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Abstract: Artificial neural networks (ANN) have attracted significant attention from researchers
because many complex problems can be solved by training them. If enough data are provided
during the training process, ANNs are capable of achieving good performance results. However,
if training data are not enough, the predefined neural network model suffers from overfitting and
underfitting problems. To solve these problems, several regularization techniques have been devised
and widely applied to applications and data analysis. However, it is difficult for developers to choose
the most suitable scheme for a developing application because there is no information regarding the
performance of each scheme. This paper describes comparative research on regularization techniques
by evaluating the training and validation errors in a deep neural network model, using a weather
dataset. For comparisons, each algorithm was implemented using a recent neural network library
of TensorFlow. The experiment results showed that an autoencoder had the worst performance
among schemes. When the prediction accuracy was compared, data augmentation and the batch
normalization scheme showed better performance than the others.

Keywords: deep neural networks; regularization methods; temperature prediction; tensor
flow library

1. Introduction

Accurate weather forecasting is an important issue that plays a significant role in the development
of several industrial sectors, such as agriculture and transportation. Many companies are using weather
prediction techniques to analyze consumer demands. In addition, exact forecasting is essential for
people to organize and plan their days. However, it is very difficult to predict the weather precisely
because the atmosphere changes dynamically. For a long time, physical simulations were the most
widely used scheme. With this method, the current atmospheric condition is sampled, and future
conditions are predicted by comparing thermodynamic characteristics. In recent years, artificial neural
networks (ANNs) have been widely used for weather prediction because they perform better through
the use of machine learning. The human brain is composed of 100 billion interconnected neurons.
These neurons are core cells that are responsible for information transmission among neurons using
electrochemical signals.

ANNs were modeled by using a mechanism inspired by the human brain’s information processing.
This scheme was first introduced to researchers in 1943 by Warren and Walter [1]. This scheme
is currently being used in almost every scientific area to solve complex problems. Williams [2]
presented the efficiency of machine learning algorithms, and proved that they could be applied to
many applications. Nicholas [3] proposed an enhanced scheme to train neural network algorithms.
In the scheme, a statistical computation scheme was used to reduce the training errors. Zhang [4]
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proposed a new recurrent neural network (RNN) scheme based on synchronization of delays and
impulses, which reduced prediction errors. Isomura [5] applied neural networks to knowledge
inference applications, useful information was collected, and an inference rule was extracted using
deep neural networks (DNNs). Elusai [6] used ANNs to model behavior to prevent bronze corrosion.
In the scheme, corrosion types were classified into different features, and future corrosion behaviors
were predicted. Jian [7] enhanced an existing principal component analysis (PCA) neural network that
was based on new discrete-time algorithms. The experiment results showed that validation errors
were significantly decreased. Yin [8] applied a DNN to classify server states for enhancing the quality
of service in cloud environments. The experiments showed that the scheme could be used to find used
or broken servers.

During the training process, the input data type and amount directly influence the performance of
the ANN model [9]. If the training data are deficient, overfitting or underfitting occurs [10]. Overfitting
refers to the phenomenon where the validation error increases while the training error decreases [11].
This occurs because the model learns the expected output for every input data instead of learning the
real data distribution [12,13]. In contrast, underfitting problems occur when a model cannot learn
enough because of insufficient training data [14,15]. Many solutions have been proposed to prevent
these problems. The most widely used method is regularization, where a small variation is applied
to the original data to efficiently train a model [16]. One of the advantages of this method is that it
achieves a better performance for unseen data. For weather prediction, it is used to predict rainfall,
temperature, and humidity [17].

