numerical judgment of alternatives based on the
parameters py, the first stage is to reach consensus among a fuzzy majority or a partial agreement
of them. This step is handled through the proposed aggregation operator M-pFSMWM by Equation
(5) of the previous Section 3. The second stage of a MAGDM problem aims to find the best option
with respect to the collective view. Thus, a ranking procedure is needed to derive the optimum choice.
In the following subsections, we first define a fuzzy soft preference relationship over the universe U
based on the collective view obtained by M-pFSMWM operator and then, propose a new score value
function for ranking the preference order of objects.

4.1. A Fuzzy Soft Preference Relationship

The aim of this section is to define an square matrix N × N based on a fuzzy soft preference
relationship over the set of alternatives U.

Let the m-tuple M − pFSMWM(K,α,m)〈 f1, · · · , fK〉(py)(ui) = (u1
iy, · · · , um

iy) present the
performance of alternative ui ∈ U based on parameter py ∈ P and collective view obtained
by M-pFSMWM operator. We define a fuzzy soft preference relationship on U by the mapping
R̃ : P → [0, 1]U×U where for each py ∈ P, R̃(py) is a fuzzy preference relationship on U which is
characterized by the membership function R̃(py) : U ×U → [0, 1]. For any (ui, uj) ∈ U ×U we define
R̃(py)(ui, uj) = r̃ij(py) such that

r̃ij(py) =
∑m

s=1 λs
py us

iy

∑m
s=1 λs

py us
iy + ∑m

s=1 λs
py us

jy
(6)

Definition 6. Suppose that U = {u1, u2, · · · , uN} is the set of alternatives and py ∈ P = {p1, p2, · · · , pM}
is a parameter including m different aspects {p1

y, p2
y, · · · , pm

y }. Let λpy = (λ1
py , · · · , λm

py)
T ∈ [0, 1]m show the
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weighting vector for parameter py ∈ P where ∑m
s=1 λs

py = 1. If R̃(py) is the fuzzy preference relationship on U
defined by (6), then the N × N matrix R̃(py) = [r̃ij(py)]N×N defined by

R̃(py) = [r̃ij(py)]N×N =


r̃11(py) r̃12(py) · · · r̃1N(py)

r̃21(py) r̃22(py) · · · r̃2N(py)
...

...
...

r̃N1(py) r̃N2(py) · · · r̃NN(py)

 (7)

where r̃ij(py) ∈ [0, 1] interprets the degree of preference of the alternative ui over the alternative uj with respect
to the parameter py ∈ P. Moreover, r̃ii(py) = 0.5 for all 1 ≤ i ≤ N.

In Definition 6, r̃ij(py) = 0.5 shows indifference between ui and uj based on the parameter py ∈ P,
which is represented by ui∼py uj, while r̃ij(py) ∈ (0.5, 1] shows ui is preferred to uj based on the
parameter py ∈ P at degree r̃ij(py), i.e., ui�py uj. Moreover, the fuzzy soft preference relationship
R̃ : P→ [0, 1]U×U can be represented by matrix R̃ = [r̃ijy]N×N where each entry r̃ijy = [r̃ij(py)]N×N is
in fact the N × N matrix R̃(py). Hence, we have

R̃ = [r̃ij]N×N =
[
[r̃ij(p1)]N×N [r̃ij(p2)]N×N · · · [r̃ij(pM)]N×N

]
Proposition 3. The fuzzy preference relationship R̃(py) clearly satisfies the following statements:

1. r̃ij(py) + r̃ji(py) = 1

2. (
r̃ji(py)

r̃ij(py)
)(

r̃kj(py)

r̃jk(py)
) =

r̃ki(py)

r̃ik(py)

3. If r̃ij(py) ≥ 0.5 and r̃jk(py) ≥ 0.5, then r̃ik(py) ≥ max{r̃ij(py), r̃jk(py)}.

for all i, j, k = 1, 2, · · · , N and y = 1, 2, · · · , M.

Proof. Item 1 is easily checked by Equation (6). Parts 2 and 3 are obtained by using r̃ij(py) =
∑m

s=1 λs
py us

iy

∑m
s=1 λs

py us
iy+∑m

s=1 λs
py us

jy
= 1

1+
∑m

s=1 λs
py us

jy
∑m

s=1 λs
py us

iy

and
r̃ji(py)

r̃ij(py)
= 1

r̃ij(py)
− 1 ( see also Theorem 1).

Proposition 3 says that the fuzzy preference relationship R̃(py) satisfies the reciprocity and the
restricted max-max transitivity. This means that, if ui�py uj and uj�py uk, then ui�py uk.

Definition 7. Let R̃(py) = [r̃ij(py)]N×N be the N × N matrix defined in Definition 6. Then, the N × N
matrix Ã = [ãij]N×N defined by

Ã = [ãij]N×N =


ã11 ã12 · · · ã1N
ã21 ã22 · · · ã2N

...
...

...
ãN1 ãN2 · · · ãNN

 (8)

where is an M-polar fuzzy preference relationship on U characterized by the membership function Ã : U×U →
[0, 1]M and, for 1 ≤ i, j ≤ N, ãij = (ã1

ij, ã2
ij, · · · , ãM

ij ) ∈ [0, 1]M shows the degrees of preference of the

alternative ui over the alternative uj with respect to the parameter set P. For each y: ãy
ij = 1 if r̃ij(py) > 0.5,

ãy
ij = 0.5 if r̃ij(py) = 0.5, and ãy

ij = 0 if r̃ij(py) < 0.5. Clearly, for all i, each entry ãii = (0.5, 0.5, · · · , 0.5)︸ ︷︷ ︸
M−times

.
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For all i, j: Ã(ui, uj) = ãij = (0.5, 0.5, · · · , 0.5)︸ ︷︷ ︸
M−times

shows indifference between ui and uj based on

parameter set P, which is represented by ui∼uj, while Ã(ui, uj) = ãij = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

shows ui is

preferred to uj (ui�uj) for all parameters.

Proposition 4. The following statements hold for M-polar fuzzy preference relation Ã.

1. ãij + ãji = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

.

2. If ãij · ãjk = (ã1
ij, ã2

ij, · · · , ãM
ij ) · (ã1

jk, ã2
jk, · · · , ãM

jk ) = (ã1
ij · ã1

jk, ã2
ij · ã2

jk, · · · , ãM
ij · ã

M
jk ), then ãij · ãjk = ãik.

3. If ãij = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

and ãjk = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

, then ãik = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

.

for all i, j, k ∈ {1, 2, · · · , N}.

Proof. It is obtained easily by Proposition 3.

4.2. An Approach to Group Decision-Making Based on M-pFSMWM Operator

The second stage of a group decision-making is to reach the process of selection based on an overall
performance of alternatives in terms of the crisp or partial agreement among the experts. In this section,
we introduce a new procedure for solving group decision-making problems based on the M-pFSMWM
operator and the pairwise comparisons of alternatives that are obtained by the N×N matrix Ã defined
in Equation (8).

