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Abstract: The article is written with the objectives to introduce a multi-variable hybrid class, namely
the Hermite–Apostol-type Frobenius–Euler polynomials, and to characterize their properties via
different generating function techniques. Several explicit relations involving Hurwitz–Lerch Zeta
functions and some summation formulae related to these polynomials are derived. Further, we
establish certain symmetry identities involving generalized power sums and Hurwitz–Lerch Zeta
functions. An operational view for these polynomials is presented, and corresponding applications
are given. The illustrative special cases are also mentioned along with their generating equations.
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1. Introduction and Preliminaries

The multi-variable forms of the special polynomials of mathematical physics help in deriving
several useful identities and in introducing new families of special polynomials. We know that
the generalized Hermite polynomials are important to deal with quantum mechanical and optical
beam transport problems [1] (also see [2,3]). The generating equation for the three-variable Hermite
polynomials (3VHP) Hn(x, y, z) [4] is given by:

ext+yt2+zt3
=

∞

∑
n=0

Hn(x, y, z)
tn

n!
, (1)

which for z = 0 reduce to the two-variable Hermite–Kampé de Fériet polynomials (2VHKdFP)
Hn(x, y) [5] and for z = 0, x = 2x and y = −1 become the classical Hermite polynomials Hn(x) [6].

For u ∈ C, u 6= 1, the generating equation for the Apostol-type Frobenius–Euler polynomials
(ATFEP) F(α)

n (x; u; λ), of order α ∈ C, is given by [7]:(
1− u

λet − u

)α

ext =
∞

∑
n=0

F
(α)
n (x; u; λ)

tn

n!
, (2)

which for x = 0 gives the Apostol-type Frobenius–Euler numbers (ATFEN) F(α)
n (u; λ), of order α

such that: (
1− u

λet − u

)α

=
∞

∑
n=0

F
(α)
n (u; λ)

tn

n!
. (3)
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For u = −1, the ATFEP reduce to the Apostol–Euler polynomials E
(α)
n (x; λ) [8], which for

λ = 1, become the Euler polynomials E(α)
n (x) [9]. Furthermore, the ATFEP for λ = 1 becomes the

Frobenius–Euler polynomials F(α)
n (x; u) [10].

The generating equations for the special polynomials are important from different view points
and help in finding connection formulas, recursive relations and difference equations and in solving
enumeration problems in combinatorics and encoding their solutions.

We intended to introduce a new hybrid class, namely the class of three-variable
Hermite–Apostol-type Frobenius–Euler polynomials (3VHATFEP).

Upon replacing the powers xn by the polynomials Hn(x, y, z) for (n = 0, 1, 2, . . .) in Equation (2)
and upon the use of Equation (1), we have:

For u, λ ∈ C, u 6= 1, the three-variable Hermite–Apostol-type Frobenius–Euler polynomials

HF
(α)
n (x, y, z; u; λ), of order α ∈ C, are defined by the following generating function:(

1− u
λet − u

)α

ext+yt2+zt3
=

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
, (4)

which for λ = 1 becomes the three-variable Hermite–Frobenius–Euler polynomials HF
(α)
n (x, y, z; u),

of order α, which again for α = 1, give the three-variable Hermite-Frobenius–Euler polynomials

HFn(x, y, z; u).
Again, the 3VHATFEP for u = −1 give the three-variable Hermite–Apostol–Euler polynomials

HE
(α)
n (x, y, z; λ) of order α, which for λ = 1 reduce to the three-variable Hermite–Euler polynomials

HE(α)
n (x, y, z).

The 3VHATFEP are also defined as the discrete Apostol-type Frobenius–Euler convolution of the
3VHP given by:

HF
(α)
n (x, y, z; u; λ) = n!

n

∑
k=0

[k/3]

∑
r=0

F
(α)
n−k(u; λ)zr Hk−3r(x, y)
(n− k)!r!(k− 3r)!

, (5)

where Hn(x, y) are the 2VHKdFP.
Next, we deduce certain special cases related to the 3VHATFEP family. Some of these cases are

known in the literature. These polynomials are given in Table 1 below.
In this article, the 3VHATFEP are introduced, and certain properties including the explicit relations,

summation formulae and symmetric identities for these polynomials are proven using different
generating function methods. Some applications for the aforementioned hybrid class of polynomials
are given.
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Table 1. Special polynomials related to the HF
(α)
n (x, y, z; u; λ) family.

S.No. Cases Name of Polynomial Generating Function

I. z = 0 2-variable Hermite–Apostol-type Frobenius–Euler polynomials of order α
(

1−u
λet−u

)α
ext+yt2

=
∞
∑

n=0
HF

(α)
n (x, y; u; λ) tn

n!

z = 0, λ = 1 2-variable Hermite-Frobenius–Euler polynomials of order α
(

1−u
et−u

)α
ext+yt2

=
∞
∑

n=0
HF

(α)
n (x, y; u) tn

n!

z = 0, λ = α = 1 2-variable Hermite–Frobenius–Euler polynomials
(

1−u
et−u

)
ext+yt2

=
∞
∑

n=0
HFn(x, y; u) tn

n!