In this study, we summarize prior research on weather prediction using ANNs. Several studies
have been completed on accurately predicting the weather. There studies included a method based on
an ANN model to predict the air temperature at hourly intervals for up to 12 h [18,19]. The prediction
error was minimized, and the method achieved good performance for short-term forecasting. Other
research [20,21] developed a new model to predict the hourly temperature for up to 24 hour. The model
used a separate winter, spring, summer, and fall season. Experiments were conducted to compare the
performances of well-known ANN models, including the Elman recurrent neural network (ERNN),
the radial basis function network (RBFN), the multilayer perceptron network (MLP), and the Hopfield
model (HFM). The MLP model with a single hidden layer and the RBFN model with two hidden layers
outperformed the other models. In the MLP experiment, the log-sigmoid function was used as the
activation function, and the Gaussian activation function was used for the hidden layers in the RBFN.
The temperatures for both models were measured and drawn with pure lines. Although the accuracy of
both models was identical, the RBFN had better processing times, because it took too long for the MLP
to learn data. Some research compared several ANN models by applying various transfer functions,
hidden layers, and neurons to predict the maximum temperature for the year. The model included
five hidden layers, and each hidden layer contained 10 or 16 neurons. The tan-sigmoid activation
function for hidden layers showed the bests results when using the logistic sigmoid function [22].
Xiaodong [23] presented a data augmentation scheme to improve performance when applied to audio
data. In the scheme, extra sampling data were added to the original input audio data and used for
training and validation. Huaguang [24] analyzed the stability of RNNs. An RNN was the most
widely used scheme in analyzing and predicting time series data. Songchuan [25] proposed a new
training algorithm, called fireworks, to predict the mean temperature. The algorithm showed fast
convergence and reduced training cycles. Takashi [26] proposed a new RNN algorithm that was based
on asynchronous negotiation and reproduction. This algorithm improved the prediction efficiency
when it was applied to time series data. Hayati [27] used an ANN model that contained a single
hidden layer and six neurons, which showed good performance results. Many of the latest advances
can be found in image processing and object detection. Cao [28] invented a fast DNN algorithm based
on additional knowledge during training. This was applied to object detection from streaming video,
and the results showed that it could reach good performance. Wang [29] applied a convolutional
neural network (CNN) to detecting a salient object from input images. A salient object refers to the
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most important object, which expresses the most outstanding characteristic from an image. To do this,
they used additional metadata together with a CNN. Yue [30] applied neural networks to detecting
a collision between cars. The video streaming captured from the traffic system was very complex
and dynamic. This made collision detection more difficult. To solve this problem, they presented an
enhanced DNN algorithm that was based on feature enhancement. Huang [31] used a neural network
to improve the detection accuracy of traffic monitoring systems. One of the problems in moving object
detection is that the accuracy becomes lower when there are too many moving objects in a video stream.
To solve this problem, they used a DNN to detect a moving object accurately. Akcay [32] used a deep
convolutional neural network (DCNN) to classify and detect an object from X-ray images scanned
in an airport. By using this, they could save time and expense spent in investigating and detecting a
dangerous object. Sevo [33] used a CNN to detect an object from images captured in the air. It is very
difficult to detect an object from the air because all scenes in the air are expressed as three-dimensional
(3D) images. By using a CNN, he could decrease the complexity of air object detection. One of the
most widely known areas where neural networks are applied can be said to be image processing.
Woźniak [34] presented an enhanced object detection method, where convolutional neural networks
were combined with the analysis of clustered numbers. To determine the points of clusters, they used
fuzzy logic. Vieira [35] presented methods and applications of deep learning that were applied to
neuroimaging. Neuroimaging is used to make an image structure of a human brain to cure mental
disease. In their paper, they insisted that deep learning could be an efficient method in improving
brain image quality by training the neural network. Polap [36] described a practice in which an ANN
was applied to detect potential diseases from body skin. In the method, skin data were collected by
using motion sensors and a camera, and an ANN model was trained using the data. Then, using the
model, they determined whether the skin had disease or not. Heaton [37] described an application of
deep-learning stochastic models in financial areas. In these areas, they used deep learning to predict
and classify financial data. Most doctors in hospitals used X-rays to classify carcinomas in chest organs.
However, it causes wrong diagnoses because it is difficult for radiologists to exactly interpret the X-ray
results. To solve this problem, Wozniak [38] applied neural networks to improving the accuracies
of carcinoma classification. The experimental results showed that they reached a 92% classification
accuracy. Litjens [39] described recent advancements of deep learning applications in analyzing images
in the medical industry. In the paper, they presented more than 300 pieces of research achieved in
this field. To give a concise review, they divided application areas for studies into 10 medical areas.
Wozniak [40] presented a new method based on neural networks to detect defects of fruit peels, which
was very different from a classical scheme. They invented an enhanced ANN algorithm called an
adaptive artificial neural network (AANN). By using this method, they could improve calculation
accuracy because it adapted to input data and their characteristics. Wang [41] presented an overview
of machine learning applications for manufacturing. Through the help of widespread sensors and the
Internet of Things (IoT), huge amounts of data could be collected in manufacturing systems. Deep
learning could be used to improve system performance and product quality by analyzing collected
big data.