By using Definitions 6 and 7, a new overall score value function S : U → R over the universe U is
defined as below.

Definition 8. The mapping S : U → R defined by

Si =
N

∑
j=1,j 6=i

M

∑
y=1

λpy · ã
y
ij (9)

for i = 1, · · · , N is called the score value function over U where λpy shows the importance degree of parameter
py ∈ P and ãij = (ã1

ij, ã2
ij, · · · , ãM

ij ) ∈ [0, 1] is the entry in ith row and jth column of matrix Ã.

In the following, we apply the M-pFSMWM operator for solving MAGDM problems based on
m-polar fuzzy soft information (Algorithm 1).The proposed procedure uses Equation (9) for ranking
the preference order of objects. We also clarify the idea of the proposed method in Algorithm 1 by the
given flowchart in Figure 1.

Figure 1. Flowchart of the proposed Algorithm 1.
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Algorithm 1. Finding the optimum solution in MAGDM problems based on M-pFSMWM operator for M-pFSSs.

Input :K different m-polar fuzzy soft sets ( f1, P), · · · , ( fK , P) over the set U such that |U| = N and
|P| = M where m is the number of different aspects of each parameter and K shows the number
of decision makers. Weighting vectors ω = (ω1, ω2, · · · , ωK)

T , λ = (λp1 , λp2 , · · · , λpM )
T , and

λpy = (λ1
py

, λ2
py

, · · · , λm
py
)T for y = 1, · · · , M. Consensus degree α where α ≤ K.

Output :Optimum solution.
begin

Step 1. Calculate L = CK,α = K!
α!(K−α)! .

Step 2. for l = 1, 2, . . . , L do
Find the lth α-combination of the set {1, 2, · · · , K} presented by ∆K,α(l) where |∆K,α(l)| = α.

end
Step 3. for i = 1, 2, . . . , N do

for y = 1, 2, . . . , M do
for s = 1, 2, . . . , m do

Compute the m-tuple M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(py)(ui) = (u1
iy, · · · , um

iy) by

using Equation (5) to derive matrix C̄ = [c̄iy]N×M such that c̄iy = (u1
iy, u2

iy, · · · , um
iy).

end
end

end
Step 4. for y = 1, 2, . . . , M do

for i = 1, 2, . . . , N do
for j = 1, 2, . . . , N do

Utilize Equations (6) and (7) to compute matrix R̃(py) = [r̃ij(py)]N×N .
end

end
end
Step 5. Regarding fuzzy relation matrices R̃(py) and by Equation (8), construct the collective overall

preference matrix Ã = [ãij]N×N .
if Ã is a diagonal matrix then

There is no optimal option over U;
else

Go to the Step 6.
end
Step 6. for i = 1, 2, . . . , N do

Using Equation (9) to calculate the overall score value Si.
end
Step 7. Rank the alternatives ui based on Si and then select the best one(s).

end

Remark 2 (Analysing Algorithm 1). Let K decision makers evaluate N number of alternatives based on M
number of parameters where the m-polar fuzzy soft sets are applied to present their linguistic evaluations of the
alternatives. According to Algorithm 1, we first utilize the M-pFSMWM operator to obtain a collective view
of decision makers. The M-pFSMWM operator allows us to have not only partial agreement within a group,
such as “almost all”, “most”, “more than half” etc., but also different choices for a partial agreement at the
consensus degree α.

To this end, Algorithm 1 starts with finding the subsets ∆K,α(l) ⊆ {1, 2, · · · , K} where l = 1, 2, · · · , CK,α.
This helps us to check all possible cases of agreement between K decision makers at consensus level α. In fact,
the value of α shows the number of possible iterations of Algorithm 1 (1 ≤ α ≤ K). By repeating Steps 1 and 2
for different value α until α ≤ K, the aggregated value moves from the minimum value to the maximum value.
This guaranties Algorithm 1 is convergent (please also see Theorems 2 and 4). Then, at Step 3, matrix C̄ is driven.
Each entry of C̄ shows the performance of alternative ui based on parameter py and the collective view of experts
at degree α. In Step 4, the fuzzy preference relations R̃(py) (for py ∈ P) give a comparison of objects based on the
collective view of decision makers and each parameter py. The information of matrices R̃(py) are then converted
to the M-polar fuzzy soft preference relation Ã = [ãij]N×N , in Step 5, for providing comparison results where
ãij = (ã1

ij, ã2
ij, · · · , ãM

ij ) ∈ [0, 1]M defined by ãy
ij = 0.5 if r̃ij(py) = 0.5, ãy

ij = 1 if r̃ij(py) > 0.5, otherwise

ãy
ij = 0. Moreover, if Ã is an upper triangle matrix such that ãij = (0.5, 0.5, · · · , 0.5); ãij = (1, 1, · · · , 1) for

i < j; and ãij = (0, 0, · · · , 0) for i > j, then we have the following descending chain u1 � u2 � · · · � uN
on U. If Ã is a lower triangle matrix such that ãij = (0.5, 0.5, · · · , 0.5); ãij = (1, 1, · · · , 1) for i > j;
and ãij = (0, 0, · · · , 0) for i < j, then we have the ascending chain uN � uN−1 � · · · � u1 on U. However, if
Ã is a diagonal matrix, then there is no optimal option on U. In the last step of Algorithm 1, the best option is
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selected based on its rank in the resultant preference order. For MAGDM problems with benefit criteria, means
more is better, the alternative with the highest score can be selected as the best option. However, for the problems
dealing with cost criteria the counter condition should be considered.

5. The M-pFSIOWA and M-pFSIOWG Operators

To compare different m-polar fuzzy soft weighted aggregation operators with the proposed
operator in Section 3.2, in this section, we develop the m-polar fuzzy soft induced ordered weighted
average (M-pFSIOWA) operator and m-polar fuzzy soft induced ordered weighted geometric
(M-pFSIOWG) operator, which are the extensions of IOWA and IOWG operators, respectively.
The re-ordering step of M-pFSIOWA and M-pFSIOWG operators are defined based on the weights of
arguments ω = (ω1, · · ·ωK)

T . Since the M-pFSIOWA and M-pFSIOWG operators are defined in the
domain of M-pFSSs, these new families of IOWA and IOWG operators give more general methods for
aggregating data than traditional IOWA and IOWG operators.

Motivated by development of OWA operator and OWG operator for FSs [38,39] and IFSSs [21],
the extensions of these two aggregation operators for M-pFSSs are defined as below.