II. x = 2x, Hermite–Apostol-type Frobenius–Euler polynomials
(

1−u
λet−u

)α
e2xt−t2

=
∞
∑

n=0
HF

(α)
n (x; u; λ) tn

n!

y = −1; z = 0 of order α

x = 2x, y = −1, Hermite–Frobenius–Euler polynomials
(

1−u
et−u

)α
e2xt−t2

=
∞
∑

n=0
HF

(α)
n (x; u) tn

n!

z = 0; λ = 1 of order α

x = 2x, y = −1, Hermite–Frobenius–Euler polynomials
(

1−u
et−u

)
e2xt−t2

=
∞
∑

n=0
HFn(x; u) tn

n!

z = 0; α = λ = 1

III. u = −1 3-variable Hermite–Apostol–Euler polynomials of order α [11]
(

2
λet+1

)α
ext+yt2+zt3

=
∞
∑

n=0
HE

(α)
n (x, y, z; λ) tn

n!

u = −1, 3-variable Hermite–Euler polynomials
(

2
et+1

)α
ext+yt2+zt3

=
∞
∑

n=0
H E(α)

n (x, y, z) tn

n!

λ = 1 of order α [11]

u = −1, 3-variable Hermite–Euler polynomials [11]
(

2
et+1

)
ext+yt2+zt3

=
∞
∑

n=0
H En(x, y, z) tn

n!

λ = α = 1

IV. u = −1, z = 0 2-variable Hermite–Apostol–Euler polynomials of order α [11]
(

2
λet+1

)α
ext+yt2

=
∞
∑

n=0
HE

(α)
n (x, y; λ) tn

n!

u = −1, λ = 1; 2-variable Hermite–Euler polynomials
(

2
et+1

)α
ext+yt2

=
∞
∑

n=0
H E(α)

n (x, y) tn

n!

z = 0 of order α [11]

u = −1, λ = α = 1; 2-variable Hermite–Euler polynomials [11]
(

2
et+1

)
ext+yt2

=
∞
∑

n=0
H En(x, y) tn

n!

z = 0

V. u = −1, x = 2x, Hermite–Apostol–Euler
(

2
λet+1

)α
e2xt−t2

=
∞
∑

n=0
HE

(α)
n (x; λ) tn

n!

y = −1; z = 0 polynomials of order α [12]

u = −1, λ = 1; Hermite–Euler polynomials
(

2
et+1

)α
e2xt−t2

=
∞
∑

n=0
H E(α)

n (x) tn

n!

x = 2x, y = −1; z = 0 of order α [12]

u = −1, λ = α = 1; Hermite–Euler polynomials [12]
(

2
et+1

)
e2xt−t2

=
∞
∑

n=0
H En(x) tn

n!

x = 2x, y = −1; z = 0
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2. Relations

To derive some relations for the 3VHATFEP, the following results are proven:

Theorem 1. Let α, β ∈ Z, then we have the following relation for the 3VHATFEP of order α:

HF
(α±β)
n (x, y, z; u; λ) =

n

∑
k=0

(
n
k

)
F
(α)
k (u; λ)HF

(±β)
n−k (x, y, z; u; λ). (6)

Proof. We write the generating Function (4) in the following form:

∞

∑
n=0

HF
(α±β)
n (x, y, z; u; λ)

tn

n!
=

(
1− u

λet − u

)(α±β)

ext+yt2+zt3
, (7)

for which, upon using Equations (3) and (4) and then after simplification, we get Equation (6).

Corollary 1. For α, β ∈ Z, the following relation for the 3VHAEP of order α holds true:

HE
(α±β)
n (x, y, z; λ) =

n

∑
k=0

(
n
k

)
E
(α)
k (λ)HE

(±β)
n−k (x, y, z; λ), (8)

E
(α)
k (λ) means Apostol–Euler numbers of order α.

Theorem 2. The following recurrence relation for the 3VHATFEP holds true:

HFn+1(x, y, z; u; λ) = x HFn(x, y, z; u; λ) + 2yn HFn−1(x, y, z; u; λ) + 3zn(n− 1)

HFn−2(x, y, z; u; λ)− λ
1−u

n
∑

k=0
(n

k)HFn−k(x, y, z; u; λ)HFk(1, 0, 0; u; λ). (9)

Proof. Taking α = 1 and then taking the derivative with respect to t in Equation (4), we find:

∞

∑
n=0

HFn+1(x, y, z; u; λ)
tn

n!
=

(
1− u

λet − u

)
ext+yt2+zt3

(x + 2yt + 3zt2)− (1− u)λet

(λet − u)2 ext+yt2+zt3
, (10)

from which, upon using Equation (4) (for α = 1) and after simplifying the resultant equation, it follows
that:

∞
∑

n=0
HFn+1(x, y, z; u; λ) tn

n! = x
∞
∑

n=0
HFn(x, y, z; u; λ) tn

n! + 2y
∞
∑

n=0
HFn(x, y, z; u; λ) tn+1

n! + 3z
∞
∑

n=0
HFn(x, y, z; u; λ) tn+2

n! −
λ

1−u

∞
∑

n=0
HFn(x, y, z; u; λ) tn

n!