As described earlier, active research is being conducted on neural networks and overfitting
solutions. However, there is no research that compares regularization schemes. Therefore, it is difficult
for developers to choose the most suitable scheme for developing an application, because there is
no information about the performance of each scheme. To solve this problem, this study presents
comparative research on regularization techniques by evaluating the training and validation errors in
a DNN model using weather datasets. Especially, the appropriate choice of the regularization scheme
is a very important process to manage huge augmented objects in intelligent mobile augmented reality
(IMAR) system.

The remainder of this paper is organized as follows. Section 2 describes the research methodology
and experiment setup. In Section 3, experiment results are described and analyzed. Section 4 presents
a discussion of the results. Finally, Section 5 concludes this work.
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2. Data and Methods

2.1. Methodology

The methodology of the comparative research is represented in Figure 1. The entire methodology
consisted of 9 steps. To compare the performance, several powerful regularization methods, including
an autoencoder, data augmentation, batch normalization, and L1 regularization, were implemented
and studied. First, we built a DNN model without using any regularization methods. We then trained
and validated the model, and then calculated the errors. Next, we measured the errors of the same
model without changing the settings, after applying regularization schemes. Each regularization
scheme was analyzed by comparing the experiment results. Each step is described in more detail in
the following section.
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First, the datasets that were used to train and validate the neural network model were collected.
In our experiment, the Korean weather dataset was collected from the government website. It included
35 features, including average temperature, maximum temperature, minimum temperature, average
wind speed, average humidity, cloudiness, and daylight hours, for the previous five days. The average
temperature was a target feature to predict for the next day. We let x(i) be a 35-dimensional feature
vector for the ith set of five consecutive days, and let y(i) be the one-dimensional vector that contained
this feature for the ith single day. The prediction of y(i) with a given x(i) can be expressed using
Equation (1):

Z(y(i)) = σ(θ(x(i))). (1)

In Equation (1), θ refers to a subset of the 35-dimensional vector, and σ is an activation function. The
cost function seeks to minimize

Cost(θ) =
1
2

m

∑
i=1

(Zθ(x(i))− y(i))
2
. (2)

In Equation (2), m is the number of training examples. For supervised machine learning, the data
are typically divided into two types, training and testing data. However, to obtain a better tuning
model, validation data were used in addition to the original data. These validation data are referred
to as the development dataset, or dev dataset. The goal of this dataset was to fine-tune the hyper
parameters (architecture) of the ANN model. The model frequently used this data. However, it did
not learn from this dataset. This set had to be used to obtain the optimal number of hidden units.
The dataset was divided using the Sci-Kit Learn library as follows. First, the data was split into training
and temporary data. Approximately 80% of the entire dataset was used as training data, and 20% was
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used as temporary data. The temporary dataset was split into two equal parts, test and validation.
Entire data usage for both training and verification would increase the inaccuracy of prediction and
would increase the training errors. It would be better to use the divided dataset. We think that
cross-samplings can be good ways to decrease the errors. However, we did not use these methods
because we had to change the input algorithms in order to apply the cross-samplings. In future work,
we can apply the algorithms.