Definition 9. 1. The M-pFSIOWA operator of dimension k is the mapping M − pFSIOWA :⋃
K∈N(m f s(U))K → m f s(U) such that for an associated weighting vector w = (w1, w2, · · · , wK)

T ,
where wj ∈ [0, 1] and ∑K

j=1 wj = 1, is defined as below:

M− pFSIOWA
〈

f1, · · · , fK
〉
(py)(ui) =

〈
K

∑
j=1

wj · F1
jyi, · · · ,

K

∑
j=1

wj · Fm
jyi

〉
(10)

2. The M-pFSIOWG operator of dimension k is the mapping M − pFSIOWG :
⋃

K∈N(m f s(U))K →
m f s(U) such that for an associated weighting vector w = (w1, w2, · · · , wK)

T , where wj ∈ [0, 1] and
∑K

j=1 wj = 1, can be defined by

M− pFSIOWG
〈

f1, · · · , fK
〉
(py)(ui) =

〈
K

∏
j=1

(F1
jyi)

wj , · · · ,
K

∏
j=1

(Fm
jyi)

wj

〉
(11)

where Fs
jyi is the kth value f s

k (py)(ui) having the jth largest ωj of the weighting vector ω =

(ω1, ω2, · · · , ωK)
T for M-pFSSs ( f1, P), · · · , ( fK, P).

The main steps of these operations are the re-ordering step according to the weighting vector
ω = (ω1, ω2, · · · , ωK)

T and then determining the associated weighting vector w = (w1, w2, · · · , wK)
T

to the aggregation operators M-pFSIOWA and M-pFSIOWG. Here, for each 1 ≤ s ≤ m, 1 ≤ y ≤ M,
and 1 ≤ i ≤ N, the collection: f s

1(py)(ui), · · · , f s
K(py)(ui) is re-ordered as 〈max{ωk}, Fs

1yi〉 ≥ · · · ≥
〈min{ωk}, Fs

Kyi〉 where the weighting vector ω = (ω1, ω2, · · · , ωK)
T shows the weights of different

decision makers.

Theorem 5. Let ( f1, P), · · · , ( fK, P), where K ≥ 2, is some m-polar fuzzy soft set over U and P such
that for all 1 ≤ k ≤ K: fk(py)(ui) = ( f 1

k (py)(ui), · · · , f m
k (py)(ui)) ∈ [0, 1]m for py ∈ P and ui ∈ U,

with non-negative weights ω1, · · · , ωK ∈ [0, 1] where ∑K
k=1 ωk = 1. Then, the aggregated value M −

pFSIOWA
〈
( f1, P), · · · , ( fK, P)

〉
and M− pFSIOWG

〈
( f1, P), · · · , ( fK, P)

〉
are still an m-polar fuzzy soft

set over U.

Proof. Define the function F : P → m(U) such that for any py ∈ P and ui ∈ U, F(py)(ui) =

M − pFSIOWA〈 f1, · · · , fK〉(py)(ui) or F(py)(ui) = M − pFSIOWG〈 f1, · · · , fK〉(py)(ui). Then,
the assertion is trivial from f s

k (py)(ui) ∈ [0, 1], wk ∈ [0, 1], ∑K
k=1 wk = 1, and convexity of [0, 1].
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The following properties are inherited to M-pFSIOWA and M-pFSIOWG operators from IOWA
operator and IOWG operator, respectively.

Theorem 6. Let ( f1, P), · · · , ( fK, P) be some m-polar fuzzy soft sets over U and P with non-negative weights
ω1, · · · , ωK ∈ [0, 1] where ∑K

k=1 ωk = 1. Let w = (w1, · · · , wK)
T be the associated weighting vector to the

M-pFSIOWA and M-pFSIOWG operators. Then,

1. (Idempotency) If ( fk, P) = ( f , P) ∀k, then

M− pFSIOWA〈( f1, P), · · · , ( fK, P)〉 = ( f , P)

and
M− pFSIOWG〈( f1, P), · · · , ( fK, P)〉 = ( f , P)

2. (Monotonicity) If ( fk, P)≤̃(gk, P) ∀k, then

M− pFSIOWA〈( f1, P), · · · , ( fK, P)〉≤̃M− pFSIOWA〈(g1, P), · · · , (gK, P)〉

and
M− pFSIOWG〈( f1, P), · · · , ( fK, P)〉≤̃M− pFSIOWG〈(g1, P), · · · , (gK, P)〉

3. (Boundedness)

min
k
{( fk, P)}≤̃M− pFSIOWA〈( f1, P), · · · , ( fK, P)〉≤̃max

k
{( fk, P)}

and
min

k
{( fk, P)}≤̃M− pFSIOWG〈( f1, P), · · · , ( fK, P)〉≤̃max

k
{( fk, P)}

4. (Commutativity or Symmetry)

M− pFSIOWA〈( f1, P), · · · , ( fK, P)〉 = M− pFSIOWA〈( fσ(1), P), · · · , ( fσ(K), P)〉

and

M− pFSIOWG〈( f1, P), · · · , ( fK, P)〉 = M− pFSIOWG〈( fσ(1), P), · · · , ( fσ(K), P)〉

where σ is any permutation of {1, 2, · · · , k}.

We can also obtain some spacial cases of M-pFSIOWA and M-pFSIOWG operators by using
different choices for w.

Theorem 7. Let ( f1, P), · · · , ( fK, P) be some m-polar fuzzy soft sets over U and P with non-negative weights
ω1, · · · , ωK ∈ [0, 1] where ∑K

k=1 ωk = 1. Let w = (w1, · · · , wK)
T be the associated weighting vector to

the M-pFSIOWA and M-pFSIOWG operators. Then, the M-pFSIOWA operator and M-pFSIOWG operator
degenerate to some special aggregation operators as follows.

1. If w = ( 1
K , · · · , 1

K )
T , then

M− pFSIOWA〈 f1, · · · , fK〉(py)(ui) = 〈
1
K

K

∑
j=1

F1
jyi, · · · ,

1
K

K

∑
j=1

Fm
jyi〉

which we call the m-polar fuzzy soft arithmetic average operator, and

M− pFSIOWG〈 f1, · · · , fK〉(py)(ui) = 〈
K

∏
j=1

(F1
jyi)

1
K , · · · ,

K

∏
j=1

(Fm
jyi)

1
K 〉
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which we call the m-polar fuzzy soft geometric average operator.
2. If w = (1, 0, · · · , 0)T , then

M− pFSIOWA〈 f1, · · · , fK〉(py)(ui) = 〈max
j
{F1

jyi}K
j=1, · · · , max

j
{Fm

jyi}K
j=1〉

and
M− pFSIOWG〈 f1, · · · , fK〉(py)(ui) = 〈max

j
{F1

jyi}K
j=1, · · · , max

j
{Fm

jyi}K
j=1〉

3. If w = (0, · · · , 0, 1)T , then

M− pFSIOWA〈 f1, · · · , fK〉(py)(ui) = 〈min
j
{F1

jyi}K
j=1, · · · , min

j
{Fm

jyi}K
j=1〉

and
M− pFSIOWG〈 f1, · · · , fK〉(py)(ui) = 〈min

j
{F1

jyi}K
j=1, · · · , min

j
{Fm

jyi}K
j=1〉

Application of M-pFSIOWA and M-pFSIOWG Operators in Group Decision-Making

In this section, similar to Algorithm 1, we apply the M-pFSIOWA operator and M-pFSIOWG
operator to propose a procedure for solving MAGDM problems with M-pFS inputs as the following
Algorithm 2.