∞
∑

k=0
HFk(1, 0, 0; u; λ) tk

k! .
(11)

Replacing n→ n− 1, n− 2 and n− k consecutively in the second, third and last term of the above
equation on the r.h.s., it follows that:

∞
∑

n=0
HFn+1(x, y, z; u; λ) tn

n! = x
∞
∑

n=0
HFn(x, y, z; u; λ) tn

n! + 2y
∞
∑

n=0
HFn−1(x, y, z; u; λ) tn

(n−1)! + 3z
∞
∑

n=0
HFn−2(x, y, z; u; λ) tn

(n−2)! −
λ

1−u

∞
∑

n=0

∞
∑

k=0
HFn−k(x, y, z; u; λ)HFk(1, 0, 0; u; λ) tn

k!(n−k)! ,

which, upon comparing the coefficients of like powers of tn/n! on both sides, gives the recurrence
Relation (9).
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Corollary 2. The following recurrence relation for the 3VHAEP holds true:

HEn+1(x, y, z; λ) = x HEn(x, y, z; λ) + 2yn HEn−1(x, y, z; λ) + 3zn(n− 1)HEn−2(x, y, z; λ)

−λ

2

n

∑
k=0

(
n
k

)
HEn−k(x, y, z; λ)HEk(1, 0, 0; λ). (12)

Theorem 3. For γ > 0, the following relation for the 3VHATFEP of order α holds true:

(1− u)γ
HF

(α−γ)
n (x, y, z; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
n−k(x, y, z; u; λ)

γ

∑
p=0

(
γ

p

)
λp pk(−u)γ−p. (13)

Proof. We write the generating Function (4) in the following form:

∞

∑
n=0

HF
(α−γ)
n (x, y, z; u; λ)

tn

n!
=

(
1− u

λet − u

)α

ext+yt2+zt3
(λet − u)γ(1− u)−γ, (14)

which, upon simplifying and again using Equation (4), gives:

∞

∑
n=0

HF
(α−γ)
n (x, y, z; u; λ)

tn

n!
= (1− u)−γ

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!

∞

∑
k=0

γ

∑
p=0

(
γ

p

)
λp pk(−u)γ−p tk

k!
. (15)

Now, simplifying and then comparing the coefficients of the same powers of t in the resultant
equation yield Assertion (13).

Corollary 3. For γ > 0, the following relation for the 3VHAEP of order α holds true:

2γ
HE

(α−γ)
n (x, y, z; λ) =

n

∑
k=0

(
n
k

)
HE

(α)
n−k(x, y, z; λ)

γ

∑
p=0

(
γ

p

)
λp pk. (16)

Theorem 4. For u, α ∈ C, u 6= 1, there is the following relationship between the 3VHATFEP of order α and
the generalized Hurwitz–Lerch Zeta function (GHLZF) Φµ(z, s, a):

HF
(α)
n (x, y, z; u; λ) =

(
u− 1

u

)α n

∑
l=0

(
n
l

)
Φα

(
λ

u
, l − n, x

)
Hl(0, y, z). (17)

Proof. We write the generating Function (4) in the following form:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
= (1− u)α (λ et − u)−α ext+yt2+zt3

, (18)

which, upon simplification, becomes:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
= (1− u)α (−u)−α

∞

∑
n=0

∞

∑
k=0

(α)k
k!

(λ

u

)k (k + x)ntn

n!
eyt2+zt3

. (19)

Using Equation (1) and the following formula for the GHLZF Φµ(z, s, a) [13]:

Φµ(z, s, a) =
∞

∑
n=0

(µ)n

n!
zn

(n + a)s , (20)

and after simplifying the resultant equation yield Relation (17).



Symmetry 2018, 10, 652 6 of 16

Corollary 4. There is the following relationship between the 3VHAEP of order α and generalized Hurwitz–Lerch
Zeta function Φµ(z, s, a):

HE
(α)
n (x, y, z; λ) = 2α

n

∑
l=0

(
n
l

)
Φα (−λ, l − n, x) Hl(0, y, z). (21)

Theorem 5. Let α and γ be nonnegative integers. There is the following relationship between the numbers
S(n, k, λ) and the 3VHATFEP of order α:

α!
n

∑
l=0

(
n
l

)
HF

(α)
n−l(x, y, z; u; λ)S

(
l, α,

λ

u

)
=

(
1− u

u

)α

Hn(x, y, z), (22)

HF
(α−γ)
n (x, y, z; u; λ) = γ!

(
u

1− u

)γ n

∑
l=0

(
n
l

)
HF

(α)
n−l(x, y, z; u; λ)S

(
l, γ,

λ

u

)
. (23)

Proof. The generating Equation (4) can be formulated as:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
= (1− u)α 1

(λ et − u)α
ext+yt2+zt3

, (24)

which, upon rearranging the terms using Equation (1) and the following expansion:

(λ et − 1)k

k!
=

∞

∑
n=0

S(n, k, λ)
tn

n!
. (25)

becomes:

α!
∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!

∞

∑
l=0

S
(

l, α,
λ

u

) tl

l!
=

(
1− u

u

)α ∞

∑
n=0

Hn(x, y, z)
tn

n!
. (26)

which, upon rearranging the summation and then simplifying the resultant equation, yields
Relation (22).

Again, we consider the following arrangement of the generating Function (4):

∞

∑
n=0

HF
(α−γ)
n (x, y, z; u; λ)

tn

n!
=
( 1− u

λet − u

)α
ext+yt2+zt3

( u
1− u

)γ
γ!

( λ
u et − 1)γ

γ!
, (27)

which, upon the use of Equations (4) and (25), applying the Cauchy product rule and then canceling
the same powers of t in resultant the equation, yields Relation (23).