Next, we defined and chose an accurate architecture for neural network analysis. This process
usually requires significant experience because many factors must be efficiently decided. One factor is
how many layers should be set in the model. The basic model included one input layer, two hidden
layers, and one output layer, as illustrated in Figure 2. The input layer contained 35 neurons, the hidden
layers contained 50 neurons each, and the output layer had 1 neuron. The topology of our model was
the 35-50-50-1 topology.
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Figure 2. The neural network model applied in the experiment.

After defining the model, we needed to make the parameter settings, which are listed in Table 1.
The columns included the basic DNN model and regularization schemes, and the rows included the
parameters for each model. The first parameter was the number of input neurons. This number was set
to 35 for most models, as previously described. The next parameter to set was the number of hidden
layers, which were 2. In reality, the value could be increased or decreased according to the central
processing unit (CPU) capability. If the CPU capability was high, the number could be decreased
because it took less time. When tested in our experiment, 2 was the most appropriate value because
the processing time increased exponentially if the value was greater than 3. The third was the number
of neurons in the hidden layers. If the number was higher, then the results were better. However, there
was a trade-off between the number and processing time. In our experiment, the value was set to be 50.
The number of output neurons was set to 1 because the target feature had only one. The learning rate
was set to 0.0001. Although processing took a long time because it was slightly low, the results were
more reliable. The proximal Adagrad optimizer algorithm was used to optimize our model. The batch
size was 100 and the maximum number of epochs was 100,000. The rectified linear unit (ReLU) was
used for the activation function.

In the third step, a defined neural network model was trained using the original data where
regularization methods were not applied. During training, the root mean square errors (RMSEs) were
captured and the data were saved into a separate file. The RMSE value could be obtained using the
following equation:
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RMSE(NNModel) =

√√√√ 1
M

m

∑
i=1

(
Answer(Xi)− Predict(Xi)

Answer(Xi)

)2

. (3)

In Equation (3), Answer (Xi) is the real answer data at time i, and Predict (Xi) is the value predicted by
the trained neural network model. In the fourth step, the defined neural network model was validated
and the validation errors were captured using Equation (1). In the third and fourth steps, overfitting
and underfitting were checked.

Table 1. Parameter settings applied to a temperature prediction neural network model.

Parameters for Each Model Typical
DNN Autoencoder Data

Augmentation
L1

Regularization
Batch

Normalization

Number of input neurons 35 35 35 35 35
Number of hidden layers 2 2 2 2 2

Number of neurons in hidden layers 50 50 50 50 50
Number of output neurons 1 1 1 1 1

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001
Activation function ReLU ReLU ReLU ReLU ReLU

Optimizer Proximal
Adagrad

Proximal
Adagrad

Proximal
Adagrad

Proximal
Adagrad

Proximal
Adagrad

In the fifth step, regularization methods were applied to the original weather data. The applied
methods will be described in more detail in Section 2.2. In steps 5 and 6, a defined model was trained
and validated using the datasets. In step 7, the future temperature is predicted using the trained neural
network model where regularization methods were applied. Finally, each scheme is compared by
analyzing the train, validation, and prediction errors.

2.2. Applied Regularization Methods in the Experiment

This section describes the regularization methods for the experiment. A widely used scheme
for regularization is the autoencoder scheme, which refers to an enhanced neural network with the
same number of neurons in the input and output layers. This scheme uses unsupervised learning,
because labels are not required when training the model. The scheme compresses the data received
from the input neurons into short code, and then decompresses this code into output neurons that
are very close to the input data. One of the goals of this scheme is to remove the noise from the input
data. The architecture is similar to MLP structure, and it has at least one input, hidden, and output
layer. This type of neural network consists of two parts, an encoder and a decoder. An encoder is a
network component that compresses the input. A decoder is used to reconstruct the encoded input. In
a simple autoencoder with a single layer, the encoder takes the x ε X input and compresses it to z ε Z.
The equation for calculating the compressed data z is as follows [42]:

z = σ(W × x + b). (4)