Algorithm 2. Finding the optimum solution in MAGDM problems based on M-pFSIOWA or M-pFSIOWG operators for M-pFSSs.

Input :K different m-polar fuzzy soft sets ( f1, P), · · · , ( fK , P) over the set U such that |U| = N and
|P| = M where m is the number of different aspects of each parameter and K shows the number
of decision makers. Weighting vectors ω = (ω1, · · · , ωK)

T related to the m-polar fuzzy soft sets
( f1, P), · · · , ( fK , P). Weighting vectors w = (w1, · · · , wK)

T related to the M-pFSIOWA or
M-pFSIOWG operators. λ = (λp1 , λp2 , · · · , λpM )

T , and λpy = (λ1
py

, λ2
py

, · · · , λm
py
)T for

y = 1, · · · , M.
Output :Optimum solution.
begin

Step 1. for i = 1, 2, . . . , N do
for y = 1, 2, . . . , M do

for s = 1, 2, . . . , m do
Using the associated eighting vectors w = (w1, · · · , wK)

T to compute the m-tuple
M− pFSIOWA〈 f1, · · · , fK〉(py)(ui) = (u1

iy, · · · , um
iy) or

M− pFSIOWG〈 f1, · · · , fK〉(py)(ui) = (u1
iy, · · · , um

iy) by Equation (10) or Equation (11)

and derive matrix C̄ = [c̄iy]N×M such that c̄iy = (u1
iy, u2

iy, · · · , um
iy).

end
end

end
Step 2. for y = 1, 2, . . . , M do

for i = 1, 2, . . . , N do
for j = 1, 2, . . . , N do

Utilize Equation (6) and Equation (7) to compute matrix R̃(py) = [r̃ij(py)]N×N based on
the matrix C̄ = [c̄iy]N×M obtained in Step 1.

end
end

end
Step 3. Using Equation (8) to construct the collective overall preference matrix Ã = [ãij]N×N

according to the matrices R̃(py) = [r̃ij(py)]N×N computed in Step 2.
if Ã is a diagonal matrix then

There is no optimal option over U;
else

Go to the Step 4.
end
Step 4. for i = 1, 2, . . . , N do

Calculate the overall score value Si based on the resultant matrix Ã from Step 3 and Equation (9).
end
Step 5. Rank the alternatives ui based on Si and then select the best one(s).

end
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Remark 3. Note that Algorithm 2 starts with computing matrix C̄ based on M-pFSIOWA or M-pFSIOWG
operators rather than the M-pFSMWM operator used in Algorithm 1. In Steps 2 and 3, the entries of the
resultant matrix C̄ are used to compute the matrices R̃(py) and Ã. Then, Algorithm 2 is followed similarly with
Algorithm 1.

Here, by repeating Step 1 for different iteration value α until α ≤ K, the aggregated value computed by
M-pFSIOWA operator or M-pFSIOWG operator moves between the minimum value and the maximum value
(please see Theorems 6 and 7). This guarantees Algorithm 2 is also convergent.

6. Illustrative Example

The general method for solving the MAGDM problems involves two main phases: (i) aggregation
or consensus stage; and (ii) selection stage. The proposed methods in Equations (5), (10), and (11) can
help us to aggregate different decision makers’ judgments about the alternatives to obtain a collective
decision matrix C̄. Further, Equations (8) and (9) provide an overall preference matrix Ã and the
overall score values Si for the alternatives, respectively, to cover the selection phase. In the following,
we compare the proposed procedures in Algorithms 1 and 2 for MAGDM problems with m-polar
fuzzy soft information by some numerical examples.

Hotel Booking Problem

In any trip, the problem of accommodation is one of the most important issues. The best option is
always selected after comparing different residences based on some parameters, such as facilities and
location of hotels and the budget. In this section, we discuss the problem of hotel booking, which is
about selecting the best hotel to stay regarding a list of criteria, to provide a real-life example which
shows the application of our method in decision-making problems. The input data are obtained from
the “www.agoda.com” website, an online hotel booking service. This website provides some online
questioners that passengers (guests) can fill them up to share their experiences about the hotel that
they have staid. Guests are classified into the five main groups: families with young children, families
with elder children, couples, solo travelers, and group of friends. Each hotel is characterized based on
several criteria including “Comfort”, “Services”, “Location”, and “Food” according to the guests’ idea
by numbers between zero and ten. Note that, here, all collected data are divided to ten to be in the unit
interval [0, 1].

Example 2. Let us to suppose that a travel agency in Iran wants to offer a luxury group tour for Kuala
Lumpur, Malaysia, to their customers. The list of ten four-star hotels in Kuala Lumpur H = {h1, · · · , h10},
which are compared with each other based on the following four parameters P = {p1=Comfort, p2=Services,
p3=Location, p4=Food}, is chosen by this agency from the “www.agoda.com” website. The comments of
five passengers, who filled on-line questionnaires, for five different categories “Families with Young Children”,
“Families with Elder Children”, “Couples”, “Solo Travelers”, and “Group of Friends”, whose weighting vector
is ω = (0.25, 0.25, 0.2, 0.15, 0.15)T , are selected by the travel agency as an input data of five experts. A hotel
may be selected as the best accommodation place if at least three individuals of five people are satisfied with
it. Since, in general, the importance degree of all criteria for different decision makers are not the same, this
company defined the weighting vector λ = (0.3, 0.2, 0.35, 0.15)T for the parameters based on the frequency of
these parameters in the comments of the passengers. Let this travel agency also consider two different aspects for
each parameters as follows: The parameter “Comfort” includes “Cleanliness” and “Staff Performance” with
the weighting vector λp1 = (0.7, 0.3)T . The parameter “Services” includes “Facilities” and “Free Wi-Fi
connectivity” with the weighting vector λp2 = (0.8, 0.2)T . The parameter “Location” includes “Close to Tourist
Attractions” and “In the Green Surroundings” with the weighting vector λp3 = (0.7, 0.3)T . The parameter
“Food” includes “Breakfast” and “Lunch and Dinner” with the weighting vector λp4 = (0.5, 0.5)T . Tables 3–7
show the evaluation of the hotels based on these five passengers’ comments by using m-polar fuzzy soft sets.

www.agoda.com
www.agoda.com
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Table 3. Tabular representation of MFSS ( f1, P).

H p1 p2 p3 p4

h1 (0.87,0.86) (0.7,0.86) (0.86,0.67) (0.58,0.81)
h2 (0.7,0.7) (0.55,0.7) (0.74,0.73) (0.71,0.7)
h3 (0.82,0.86) (0.6,0.86) (0.79,0.58) (0.6,0.8)
h4 (0.83,0.81) (0.88,0.81) (0.84,0.78) (0.55,0.81)
h5 (0.89,0.81) (0.64,0.81) (0.82,0.71) (0.69,0.84)
h6 (0.68,0.69) (0.66,0.69) (0.82,0.77) (0.67,0.74)
h7 (0.82,0.78) (0.73,0.78) (0.77,0.83) (0.66,0.8)
h8 (0.78,0.8) (0.73,0.8) (0.74,0.8) (0.68,0.79)
h9 (0.82,0.71) (0.8,0.71) (0.69,0.84) (0.64,0.76)
h10 (0.88,0.89) (0.86,0.89) (0.7,0.8) (0.83,0.85)

Table 4. Tabular representation of MFSS ( f2, P).