Corollary 5. There is the following relationship between the numbers S(n, k, λ) and the 3VHAEP of order α:

α!
n
∑

l=0
(n

l )HE
(α)
n−l(x, y, z; λ)S

(
l, α,−λ

)
= (−2)α Hn(x, y, z).

HE
(α−γ)
n (x, y, z; λ) = γ!

(
−1
2

)γ n
∑

l=0
(n

l )HE
(α)
n−l(x, y, z; λ)S

(
l, γ,−λ

)
.

(28)

In the next section, we derive some summation formulae for the 3VHATFEP.

3. Summation Formulae

In order to prove the summation formulae for the 3VHATFEP HF
(α)
n (x, y, z; u; λ), we have the

following theorems:
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Theorem 6. The following implicit summation formula for the 3VHATFEP of order α holds true:

HF
(α)
n (x + w, y, z; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
k (x, y, z; u; λ)wn−k. (29)

Proof. Substituting x → x + w in (4), then making use of Equation (4) and with the series expansion
of ewt in the resultant equation, we have:

∞

∑
n=0

HF
(α)
n (x + w, y, z; u; λ)

tn

n!
=

∞

∑
n=0

∞

∑
k=0

HF
(α)
k (x, y, z; u; λ)wn tn+k

n!k!
, (30)

which, upon simplification, gives Assertion (29).

Corollary 6. For w = 1 in Equation (29), we have:

HF
(α)
n (x + 1, y, z; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
k (x, y, z; u; λ). (31)

Theorem 7. The following implicit summation formula for the 3VHATFEP of order α holds true:

HF
(α)
n (x + v, y + w, z + r; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
n−k(x, y, z; u; λ) Hk(v, w, r). (32)

Proof. Replacing x → x + v, y→ y + w and z→ z + r in the generating Function (4) and by the help
of Equations (1) and (4), we find:

∞

∑
n=0

HF
(α)
n (x + v, y + w, z + r; u; λ)

tn

n!
=

∞

∑
n=0

∞

∑
k=0

HF
(α)
n (x, y, z; λ; u)Hk(v, w, r)

tn+k

n!k!
, (33)

which, after simplification, gives Formula (32).

Corollary 7. For r = 0 in Equation (32), we have:

HF
(α)
n (x + v, y + w, z; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
n−k(x, y, z; u; λ) Hk(v, w). (34)

Theorem 8. The following implicit summation formula for the 3VHATFEP of order α holds true:

HF
(α)
n+k(p, y, z; u; λ) =

n,k

∑
l,m=0

(
n
l

)(
k
m

)
(p− x)l+m

HF
(α)
n+k−l−m(x, y, z; u; λ). (35)

Proof. Reestablishing t by t + v and after using the following rule:

∞

∑
N=0

f (N)
(x + y)N

N!
=

∞

∑
l,m=0

f (l + m)
xl ym

l! m!
(36)

in Equation (4) and then simplifying the resultant equation, it follows that:

e−x(t+v)
∞

∑
n,k=0

HF
(α)
n+k(x, y, z; λ; u)

tn vk

n! k!
=

(
1− u

λet+v − u

)α

ey(t+v)2+z(t+v)3
. (37)
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Replacing x by p in the above equation, equating the resultant equation to the above equation
and then expanding the exponential function give:

∞

∑
n,k=0

HF
(α)
n+k(p, y, z; u; λ)

tn vk

n! k!
=

∞

∑
N=0

(p− x)N (t + v)N

N!

∞

∑
n,k=0

HF
(α)
n+k(x, y, z; u; λ)

tn vk

n! k!
. (38)

Now, using Formula (36) in the above equation and then replacing n→ n− l and k→ k−m in
the resultant equation, it follows that:

∞

∑
n,k=0

HF
(α)
n+k(p, y, z; u; λ)

tn vk

n! k!
=

∞

∑
n,k=0

n,k

∑
l,m=0

(p− x)l+m

l! m! HF
(α)
n+k−l−m(x, y, z; u; λ)

tn vk

(n− l)! (k−m)!
,

(39)
which gives Formula (35).

Corollary 8. For n = 0 in Equation (35), we have:

HF
(α)
k (p, y, z; u; λ) =

k

∑
m=0

(
k
m

)
(p− x)m

HF
(α)
k−m(x, y, z; u; λ). (40)

Corollary 9. Replacing p by p + x and taking z = 0 in Equation (35), we have:

HF
(α)
n+k(p + x, y; u; λ) =

n,k

∑
l,m=0

(
n
l

)(
k
m

)
pl+m

HF
(α)
n+k−l−m(x, y; u; λ). (41)

Corollary 10. Replacing p by p + x and taking y = 0 z = 0 in Equation (35), we have:

HF
(α)
n+k(p + x; u; λ) =

n,k

∑
l,m=0

(
n
l

)(
k
m

)
pl+m

HF
(α)
n+k−l−m(x; u; λ). (42)

Corollary 11. For p = 0 in Equation (35), we have:

HF
(α)
n+k(y, z; u; λ) =

n,k

∑
l,m=0

(
n
l

)(
k
m

)
(−x)l+m

HF
(α)
n+k−l−m(x, y, z; u; λ). (43)

Theorem 9. The following relation for the 3VHATFEP of order α holds true:

HF
(α)
n (x, y, z; u; λ) =

[ n
3 ]

∑
k=0

n!
(n− 3k)!k! HF

(α)
n−3k(x, y; u; λ)zk. (44)

Proof. Using the equation from Table 1(I), the expansion of ezt3
in Equation (4) and then simplifying

the resulting equation give:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
=

∞

∑
n=0

 [ n
3 ]

∑
k=0

n!
(n− 3k)!k! HF

(α)
n−3k(x, y; u; λ)zk

 tn

n!
. (45)

After comparing the coefficients of same powers of tn/n! in the above equation, we are led to
Relation (44).
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Theorem 10. The following relation for the 3VHATFEP of order α holds true:

HF
(α)
n (x, y, z; u; λ) =

n

∑
k=0

[ k
3 ]

∑
s=0

n!
(n− k)!(k− 3s)!s!