In Equation (4), z is known as the latent space representation. It is sometimes identified as a code or
latent variable. Here, σ is the activation function, such as the ReLU, sigmoid, or Leaky ReLU function.
W is the weight of the nodes, and b is the bias vector. In the reconstruction process, the same operation
is repeated, as shown in Equation (5) [43]:

x′ = σ′(W′ × z + b′). (5)

In the decoding process, the compressed data z is mapped to x′, where x′ represents the
transformed input data with the same dimension as the input x value, and σ′ is an activation function
used to decompress the data. W′ is the weight of the transformed nodes, and b′ is a bias in the
decoder. To obtain satisfactory performance using the autoencoder scheme, the decoding loss should
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be minimized. Sum squared errors (SSEs) or an RMSE function were used to measure the loss as in
Equation (6):

F(x, x′) = ||x − x′||2. (6)

From Equations (3) and (4), we derived Equation (7):

f(x, x′) = ||x − σ′(W′z + b′)||2. (7)

By replacing z with Equation (7), the final equation of the loss function was as follows [30]:

f(x, x′) = ||x − σ′(W′(σ(Wx + b)) + b′)||2. (8)

There are many types of autoencoder schemes.
In our research, the stacked autoencoder was used to diminish the noise from the input data and

simplify the tuning hyperparameters in a scheme. The architecture of the scheme is illustrated in
Figure 3. It contained one input layer, three hidden layers, and one output layer.
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Data augmentation is one of the most popular regularization techniques. The main idea of the
scheme is to expand the training dataset by applying transformations to decrease overfitting. This
technique is commonly used in image processing, since image operations like rotating, shifting, scaling,
mirroring, or randomly cropping can be easily implemented when using the scheme [44]. For data
augmentation, it is important to effectively control noise. There are some types of noise that are
available for the scheme. Among them, the Gaussian noise control scheme is the most widely used.
The scheme could be expressed using Equation (9) [45]:

Lmin = Ep [(y − f(x + µ))2]. (9)

In Equation (9), µ is the noise vector. This technique is effectively used for RNNs, whereas it is
seldom used in feed forward neural networks [46]. In this study, two augmentation techniques were
implemented. The first type of data augmentation was to sum up partial datasets. Let L(i)

j represent
input feature data for weather prediction, where j ∈ {1, 2, . . . n} is the number of features and i ∈ {1, 2,
. . . m} is the number of identical categorical features (in our case, i is the number of days). The final
input using the augmented data for the jth categorical data could be expressed as
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input_dataj =
1
m

m

∑
i=1

L(i)
j , (10)

where Lj is the average humidity or average temperature. The number of input features is seven (j = 7),
and the number of identical features is five (i = 5). The second augmentation summed the identical
categorical features, as shown in Equation (11):

input_dataj =
m

∑
i=1

L(i)
j . (11)

Similar to the first data augmentation technique, the number of input neurons became 7. The
number of operations in the model decreased as the number of input data decreased, thereby
preventing overfitting.

The third scheme for regularization was batch normalization, which was proposed by Sergey and
Christian in 2015. After implementing batch normalization on a DNN, regularization techniques like
dropout [47] or L2 regularization were not required to tune the model. Instead, this method focused
on an internal covariate shift [48]. In addition, by implementing this method, they reduced the training
time of the model.

The fourth scheme applied in the experiment was an L1 regularization. L1 regularization is known
as the least absolute shrinkage and selection operator (LASSO), and was introduced by Robert [49].
The main idea behind the scheme is to regularize the loss function by completely removing the
irrelevant features from the model [36]. The equation of the scheme could be expressed as

f (w, b) =
1
m

m

∑
i=1

L(yi, yi)− λ
m

∑
j=1

∣∣wj
∣∣. (12)

In Equation (12), L(yi, yi) is a loss function, m is the number of observations, yi is the predicted value
(whereas yi is the actual value), and λ is a non-negative regularization parameter. The main objective
was to minimize the f (w,b) function by penalizing weights in proportion to the sum of their absolute
values. As λ increases, w decreases. As λ” decreases, the variance increases.