H p1 p2 p3 p4

h1 (0.89,0.79) (0.72,0.84) (0.84,0.7) (0.59,0.8)
h2 (0.74,0.76) (0.6,0.76) (0.77,0.75) (0.69,0.71)
h3 (0.77,0.68) (0.73,0.77) (0.71,0.6) (0.57,0.69)
h4 (0.78,0.72) (0.87,0.79) (0.85,0.65) (0.54,0.78)
h5 (0.91,0.83) (0.8,0.91) (0.81,0.71) (0.66,0.88)
h6 (0.69,0.7) (0.68,0.71) (0.82,0.75) (0.69,0.75)
h7 (0.86,0.78) (0.8,0.86) (0.74,0.8) (0.66,0.8)
h8 (0.78,0.78) (0.75,0.8) (0.74,0.77) (0.64,0.8)
h9 (0.71,0.75) (0.85,0.69) (0.8,0.84) (0.49,0.72)
h10 (0.89,0.94) (0.86,0.89) (0.82,0.86) (0.85,0.92)

Table 5. Tabular representation of MFSS ( f3, P).

H p1 p2 p3 p4

h1 (0.85,0.79) (0.74,0.85) (0.84,0.8) (0.64,0.81)
h2 (0.71,0.69) (0.7,0.71) (0.74,0.66) (0.66,0.69)
h3 (0.77,0.78) (0.73,0.8) (0.73,0.6) (0.57,0.73)
h4 (0.83,0.76) (0.73,0.84) (0.82,0.7) (0.61,0.8)
h5 (0.83,0.75) (0.69,0.82) (0.7,0.69) (0.65,0.79)
h6 (0.69,0.7) (0.65,0.7) (0.8,0.76) (0.69,0.73)
h7 (0.81,0.74) (0.8,0.82) (0.75,0.59) (0.65,0.78)
h8 (0.76,0.73) (0.8,0.76) (0.71,0.6) (0.67,0.75)
h9 (0.78,0.67) (0.75,0.8) (0.77,0.56) (0.57,0.73)
h10 (0.88,0.88) (0.8,0.86) (0.68,0.77) (0.77,0.84)

Table 6. Tabular representation of MFSS ( f4, P).

H p1 p2 p3 p4

h1 (0.83,0.82) (0.6,0.83) (0.75,0.7) (0.68,0.83)
h2 (0.72,0.72) (0.4,0.71) (0.69,0.71) (0.64,0.7)
h3 (0.74,0.76) (0.8,0.76) (0.75,0.59) (0.62,0.68)
h4 (0.88,0.84) (0.74,0.89) (0.83,0.77) (0.69,0.84)
h5 (0.79,0.79) (0.64,0.83) (0.75,0.76) (0.61,0.82)
h6 (0.69,0.69) (0.76,0.68) (0.79,0.81) (0.66,0.72)
h7 (0.81,0.76) (0.53,0.81) (0.73,0.84) (0.66,0.78)
h8 (0.73,0.72) (0.7,0.73) (0.68,0.79) (0.64,0.72)
h9 (0.82,0.81) (0.6,0.89) (0.79,0.87) (0.71,0.79)
h10 (0.87,0.87) (1,0.87) (0.7,0.76) (0.75,0.83)
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Table 7. Tabular representation of MFSS ( f5, P).

H p1 p2 p3 p4

h1 (0.87,0.6) (0.84,0.87) (0.93,0.84) (0.6,0.9)
h2 (0.74,0.8) (0.74,0.74) (0.8,0.74) (0.64,0.74)
h3 (0.85,0.8) (0.8,0.8) (0.81,0.8) (0.62,0.8)
h4 (0.81,0.84) (0.77,0.76) (0.77,0.76) (0.59,0.77)
h5 (0.8,0.8) (0.76,0.77) (0.84,0.77) (0.61,0.76)
h6 (0.67,0.8) (0.72,0.78) (0.67,0.78) (0.66,0.72)
h7 (0.78,0.69) (0.76,0.74) (0.78,0.74) (0.64,0.76)
h8 (0.77,0.72) (0.76,0.72) (0.79,0.72) (0.67,0.76)
h9 (0.65,0.6) (0.69,0.76) (0.78,0.76) (0.44,0.69)
h10 (0.88,0.86) (0.82,0.66) (0.88,0.66) (0.77,0.82)

Since the required consensus degree is α = 3, then L = 5!
3!(5−3)! = 10. All 10 different combinations

of three of five objects can be listed as follows: ∆5,3(1) = {1, 2, 3}, ∆5,3(2) = {1, 2, 4}, ∆5,3(3) = {1, 2, 5},
∆5,3(4) = {1, 3, 4}, ∆5,3(5) = {1, 3, 5}, ∆5,3(6) = {1, 4, 5}, ∆5,3(7) = {2, 3, 4}, ∆5,3(8) = {2, 3, 5},
∆5,3(9) = {2, 4, 5}, and ∆5,3(10) = {3, 4, 5}. (Steps 1,2).

Step 3. Utilize data given in Tables 3–7 with the weighting vector ω = (0.25, 0.25, 0.2, 0.15, 0.15)T and
M-pFSMWM operator proposed in Theorem 3 to get the collective matrix C̄ = [c̄iy]10×4 as below:

C̄ =



(0.597, 0.553) (0.49, 0.588) (0.588, 0.469) (0.406, 0.56)
(0.49, 0.484) (0.385, 0.49) (0.518, 0.4745) (0.465, 0.484)
(0.539, 0.476) (0.438, 0.539) (0.497, 0.406) (0.399, 0.483)
(0.546, 0.504) (0.525, 0.553) (0.576, 0.455) (0.378, 0.546)
(0.587, 0.531) (0.448, 0.567) (0.537, 0.485) (0.456, 0.558)
(0.476, 0.483) (0.456, 0.483) (0.562, 0.525) (0.469, 0.512)
(0.568, 0.522) (0.511, 0.546) (0.518, 0.52) (0.456, 0.548)
(0.534, 0.516) (0.511, 0.536) (0.5, 0.5005) (0.448, 0.529)
(0.497, 0.473) (0.53, 0.483) (0.483, 0.546) (0.3455, 0.504)
(0.616, 0.617) (0.566, 0.605) (0.478, 0.542) (0.545, 0.589)


Step 4. Utilize Equation (6) to compute matrices R̃(py) = [r̃ij(py)]10×10, where y = 1, 2, 3, 4, as follows:

R̃(p1) =



0.5 0.54 0.53 0.52 0.506 0.55 0.51 0.52 0.54 0.49
0.45 0.5 0.48 0.48 0.46 0.505 0.47 0.48 0.49 0.44
0.47 0.51 0.5 0.49 0.47 0.52 0.48 0.49 0.51 0.45
0.47 0.52 0.506 0.5 0.48 0.52 0.49 0.502 0.52 0.46
0.49 0.53 0.52 0.51 0.5 0.54 0.507 0.51 0.53 0.48
0.45 0.49 0.47 0.47 0.45 0.5 0.46 0.47 0.49 0.43
0.48 0.53 0.51 0.509 0.49 0.53 0.5 0.51 0.53 0.47
0.47 0.51 0.504 0.49 0.48 0.52 0.48 0.5 0.51 0.46
0.45 0.5008 0.48 0.47 0.46 0.506 0.46 0.48 0.5 0.44
0.51 0.55 0.54 0.53 0.51 0.56 0.52 0.53 0.55 0.5


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R̃(p2) =



0.5 0.55 0.52 0.48 0.51 0.52 0.49 0.49 0.49 0.47
0.44 0.5 0.46 0.43 0.46 0.46 0.43 0.44 0.43 0.41
0.47 0.53 0.5 0.46 0.49 0.49 0.46 0.47 0.46 0.44
0.51 0.56 0.53 0.5 0.52 0.53 0.506 0.506 0.504 0.48
0.48 0.53 0.507 0.47 0.5 0.505 0.47 0.47 0.47 0.45
0.47 0.53 0.501 0.46 0.49 0.5 0.47 0.47 0.46 0.44

0.504 0.56 0.53 0.49 0.52 0.52 0.5 0.501 0.49 0.47
0.503 0.56 0.52 0.49 0.52 0.52 0.49 0.5 0.49 0.47
0.505 0.56 0.53 0.49 0.52 0.53 0.501 0.502 0.5 0.47
0.53 0.58 0.55 0.51 0.54 0.55 0.52 0.52 0.52 0.5



R̃(p3) =



0.5 0.52 0.54 0.505 0.51 0.5006 0.51 0.52 0.52 0.52
0.47 0.5 0.51 0.48 0.49 0.47 0.49 0.502 0.501 0.503
0.45 0.48 0.5 0.46 0.47 0.46 0.47 0.48 0.48 0.48
0.49 0.51 0.53 0.5 0.508 0.49 0.509 0.51 0.51 0.52
0.48 0.508 0.52 0.49 0.5 0.48 0.501 0.51 0.509 0.51
0.49 0.52 0.53 0.505 0.51 0.5 0.51 0.52 0.52 0.52
0.48 0.506 0.52 0.49 0.49 0.48 0.5 0.509 0.508 0.51
0.47 0.49 0.51 0.48 0.48 0.47 0.49 0.5 0.49 0.501
0.47 0.49 0.51 0.48 0.49 0.47 0.49 0.5008 0.5 0.502
0.47 0.49 0.51 0.47 0.48 0.47 0.48 0.49 0.49 0.5



R̃(p4) =



0.5 0.504 0.52 0.51 0.48 0.49 0.49 0.49 0.53 0.46
0.49 0.5 0.51 0.506 0.48 0.49 0.48 0.49 0.52 0.45
0.47 0.48 0.5 0.48 0.46 0.47 0.46 0.47 0.509 0.43
0.48 0.49 0.51 0.5 0.47 0.48 0.47 0.48 0.52 0.44
0.51 0.51 0.53 0.52 0.5 0.508 0.502 0.509 0.54 0.47
0.503 0.508 0.52 0.51 0.49 0.5 0.49 0.501 0.53 0.46
0.509 0.51 0.53 0.52 0.49 0.505 0.5 0.506 0.54 0.46
0.502 0.507 0.52 0.51 0.49 0.49 0.49 0.5 0.53 0.46
0.46 0.47 0.49 0.47 0.45 0.46 0.45 0.46 0.5 0.42
0.54 0.54 0.56 0.55 0.52 0.53 0.53 0.53 0.57 0.5


Step 5. Now, the matrix Ã = [ãij]10×10 is computed, using information given in matrices

R̃(py) (y = 1, 2, 3, 4), to obtain a collective four-polar fuzzy soft preference matrix as the following:
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Ã =



(0.5 0.5 0.5 0.5)
(0 0 0 0)
(0 0 0 0)
(0 1 0 0)
(0 0 0 1)
(0 0 0 1)
(0 1 0 1)
(0 1 0 1)
(0 1 0 0)
(1 1 0 1)

(1 1 1 1)
(0.5 0.5 0.5 0.5)

(1 1 0 0)
(1 1 1 0)
(1 1 1 1)
(0 1 1 1)
(1 1 1 1)
(1 1 0 1)
(1 1 0 0)
(1 1 0 1)

(1 1 1 1)
(0 0 1 1)

(0.5 0.5 0.5 0.5)
(1 1 1 1)
(1 1 1 1)
(0 1 1 1)
(1 1 1 1)
(1 1 1 1)
(0 1 1 0)
(1 1 1 1)

(1 0 1 1)
(0 0 0 1)
(0 0 0 0)

(0.5 0.5 0.5 0.5)
(1 0 0 1)
(0 0 1 1)
(1 0 0 1)
(0 0 0 1)
(0 0 0 0)
(1 1 0 1)

(1 1 1 0)
(0 0 0 0)
(0 0 0 0)
(0 1 1 0)

(0.5 0.5 0.5 0.5)
(0 0 1 0)
(0 1 0 0)
(0 1 0 0)
(0 1 0 0)
(1 1 0 1)

(1 1 1 0)
(1 0 0 0)
(1 0 0 0)
(1 1 0 0)
(1 1 0 1)

(0.5 0.5 0.5 0.5)
(1 1 0 1)
(1 1 0 0)
(1 1 0 0)
(1 1 0 1)

(1 0 1 0)
(0 0 0 0)
(0 0 0 0)
(0 1 1 0)
(1 0 1 1)
(0 0 1 0)

(0.5 0.5 0.5 0.5)
(0 0 0 0)
(0 1 0 0)
(1 1 0 1)

(1 0 1 0)
(0 0 1 0)
(0 0 0 0)
(1 1 1 0)
(1 0 1 1)
(0 0 1 1)
(1 1 1 1)

(0.5 0.5 0.5 0.5)
(0 1 1 0)
(1 1 0 1)

(1 0 1 1)
(0 0 1 1)
(1 0 0 1)
(1 1 1 1)
(1 0 1 1)
(0 0 1 1)
(1 0 1 1)
(1 0 0 1)

(0.5 0.5 0.5 0.5)
(1 1 0 1)

(0 0 1 0)
(0 0 1 0)
(0 0 0 0)
(0 0 1 0)
(0 0 1 0)
(0 0 1 0)
(0 0 1 0)
(0 0 1 0)
(0 0 1 0)

(0.5 0.5 0.5 0.5)


Step 6. Calculate the score value of each alternatives according to the collective 4-polar fuzzy soft preference

matrix Ã and Equation (9) as the following: S1 = 6.95, S2 = 2.15, S3 = 1.25, S4 = 5.85, S5 = 6, S6 = 4.1,
S7 = 5.8, S8 = 3.65, S9 = 3.05, and S10 = 6.2.