F
(α)
n−k(u; λ)Hk−3s(x, y)zs. (46)

Proof. Using Equations (3) and (1) (for z = 0), the expansion of ezt3
in Equation (4) and after

rearranging the terms, it follows that:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
=

∞

∑
n=0

n

∑
k=0

(
n
k

)
F
(α)
n−k(u; λ)

 [ k
3 ]

∑
s=0

k!
(k− 3s)!s!

Hk−3s(x, y)zs

 tn

n!
. (47)

Upon canceling the coefficients of like powers of t in Equation (47), we get Assertion (46).

Theorem 11. The following relation for the 3VHATFEP of order α holds true:

HF
(α)
n (x, y, z; u; λ) =

[ n
3 ]

∑
s=0

[ n−3s
2 ]

∑
k=0

n!
s!(n− 3s− 2k)!k!

F
(α)
n−3s−2k(x; u; λ)ykzs. (48)

Proof. With the use of Equation (2), the expansions of eyt2
and ezt3

in Equation (4) and upon simplifying
the resulting equation, we obtain:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
=

∞

∑
n=0

 [ n
3 ]

∑
s=0

[ n−3s
2 ]

∑
k=0

n!
s!(n− 3s− 2k)!k!

F
(α)
n−3s−2k(x; u; λ)ykzs

 tn

n!
(49)

Finally, upon equating the coefficients of the same powers of t in the above equation, Relation (48)
is proven.

In the next section, we establish some symmetric identities for the 3VHATFEP.

4. Symmetric Identities

The identities for the generalized special functions are useful in electromagnetic processes,
combinatorics, numerical analysis, etc. Several types of identities and relations related to Apostol-type
polynomials and related polynomials are considered in [14–27]. This provides the motivation to
explore symmetry identities for the 3VHATFEP. We recall the following:

For any γ ∈ R or C, the generalized sum of integer powers Sk(p; γ) is given by:

γp+1e(p+1)t − 1
γet − 1

=
∞

∑
k=0
Sk(p; γ)

tk

k!
, (50)

which gives:

Sk(p; γ) =
k

∑
l=0

γl lk.

For any γ ∈ R or C, the multiple power sums S (l)k (m; γ) are given by:

(
1− γmemt

1− γet

)l

=
1
γl

∞

∑
n=0

{
n

∑
p=0

(
n
p

)
(−l)n−p S (l)k (m; γ)

}
tn

n!
. (51)

To prove the symmetry identities for the 3VHATFEP, we have the following theorems:
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Theorem 12. For all integers c, d > 0 and n ≥ 0, α ≥ 1, λ, u ∈ C, the following symmetry relation between
the 3VHATFEP of order α and the generalized integer power sums holds true:

n
∑

k=0
(n

k)c
n−k

HF
(α)
n−k(dx, d2y, d3z; λ; u)

k
∑

l=0
(k

l)d
kuc−1Sl(c− 1; λ

u )HF
(α−1)
k−l (cX, c2Y, c3Z; λ; u)

=
n
∑

k=0
(n

k)d
n−kud−1

HF
(α)
n−k(cx, c2y, c3z; λ; u)

k
∑

l=0
(k

l)c
kSl(d− 1; λ

u )HF
(α−1)
k−l (dX, d2Y, d3Z; λ; u).

(52)

Proof. Let

G(t) :=
(1− u)2α−1 ecdxt+y(cdt)2+z(cdt)3

(λcecdt − uc) ecdXt+Y(cdt)2+Z(cdt)3

(λect − u)α (λedt − u)α
, (53)

which, upon rearranging the powers and then using Equations (4) and (50) in the resultant
equation, yields:

G(t) =
(

∞
∑

n=0
HF

(α)
n (dx, d2y, d3z; λ; u) (ct)n

n!

)(
uc−1

∞
∑

l=0
Sl(c− 1; λ

u )
(dt)l

l!

)
×
(

∞
∑

k=0
HF

(α−1)
k (cX, c2Y, c3Z; λ; u) (dt)k

k!

)
.

(54)

Upon applying the Cauchy product rule in the above equation, we get:

G(t) =
∞
∑

n=0

( n
∑

k=0
(n

k)c
n−kdkuc−1

HF
(α)
n−k(dx, d2y, d3z; λ; u)

k
∑

l=0
(k

l)Sl(c− 1; λ
u )

×HF
(α−1)
k−l (cX, c2Y, c3Z; λ; u)

)
tn

n! .
(55)

In a similar manner, we obtain:

G(t) =
∞
∑

n=0

( n
∑

k=0
(n

k)d
n−kckud−1

HF
(α)
n−k(cx, c2y, c3z; λ; u)

k
∑

l=0
(k

l)Sl(d− 1; λ
u )

×HF
(α−1)
k−l (dX, d2Y, d3Z; λ; u)

)
tn

n! .
(56)

Equating the coefficients of the like powers of t in the r.h.s. of Expansions (55) and (56), we are led
to Identity (52).