2.3. Experiment Setup

The hardware specification for the experiment was as follows. The desktop used was a Gigabyte
Z97X-UD3H personal computer running Windows 10 with an Intel Core i7-4790 K CPU and 8 GB of
RAM. The simulations were implemented using Python programming language and the TensorFlow
library. This library is very popular among machine learning application developers. A neural
network application can run on several CPUs and graphics processing units (GPUs) in parallel.
Supporting parallelism is one of the key features of the library. In addition, the library can be
available for multiple programming languages, such as Python, C++, and Java. There are many
higher-level application programming interfaces (APIs) that work with TensorFlow. For instance,
Keras API, TFLearn, and Sonnet are provided to easily train the model. In our study, we implemented
TensorFlow’s new higher-level constructs estimator. There were many advantages to the estimator:

• Without changing the model, our model could be run on local or distributed servers. In addition,
without the need to record our model, our estimator-based model could run CPUs, GPUs, or tensor
processing unit (TPU)s.

• It was much easier to develop a model with an estimator rather than low-level TensorFlow APIs.
• It could make a graph for us.

The estimator API provided an ordinary interface to train, evaluate, and predict functions.
For building our model, we used DNNRegressor class in the tf.estimator package. There were many
parameters in this class, but we will focus on the major ones as follows.
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• Activation_fn: The activation function was for each layer of the neural network. By default, ReLU
was fixed for the layers.

• Optimizer: In this feature of the class, we defined the optimizer type, which optimized the neural
network model’s weights throughout the training process.

• Hidden_units: This contained the number of hidden units (neurons) per layer. For example,
in [50], it means the first layer has 70 neurons and the second one has 50.

• Feature_columns: This argument contained the feature columns and data type used by the model.
• Model_dir: This was the directory for saving model parameters and graphs. In addition, it could

be used to load checkpoints from the directory into the estimator to continue training a previously
saved model.

• Dropout: We needed this feature for implementing a dropout regularization technique in
our model.

Sometimes, when using DNNRegressor class, all techniques of regularization were not available.
For example, for L1 and autoencoder, we had to use another type of API. To do that, we used Keras
open source neural network library, which is written in Python. As it can run on top of TensorFlow,
it was easy to implement these two libraries together.

For visualization, we used the TensorBoard visualization tool, which is a very powerful graph
visualization released by Google’s TensorFlow team. This tool is not only used for graph visualization,
but also implemented to plot quantitative metrics on the execution of a graph and to show additional
data (e.g., images) that pass through it. Moreover, using this tool, a programmer can debug a model
easily. Another API applied for visualization in this research was Matplotlib plotting library. This API
provides extremely wide visualization techniques for Python programming language.

3. Results

This chapter discusses the results. First, the results of the DNN model are described, which was
trained without the use of any regularization techniques. Next, the results of the DNN models with
regularization techniques are presented. Since overfitting problems are much more visible in pictures,
our final results are visualized as graphs. The axes of the graphs consist of error values and epoch
numbers. Even after training the network model, very low RMSE values seemed to be very good
accuracy. However, in some cases, they caused issues such as an overfitting problem.

We first present the experiment results of a DNN without regularization. As previously discussed,
our model was established with the settings that are shown in Table 1. After training 100,000 epochs,
RMSEs for training and validation data were plotted, as shown in Figures 4 and 5, respectively. Figure 4
shows that, by increasing the epochs, the error for training data changed rapidly. However, the overall
training errors decreased.
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By comparing the results, we concluded that the errors for validation and training data decreased
in the same range. The closeness between the validation and training data errors meant that good
generalization was achieved. In some cases, it showed that the neural network model needed
more training. However, since it was time-consuming, we continued our research by implementing
regularization methods based on this model.