Step 7. Thus, we have: h1�h10�h5�h4�h7�h6�h8�h9�h2�h3. Thus, the first hotel, called h1, is the
best option to stay while h3 should not be selected for accommodation.

In Example 2, the desirable alternative is accepted by most of the decision makers where “most” is
interpreted as acceptable by 60% of decision makers , i.e., at least three individuals of total five decision
makers are satisfied. To check the impact of consensus degree on the final solution, we compare the
obtained results in Example 2 with the result of full agreement, given by the following example in
which α = 5 is used as the consensus degree.

Example 3. (Example 2 continued) Let us reconsider the “Hotel Booking Problem” involving M-pFSSs
( f1, P), ( f2, P), ( f3, P), ( f4, P), and ( f5, P) which is discussed earlier in Example 2 where H = {h1, · · · , h10}
is the set of alternatives and P = {p1, p2, p3, p4} is the set of parameters.

Here, the proposed Algorithm 1 is applied for case α = 5, where L = C5,5 = 1 and ∆5,5(1) = {1, 2, 3, 4, 5},
to get the most desirable alternative based on a unanimous consensus. After applying Algorithm 1, the scores
of alternatives are computed as follows: S1 = 6.65, S2 = 2.45, S3 = 2.15, S4 = 6.55, S5 = 7.1, S6 = 4.1,
S7 = 4.95, S8 = 3.55, S9 = 0.6, and S10 = 6.9. Therefore, we get: h5 � h10 � h1 � h4 � h7 � h6 � h8 �
h2 � h3 � h9 which shows h5 is the alternative accepted by all decision makers. Hotel h1, which is the best
option for accommodation according to the most decision makers’ views, is the third most desirable alternative.
Figure 2 shows the effect of different consensus degrees α = 3 and α = 5 on scores of alternatives.
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Figure 2. The effect of consensus degree on scores of alternatives based on the M-pFSMWM
aggregation method.

Now, we reconsider Examples 2 and 3 according to Algorithm 2 which is based on M-pFSIOWA
operator and M-pFSIOWG operator.

Example 4. (Examples 2 and 3 continued) To apply Algorithm 2 for solving MAGDM problem given in
Examples 2 and 3, we first need to re-order the M-pFSSs ( f1, P), · · · , ( f5, P) based on weighting vector
ω = (0.25, 0.25, 0.2, 0.15, 0.15)T for the decision makers f1, · · · , f5. Subsequently, we get: Fs

1yi = f s
1(py)(ui),

Fs
2yi = f s

2(py)(ui), Fs
3yi = f s

3(py)(ui), Fs
4yi = f s

4(py)(ui), and Fs
5yi = f s

5(py)(ui) for s = 1, 2;
i = 1, 2, · · · , 10; and y = 1, 2, 3, 4. The associated weighting vector w = (w1, w2, · · · , w5) is then generated
by wk = Q( k

5 )−Q( k−1
5 ) for k = 1, · · · , 5 where Q(.) is a quantifier function Q : [0, 1]→ [0, 1].

First, for case “most of the decision makers” (i.e., α = 3), where “most” is interpreted as 60% or 3
5 of all

data, the quantifier function may be defined by

Qmost(z) =


0 if z ≤ 1

5
z−1/5

2/5
if 1

5 < z < 3
5

1 if z ≥ 3
5

(12)

Therefore, we get w1 = w4 = w5 = 0, w2 = w3 = 0.5 and subsequently w = (0, 0.5, 0.5, 0, 0)T . Thus,
by using Equations (10) and (11), we have:

[M− pFSIOWA〈 f1, f2, f3, f4, f5〉]s(py)(ui) =
Fs

2yi + Fs
3yi

2

and
[M− pFSIOWG〈 f1, f2, f3, f4, f5〉]s(py)(ui) =

√
Fs

2yi · Fs
3yi

for s = 1, 2; i = 1, 2, · · · , 10; and y = 1, 2, 3, 4.
For the unanimous consensus (i.e., α = 5), the quantifier function may be defined by

Qall(z) =

{
0 if z < 1
1 if z = 5

5 = 1
(13)

Thus, the weighting vector is w = (0, 0, 0, 0, 1)T . Subsequently, by using Equations (10) and (11), we have

[M− pFSIOWA〈 f1, f2, f3, f4, f5〉]s(py)(ui) = Fs
5yi



Symmetry 2018, 10, 636 24 of 29

and
[M− pFSIOWG〈 f1, f2, f3, f4, f5〉]s(py)(ui) = Fs

5yi

for s = 1, 2; i = 1, 2, · · · , 10; and y = 1, 2, 3, 4.
Thus, based on the M-pFSIOWA operator and M-pFSIOWG operator the resultant collective m-polar

fuzzy soft matrix C̄ = [~̄ciy]10×4 where

c̄iy =
( f 1

2 (py)(ui) + f 1
3 (py)(ui)

2
,

f 2
2 (py)(ui) + f 2

3 (py)(ui)

2
)
;

c̄iy =
(√

f 1
2 (py)(ui). f 1

3 (py)(ui),
√

f 2
2 (py)(ui). f 2

3 (py)(ui)
)
;

and
c̄iy =

(
f 1
5 (py)(ui), f 2

5 (py)(ui)
)

is derived for different cases α = 3 and α = 5, respectively. Then, Steps 4–7 of Algorithm 1 are used to compare
the scores of alternatives for both cases α = 3 and α = 5.

The obtained results from M-pFSMWM, M-pFSIOWA, and M-pFSIOWG operators are reported
in Table 8.

Table 8. Comparison results of Examples 2–4 for different M-pFS-based aggregation methods.

Aggregation
α

Number of Scores of Alternatives (Si)

Methods Computational Steps h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

M-pFSMWM α = 3 18 6.95 2.15 1.25 5.85 6 4.1 5.8 3.65 3.05 6.2

M-pFSMWM α = 5 9 6.65 2.45 2.15 6.55 7.1 4.1 4.95 3.55 0.6 6.9

M-pFSIOWA α = 3 9 6.6 1.8 1.45 5.65 5.825 3.825 5.15 3.375 3.375 7.95

M-pFSIOWA α = 5 9 7.65 3.875 7 3.8 5.9 1.025 2.85 3.6 1.4 7.9

M-pFSIOWG α = 3 9 6.75 1.8 1.45 5.65 5.85 3.9 5.15 3.3 3.2 7.95

M-pFSIOWG α = 5 9 7.65 3.875 7 3.8 5.9 1.025 2.85 3.6 1.4 7.9

α refers to consensus degree.