Theorem 13. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry identity for the 3VHATFEP of order α holds true:

n
∑

k=0
(n

k)
c−1
∑

i=0

d−1
∑

j=0
uc+d−2( λ

u )
i+jcn−kdk

HF
(α)
k

(
cX + c

d j, c2Y, c3Z; λ; u
)

HF
(α)
n−k

(
dx + d

c i, d2y, d3z; λ; u
)

=
n
∑

k=0
(n

k)
d−1
∑

i=0

c−1
∑

j=0
uc+d−2( λ

u )
i+jdn−kck

HF
(α)
k

(
dX + d

c j, d2Y, d3Z; λ; u
)

HF
(α)
n−k

(
cx + c

d i, c2y, c3z; λ; u
)

.
(57)

Proof. Let

H(t) :=
(1− u)2αecdxt+y(cdt)2+z(cdt)3

(λcecdt − uc)(λdecdt − ud) ecdXt+Y(cdt)2+Z(cdt)3

(λect − u)α+1(λedt − u)α+1 , (58)
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from which, upon rearranging the powers and using the series expansions for
(

λcecdt−uc

λedt−u

)
and(

λdecdt−ud

λectu

)
in the resultant equation, it follows that:

H(t) =
(

1− u
λect − u

)α

edx(ct)+d2y(ct)2+d3z(ct)3
uc−1

c−1

∑
i=0

(λ

u

)i
edti

×
(

1− u
λedt − u

)α

ecX(dt)+c2Y(dt)2+c3Z(dt)3
ud−1

d−1

∑
j=0

(λ

u

)j
ectj. (59)

Now, by making use of Equation (4) and the application of the Cauchy product rule in the resultant
equation, we have:

H(t) =
n
∑

k=0
(n

k)
c−1
∑

i=0

d−1
∑

j=0
uc+d−2( λ

u )
i+jcn−kdk

HF
(α)
k

(
cX + c

d j, c2Y, c3Z; λ; u
)

HF
(α)
n−k

(
dx + d

c i, d2y, d3z; λ; u
)

.
(60)

Following the same lines of proof as above gives another identity:

H(t) =
n
∑

k=0
(n

k)
d−1
∑

i=0

c−1
∑

j=0
ud+c−2( λ

u )
i+jdn−kck

HF
(α)
k

(
dX + d

c j, d2Y, d3Z; λ; u
)

HF
(α)
n−k

(
cx + c

d i, c2y, c3z; λ; u
)

.
(61)

Comparing the coefficients of the same powers of t in the r.h.s. of Expressions (60) and (61) gives
Identity (57).

Theorem 14. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry identity for the 3VHATFEP holds true:

d−1
∑

m=0
ud−1( λ

u )
m

n
∑

l=0
(n

l )HFn−l

(
cx, c2y, c3z; λ; u

)
dn−l(cm)l

=
c−1
∑

m=0
uc−1( λ

u )
m

n
∑

l=0
(n

l )HFn−l

(
dx, d2y, d3z; λ; u

)
cn−l(dm)l .

(62)

Proof. Let

N(t) :=
(1− u)ecdxt+y(cdt)2+z(cdt)3

(λdecdt − ud)

(λect − u)(λedt − u)
. (63)

Proceeding on the same lines of proof as in Theorem 13, we get Identity (62). Thus, we omit
the proof.

Theorem 15. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry relation between the 3VHATFEP and multiple power sums holds true:

n
∑

l=0
(n

l )HFn−l(dx, d2y, d3z; λ; u) udαλ−α
l

∑
m=0

( l
m)

m
∑

r=0
(m

r ) (−α)m−r S (α)k

(
d; λ

u

)
× HF

(α+1)
l−m (cX, c2Y, c3Z; λ; u)cn−l+mdl−m

=
n
∑

l=0
(n

l )HFn−l(cx, c2y, c3z; λ; u) ucαλ−α
l

∑
m=0

( l
m)

m
∑

r=0
(m

r ) (−α)m−r S (α)k

(
c; λ

u

)
× HF

(α+1)
l−m (dX, d2Y, d3Z; λ; u)dn−l+mcl−m.

(64)
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Proof. Let:

F(t) :=
(1− u)α+2 edx(ct)+d2y(ct)2+d3z(ct)3

(λdedct − ud)α ecX(dt)+c2Y(dt)2+c3Z(dt)3

(λedt − u)α+1 (λect − u)α+1 , (65)

which, upon rearranging the powers and use of Equations (4) and (51) in the resultant equation, yields:

F(t) :=
∞
∑

n=0
HFn(dx, d2y, d3z; λ; u)cn tn

n! udαλ−α
∞
∑

m=0

m
∑

r=0
(m

r ) (−α)m−r S (α)k

(
d; λ

u

)
cm tm

m!
∞
∑

l=0
HF

(α+1)
l (cX, c2Y, c3Z; λ; u)dl tl

l! .
(66)

Now, appropriately applying the using Cauchy product rule in the above equation leads to:

F(t) :=
∞
∑

n=0

n
∑

l=0
(n

l )HFn−l(dx, d2y, d3z; λ; u)cn−l udαλ−α
l

∑
m=0

( l
m)

m
∑

r=0
(m

r ) (−α)m−r S (α)k

(
d; λ

u

)
HF

(α+1)
l−m (cx, c2y, c3z; λ; u)cmdl−m tn

n! .
(67)

Similarly, we can find:

F(t) :=
∞
∑

n=0

n
∑

l=0
(n

l )HFn−l(cx, c2y, c3z; λ; u)dn−l ucαλ−α
l

∑
m=0

( l
m)

m
∑

r=0
(m

r ) (−α)m−r S (α)k

(
c; λ

u

)
HF

(α+1)
l−m (dx, d2y, d3z; λ; u)dmcl−m tn

n! .
(68)

Equating the coefficients of the like powers of tn/n! in the r.h.s. of Expansions (67) and (68) gives
Identity (64).

Theorem 16. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry relation between the 3VHATFEP of order α and multiple power sums holds true:

n
∑

m=0
(n

m)HF
(α)
n−m(dx, d2y, d3z; λ; u)cn−m ucαλ−α

m
∑

r=0
(m

r ) (−α)m−r S (α)k

(
c; λ

u

)
dm

=
n
∑

m=0
(n

m)HF
(α)
n−m(cx, c2y, c3z; λ; u)dn−m udαλ−α

m
∑

r=0
(m

r ) (−α)m−r S (α)k

(
d; λ

u

)
cm.

(69)

Proof. Let:

M(t) :=
(1− u)α edx(ct)+d2y(ct)2+d3z(ct)3

(λcecdt − uc)α

(λedt − u)α (λect − u)α
. (70)

Proceeding on the same lines of proof as in Theorem 15, we get Identity (69). Thus, we omit
the proof.

Theorem 17. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry relation between the 3VHATFEP of order α and the Hurwitz–Lerch Zeta function holds true:

(
1−u

u

)α
(−1)α

( n
∑

p=0
(n

p)
n−p
∑

s=0
(n−p

s )Φα

(
λ
u , s− n + p, cx

)
Hs(0, c2y, c3z)dn ucλ−1

p
∑

r=0
(r

p)
p−r
∑

q=0
(p−r

q )(−1)p−r−qSq

(
c, λ

u

)
HF

(α)
r (dX, d2Y, d3Z; λ; u)crdp−r

)
=
(

1−u
u

)α
(−1)α

( n
∑

p=0
(n

p)
n−p
∑

s=0
(n−p

s )Φα

(
λ
u , s− n + p, cx

)
Hs(0, d2y, d3z)cn udλ−1

p
∑

r=0
(r

p)
p−r
∑

q=0
(p−r

q )(−1)p−r−qSq

(
d, λ

u

)
HF

(α)
r (cX, c2Y, c3Z; λ; u)drcp−r

)
.

(71)
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Proof. Let:

P(t) :=
(1− u)2α ecx(dt)+c2y(dt)2+c3z(dt)3

(λcecdt − uc) edX(ct)+d2Y(ct)2+d3Z(ct)3

(λedt − u)α+1 (λect − u)α
, (72)

which, upon rearranging the powers and after using Equations (4) and (51) (for α = 1) and the
following formula for the generalized binomial theorem:

(1 + w)−α =
∞

∑
m=0

(
m + α− 1

m

)
(−w)m; |w| < 1, (73)

in the resultant equation becomes:

P(t) :=
(

1−u
u

)α
(−1)α

∞
∑

m=0
(m+α−1

m )
(

λ
u

)m
emdt ecx(dt)+c2y(dt)2+c3z(dt)3

ucλ−1
∞
∑

p=0

p
∑

q=0
(p

q)(−1)p−q

Sq

(
c, λ

u

)
dp tp

p!

∞
∑

r=0
HF

(α)
r (dX, d2Y, d3Z; λ; u) (ct)r

r! .
(74)

Simplifying the above equation with the use of Equations (1) and (20) and then using the Cauchy
product rule in the resultant equation, we get:

P(t) : =
(

1−u
u

)α
(−1)α

∞
∑

n=0

( n
∑

p=0
(n

p)
n−p
∑

s=0
(n−p

s )Φα

(
λ
u , s− n + p, cx

)
Hs(0, c2y, c3z)dn ucλ−1

p
∑

r=0
(r

p)
p−r
∑

q=0
(p−r

q )(−1)p−r−qSq

(
c, λ

u

)
HF

(α)
r (dX, d2Y, d3Z; λ; u)crdp−r

)
tn

n! .
(75)

In a similar manner, we have:

P(t) : =
(

1−u
u

)α
(−1)α

∞
∑

n=0

( n
∑

p=0
(n

p)
n−p
∑

s=0
(n−p

s )Φα

(
λ
u , s− n + p, dx

)
Hs(0, d2y, d3z)cn udλ−1

p
∑

r=0
(r

p)
p−r
∑

q=0
(p−r

q )(−1)p−r−qSq

(
d, λ

u

)
HF

(α)
r (cX, c2Y, c3Z; λ; u)drcp−r

)
tn

n! .
(76)

Finally, canceling the coefficients of the same powers of t in the r.h.s. of Expansions (75) and (76),
Identity (71) is proven.

Note: The results established above for the 3VHATFEP can be reduced to the illustrative special
cases mentioned in Table 1 simply by substituting special values of the variables or parameters.
Therefore, we omit them.