Experiment Results for Each Regularization Method

First, a model where the autoencoder method was applied with the same settings was tested.
The results of the training errors are illustrated in Figures 6 and 7. As can be seen from Figure 6,
the training errors did not increase as epoch number increased. However, validation errors became
higher when the epoch number increased, as illustrated in Figure 7. Through the results, it is clearly
seen from the graphs that the model suffered from an underfitting problem and could not learn
anything. When we conducted an experiment several times using an autoencoder, the results were not
so good. Thus, we could not continue learning. In our analysis, the basic model of stacked encoder
was not appropriate. It needed some changes of structure.
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regularization method was applied.

Second, we investigated the experiment results of the DNN model, where a batch normalization
method was applied. The results of this technique are given in Figures 8 and 9. As it is shown in the
figures, the results were more acceptable than those using the autoencoder. The training errors began
to decrease initially. However, the overall trend fluctuated constantly after approximately 3000 epochs.
Validation errors decreased and increased from the beginning. Even though there was a small decrease
around 10,000 epochs, the overall trend increased slightly. By comparing these two graphs, it became
clear that the DNN model using batch normalization was overfitted within a small range, because
validation errors increased in spite of the constant fluctuation in training errors.
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Figure 9. Validation mean square errors results in a DNN model where a batch normalization method
was applied.

Next, we discuss the DNN model where a L1 regularization method was applied. The experiment
results are represented in Figures 10 and 11. Figure 10 shows that the training errors were smoothly
diminished as the epoch number increased. However, for validation errors, the trend showed a rise
from the beginning of the epochs. This demonstrates that even though the L1 regularization technique
was the most popular model to prevent overfitting in artificial intelligence, it still suffered from an
overfitting problem.
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In reality, a failure occurred during the experiments for all three types of regularization techniques.
However, the cause of the failures was undetermined.

Fourth, the experiment results were investigated using data augmentation. As previously
discussed, we implemented two types of data augmentation for our investigation. The first scheme,
which summed the features, performed better than other regularization methods. As shown in
Figures 12 and 13, the training errors simultaneously declined as the number of epochs increased. The
validation error of the model found its optimal value at 40K epochs. The validation data error rose
slightly after 40K epochs. From these graphs, it is shown that the DNN model with data augmentation
based on summing had a slight overfitting after 40K epochs.
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summed identical categorical input features.

Fifth, experiment results using the data augmentation technique based on an average are
illustrated in Figures 14 and 15. The figures show that the overfitting issue was completely overcome
with this method. As is shown in Figure 14, training errors were considerably diminished throughout
all the epochs. For the validation errors, those rapidly decreased until 20K epochs and stayed stable
after the point shown in Figure 15. Then, the validation errors began to fall down slowly from 35K
epochs, and it showed the smallest error at 100K epochs. Notice the difference between training and
validation errors were not high. This indicates that the dataset achieved good generalization.
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Next, we compared the accuracies of each scheme by evaluating the averaged mean square errors
(MSEs) between estimated temperature and observed temperature. Statistically, the MSE is regarded
as an important metric that is used in order to evaluate the performance of a predictor. By comparing
the values, we could evaluate the precision and accuracy of predictors. The formula is given below:

MSE =
1
n

n

∑
k=1

(Xk − Xk)
2. (13)

The statistical results are represented in Figure 16.
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Figure 16. Comparison of average mean squared error for each regularization method.

As it is shown in the figure, the autoencoder scheme was fairly high. For the other schemes,
the values were not high. From the results, L1 regularization and the autoencoder still encountered
overfitting and underfitting problems. The batch normalization showed better performance than these
methods, as mentioned earlier. The DNN model with data augmentation showed the best performance.