It can be seen that, for case α = 5, h10 is the best option selected by all methods. For α = 3,
the M-pFSMWM method selects h1, however the tenth hotel, h10, is chosen by the two other methods.
Accordingly, the scores of alternatives for different consensus degrees α = 3 and α = 5 are compared
in Figure 3a–c.
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(a) M-pFSMWM Method (b) M-pFSIOWA Method

(c) M-pFSIOWG Method
Figure 3. The effect of consensus degree on scores of alternatives based on different M-pFS-based
aggregation methods.

7. Discussion

To date, various soft set-based techniques have been applied to solve decision-making problems.
Some of them have proposed novel methodology to find the solution [18,22,27,28], while some authors
have made effort to adapt the well-known decision-making methods, such as SAW, TOPSIS, entropy,
OWA, and OWG to the soft set theory [15,16,21,40,41]. However, a technique to solve decision-making
problems based on m-polar fuzzy soft information has not been studied yet. Thus, new methodologies
are proposed to handle the consensus stage and selection stage of MAGDM problem with M-pFS inputs.

For aggregating input data which take their values from [0, 1]m, some new m-polar aggregating
methods, called M-pFSMWM operator, M-pFSIOWA operator, and M-pFSIOWG operator, are
developed in Sections 3 and 5. The properties comparison of these operators are summarized in
Table 9. It can be seen that the most interesting property of M-pFSMWM operator is it is sensitive
for different scenarios of a partial agreement at the consensus degree α. This characteristic makes
the M-pFSIOWA operator more adaptable for MAGDM problem in which not only the number of
individuals satisfying an alternative is important but also the weight of decision makers who agree
with this decision affect the final output. Moreover, by changing the value of consensus degree α

different cases of agreement are obtained. In particular, when α→ K, the partial agreement becomes
a full agreement.
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Table 9. Properties comparison of different aggregation operators.

Operators Idempotency Boundedness Monotonicity Symmetry
Flexible by
Consensus
Degree α

Flexible for
Different

Choices of K

M-pFSMWM Yes Yes Yes Yes Yes Yes
M-pFSIOWA Yes Yes Yes Yes No No
M-pFSIOWG Yes Yes Yes Yes No No

To reach the process of selection, we propose two procedures in Section 4.2, Algorithm 1 where
the consensus stage is reached based on the new M-pFSMWM operator, and Section 5, Algorithm 2
in which the consensus stage is obtained by M-pFSIOWA or M-pFSIOWG operators are extended
based on IOWA and IOWG, respectively. To reach the selection stage a new score value function,
described by Equation (9), is applied. The main advantage of the proposed formulation is to rank and
compare objects based on a collective m-polar fuzzy soft preference relationship. This allows us to
have a ranking system of alternatives, from the most preferred element to the least preferred element,
which may include some incomparable objects because of preference relationships nature.

Illustrative examples, given in Examples 2 and 3, show the application of Algorithm 1 to analyze
MAGDM problems with multi-polar fuzzy soft information. The obtained results are then compared
with the m-polar fuzzy soft extensions of two well-known aggregation operators IOWA and IOWG,
i.e., M-pFSIOWA and M-pFSIOWG, in Example 4. Table 10 makes a comparison of the preference orders
of the alternatives for methods using different aggregation operators including the new proposed
M-pFSMWM method, the m-polar fuzzy soft induced ordered weighted average (M-pFSIOWA)
method, and the m-polar fuzzy soft induced ordered weighted geometric (M-pFSIOWG) method.
As can be seen, Hotel h10 is the best option for staying based on the all discussed methods except the
M-pFSMWM-based method, where h10 is considered as the best second option for accommodation.
According to final preference order obtained based on the M-pFSMWM operator, Hotel h1, which
has the second place based on the other methods, is the best option accepted by the majority,
i.e., 60%, of decision makers. Hotel h5 is the best place to stay in terms of all decision makers.
The analysis derived in Table 10 shows a good agreement among thees methods, however the number
of computational steps in M-pFSMWM-based algorithm is CK,α + 1 in comparison with K + 2 stages in
Algorithm 2. On the other hand, the main disadvantage of M-pFSIOWA and M-pFSIOWG methods
is that there is no unique approach to determine the associated weighting vector w related to the
aggregation operators M-pFSIOWA and M-pFSIOWG. Finally, in Figure 4a, the overall scores of
alternatives based on the different methods for case α = 3 are shown. Figure 4b shows the scores
of alternatives obtained by using different methods for case α = 5. Note that, using some relative
preference matrices to find the scores of alternatives in all methods, leads to record a similar trend in
Figure 4b.

Table 10. Comparison of the alternatives’ preference orders for different methods.

Methods Consensus Degree α Preference Order

M-pFSMWM 3 h1�h10�h5�h4�h7�h6�h8�h9�h2�h3
M-pFSMWM 5 h5�h10�h1�h4�h7�h6�h8�h2�h3�h9
M-pFSIOWA 3 h10�h1�h5�h4�h7�h6�h8�h9�h2�h3
M-pFSIOWA 5 h10�h1�h3�h5�h2�h4�h8�h7�h9�h6
M-pFSIOWG 3 h10�h1�h5�h4�h7�h6�h8�h9�h2�h3
M-pFSIOWG 5 h10�h1�h3�h5�h2�h4�h8�h7�h9�h6
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(a) The overall scores of alternatives for different
methods when α = 3

(b) The overall scores of alternatives for different
methods when α = 5

Figure 4. The effect of different methods on scores of alternatives for different consensus degrees.

8. Conclusions

Traditional aggregation operators, which usually deal with uni-polar information, fail to aggregate
m-polar fuzzy soft information taking their values from [0, 1]m. This study proposes a new aggregation
method for processing the MAGDM problems with m-polar fuzzy soft information in which both
attributes and experts have different weights. For this purpose, firstly the concept of m-polar fuzzy
soft sets is introduced. Then, the new aggregation operator M-pFSMWM in the domain of m-polar
fuzzy soft sets is defined. The advantage of proposed M-pFSMWM operator is to be sensitive for
different partial agreement scenarios at a consensus degree α. Further, the m-polar fuzzy soft induced
ordered weighted average (M-pFSIOWA) operator and the m-polar fuzzy soft induced ordered
weighted geometric (M-pFSIOWG) operator, which are the extensions of IOWA and IOWG operators,
respectively, are developed. Some desirable properties of M-pFSMWM, M-pFSIOWA, and M-pFSIOWG
operators, such as idempotency, monotonicity, and commutativity are also studied. The characteristics
of the proposed M-pFSMWM operator shows it is more adaptable for a wider range of MAGDM
problems in comparison with M-pFSIOWA and M-pFSIOWG operators. In addition, a procedure for
ranking m-polar fuzzy soft data based on a new score value function is proposed. Then, two algorithms
are designed to MAGDM problems based on M-pFSMWM, M-pFSIOWA, and M-pFSIOWG operators.
Finally, to show the efficiency of proposed methods, some numerical examples are discussed.
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