5. Operational Representation

The classical and Apostol-type Frobenius–Euler numbers and polynomials are the generalization
of Euler numbers and polynomials, and these are associated with the Brouwer fixed-point theorem
and vector fields [28].

From generating Equation (4), we find that the 3VHATFEP are the solutions of the
following equations:

∂

∂y HF
(α)
n (x, y, z; u; λ) =

∂2

∂x2 HF
(α)
n (x, y, z; u; λ), (77)

∂

∂z HF
(α)
n (x, y, z; u; λ) =

∂3

∂x3 HF
(α)
n (x, y, z; u; λ), (78)

under the following initial condition:

HF
(α)
n (x, 0, 0; u; λ) = F

(α)
n (x; u; λ). (79)
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Thus, in view of the above equation, we find that, for the 3VHATFEP, the following operational
representation holds true:

HF
(α)
n (x, y, z; u; λ) = exp

(
y

∂2

∂x2 + z
∂3

∂x3

)
{F(α)

n (x; u; λ)}. (80)

The operational formalism developed above can be used to obtain the corresponding identities
for the 3VHATFEP and for their special cases. To give the applications of the operational
representation (80), we apply the operation O given below:

O: Operating exp
(

y ∂2

∂x2 + z ∂3

∂x3

)
on both sides of a given result.

Consider the following identities for the FEP F
(α)
n (x; u) from [17]:

uFn(x; u−1) + Fn(x; u) = (1 + u)
n

∑
k=0

(
n
k

)
Fn−k(u−1)Fk(x; u), (81)

1
n+1Fk(x; u) + Fn−k(x; u) =

n−1
∑

k=0

(n
k)

n−k+1

n
∑

l=k
((−u)Fl−k(u)Fn−l(u) + 2uFn−k(u))

Fk(x; u) Fn(x; u),
(82)

F
(α)
n (x; u) =

n
∑

k=0
(n

k)F
(α−1)
n−k (u)Fk(x; u) (n ∈ Z+), (83)

Fn(x; u) = 1
(1−u)α

n
∑

k=0
(n

k)

(
α

∑
j=0

(α
j)(−u)α−jFn−k(j; u)

)
F
(α)
k (x; u) (n ∈ Z+), (84)

which, upon using operation (O) in both sides, yields the following identities for the polynomials

HF
(α)
n (x, y, z; u):

uHFn(x, y, z; u−1) + HFn(x, y, z; u) = (1 + u)
n

∑
k=0

(
n
k

)
Fn−k(u−1)HFk(x, y, z; u), (85)

1
n+1 HFk(x, y, z; u) + HFn−k(x, y, z; u) =

n−1
∑

k=0

(n
k)

n−k+1

n
∑

l=k
((−u)Fl−k(u)Fn−l(u) + 2uFn−k(u))

HFk(x, y, z; u) Fn(x; u),
(86)

HF
(α)
n (x, y, z; u) =

n
∑

k=0
(n

k)F
(α−1)
n−k (u)HFk(x, y, z; u) (n ∈ Z+), (87)

HFn(x, y, z; u) = 1
(1−u)α

n
∑

k=0
(n

k)

(
α

∑
j=0

(α
j)(−u)α−jFn−k(j; u)

)
HF

(α)
k (x, y, z; u) (n ∈ Z+). (88)

Thus, we find that the aforementioned polynomials, which include the polynomials as their
special cases given in Table 1 along with the underlying operational formalism, offer a powerful
tool for the investigation of the properties of a wide class of polynomials. Thus, the combination of
Hermite and Frobenius–Euler polynomials yields such interesting results.

Further, motivated by the ATFEP F
(α)
n (x; u; λ), we introduce the Apostol type Frobenius–Genocchi

polynomials H(α)
n (x; u; λ) (ATFGP). For u ∈ C, u 6= 1, the ATFGP of order α ∈ C are defined by:(

(1− u)t
λet − u

)α

ext =
∞

∑
n=0

H
(α)
n (x; u; λ)

tn

n!
, (89)

which, for λ = α = 1, reduce to the Frobenius–Genocchi polynomials GF
n (x; u) [29].
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Using the previous approach, we introduce the three-variable Hermite–Apostol-type
Frobenius–Genocchi polynomials (3VHATFGP) HH

(α)
n (x, y, z; u; λ) of order α ∈ C defined by:(

(1− u)t
λet − u

)α

ext+yt2+zt3
=

∞

∑
n=0

HH
(α)
n (x, y, z; u; λ)

tn

n!
. (90)

The special members related to the 3VHATFGP HH
(α)
n (x, y, z; u; λ) can be obtained, and

corresponding results for these polynomials and for their special cases can be obtained easily. Thus, we
omit them.

6. Conclusions

In this paper, a multi-variable hybrid class of the Hermite–Apostol-type Frobenius–Euler
polynomials is introduced and their properties are explored using various generating function methods.
Several explicit and recurrence relations, summation formulae and symmetry identities are established
for these hybrid polynomials. A brief view of the operational approach is also given for these
polynomials. The operational representations combined with integral transforms may lead to other
interesting results, which may be helpful to the theory of fractional calculus. Several techniques and
methods are used in [30,31], which are applicable to the other fields of mathematics. The applicability
of these techniques to the hybrid polynomial families can also be explored. These aspects will be
undertaken in further investigation.
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