Finally, we compared actual average temperature and predicted average temperature in all
models. The prediction was done during ten days, from 2018.03.01 until 2018.03.10. The results are
shown in Table 2. As can be seen from the table, the scheme that showed the worst performance
was the autoencoder because there was much difference between actuality and prediction. For
data augmentation and batch normalization, the differences were fairly small. Sometimes, batch
normalization outperformed data augmentation during some days. From the table, we see that the
data augmentation showed the best performance because the prediction was nearly the same as the
real temperature for some days.
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Table 2. Comparison of actual and predicted average temperature.

Date
DNN without
Regularization
Methods (◦C)

L1
Regularization

(◦C)

Autoencoder
(◦C)

Data
August

Sum (◦C)

Data August:
Average (◦C)

Batch
Normalization

(◦C)

Real
Temperature

(◦C)

2018.03.01 2.3 6.3 10.1 1.5 1.0 3.9 4.6
2018.03.02 1.1 −1.9 17.6 −0.2 −0.8 1.0 −0.7
2018.03.03 2.9 −0.5 15.8 0.5 1.4 2.8 7.9
2018.03.04 3.5 17.1 15.1 1.9 0.6 10.3 9.8
2018.03.05 9.3 3.7 10.6 0.7 1.4 16.6 5.5
2018.03.06 4.3 2.7 17.7 4.8 4.5 −0.1 4.5
2018.03.07 2.6 4.4 17.6 8.3 9.1 9.4 6.4
2018.03.08 3.1 7.2 15.2 12.4 7.8 5.6 4.6
2018.03.09 6.6 3.1 16.6 2.7 4.7 4.0 4.5
2018.03.10 1.4 6.1 18.8 4.3 4.9 4.9 4.6

4. Discussion

The study showed that the models using regularization techniques demonstrated better
performance than those without regularization methods in terms of training errors. When comparing
each scheme quantitatively, an autoencoder scheme exposed higher errors than other schemes. This
was because it encountered underfitting due to the lack of data caused by removing some of the
training data. With this result, the portion of removed data must be decreased for an autoencoder
when the training data are insufficient. In addition, L1 regularization and the autoencoder scheme
still encountered overfitting and underfitting. Batch normalization and data augmentation showed
better performance than the others when comparing the errors. When comparing the prediction
accuracy, data augmentation and batch normalization showed better performance than others. Of the
two schemes, batch normalization outperformed data augmentation on some days. This was because
much more training data was added to the original data instead of being removed. However, if too
much data was used for training, it required too much time to complete the training of the models,
demonstrating a tradeoff between training data and processing time. In our study, only one CPU
was used to train the neural network. If there was too much data, the training time was too long.
In future work, it is necessary to analyze how the training time varies and compare the results using
big data. One of the approaches to considerably decrease the training time is to use a compute unified
device architecture (CUDA) GPU, where the experimental data are stored in a distributed manner
and processed in parallel on a multiple-CPU computer. However, this scheme requires the installation
of proprietary applications and software. It also requires a change in the basic architecture of the
experimental software.

5. Conclusions

The main contribution of this work is to help developers to choose the most suitable scheme for
their neural network application by doing comparative research with the purpose of assessing the
training and validation errors of a model with regularization methods. In the existing research in the
literature of neural networks, there was no research about a comparison of regularization methods.
From our study, we see that regularization methods could solve overfitting and underfitting problems
efficiently, but, even though some regularization algorithms were applied, neural network models still
suffered from the same problems during training. This indicates that it is not easy to solve the problems
and a more enhanced solution needs to be devised to completely solve the problems. One remaining
aspect to reflect upon consists of a comparison of processing times for each regularization scheme.
For stacked autoencoders, it takes a longer time to finish training and validation. The reason for this is
not analyzed clearly yet.
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Diseases. Sensors 2018, 18, 2552. [CrossRef]

37. Heaton, J.B.; Polson, N.G.; Witte, J.H. Deep learning for finance: Deep portfolios. Appl. Stochastic Models Bus.
Ind. 2016, 33. [CrossRef]
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