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Abstract: In this paper, we propose a new synthetic sampling plan assuming that the quality
characteristic follows the normal distribution with known and unknown standard deviation.
The proposed plan is given and the operating characteristic (OC) function is derived to measure
the performance of the proposed sampling plan for some fixed parameters. The parameters of the
proposed sampling plan are determined using non-linear optimization solution. A real example is
added to explain the use of the proposed plan by industry.
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1. Introduction

Every industry in the world is keen to attract customers through the high quality of its products [1].
The assurance of high-quality products can be achieved by implementing some inspection criteria
for accepting or rejecting at every level of production from raw material to final finished product [2].
The inspection is done through some specific rules known as a sampling plan. The sampling plans are
well-defined rules for the inspection of the raw material to the finished product. During the inspection
of a product, the cost of inspection is directly related to the sample size. The inspection per unit of
sample increases as the sample size increases. The inspection cost of a sampling plan is minimized
through a well-defined sampling plan. The sampling plan parameters are selected through non-linear
optimization methods by minimizing the sample size [3]. The producer’s risk and consumer’s risk are
associated with every sampling plan. The chance of rejecting a good lot is called the producer’s risk
and the chance of accepting a bad lot is called the consumer’s risk. A well-defined sampling plan is
also helpful in minimizing the two risks. Thus, inspection that is done through a well-defined sampling
plan guarantees a minimum cost and a correct decision about the submitted product. A variety of
acceptance sampling plans have been used in industry for the inspection of products—for example,
applications of a sampling plan in a hospital pharmacy [4], in pulp manufacturing [5], and in food
control [6].

Two types of sampling plans have been widely used in industry: attribute sampling and variable
sampling plans. The attribute sampling plan is usually used when data are obtained through the
counting process and a variable sampling plan is used with measurement data. Both sampling plans
have been widely used in industry for the inspection of the finished product (for example, see [7–10]).
According to Li et al. [11], in some practical situations it may be necessary to apply both sampling
schemes simultaneously; that is called mixed sampling for the inspection of the finished product
and can save money and time during inspection. Several authors focused on the design of a mixed
sampling plan. Suresh and Devaarul [12] proposed a mixed sampling plan with chain sampling as an
attribute plan. Aslam et al. [13] proposed a mixed repetitive sampling plan using a process capability
index. Butt et al. [14] proposed the plan for the process yield. Balamurali et al. [15] designed a mixed
variable plan using the process capability index. Balamurali [3] proposed a chain sampling plan for the
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process capability index. Ramya and Devaarul [16] proposed the variable sampling plan for the Lomax
distribution. More information about mixed sampling can be found in Suresh and Devaarul [12],
Aslam et al. [17], and Aslam et al. [18].

Sometimes, it may be difficult to make a final decision about a submitted lot of product using
information about the main quality of interest. In this situation, other variables called auxiliary
variables are investigated that are correlated to the main variable of study. For example, in the
steel industry, the tensile strength, the variable of interest, is difficult to measure while the hardness,
the auxiliary variable, which is correlated to tensile strength, is easy to measure—see Aslam et al. [19].
Similarly, the single-strand break factor, the variable of interest, is correlated to the weight of textile
fibers, the auxiliary variable; see Abdul Abdul Haq and Khoo [20]. As mentioned by Riaz [21],
the study of the variable of interest with the auxiliary information may improve the precision of the
decision. Aslam et al. [19] and Aslam et al. [22] proposed acceptance sampling plans using auxiliary
information. Recently, Haq and Khoo [20] proposed a new synthetic control chart that uses statistical
information on both the main variable and the auxiliary variable. They compared the performance of a
new statistic with a classical statistic.

The sampling plan based on the synthetic statistic is the integration of the traditional single
sampling plan and the plan based on conforming run length (CRL). According to Haq and Khoo [20],
“In 100% inspection, the CRL is defined as the total number of inspected units between the two
consecutive nonconforming units—including the ending nonconforming unit.” By exploring the
literature, we found that, to the best of our knowledge, there has been no work done on designing a
sampling plan using a synthetic statistic. In this paper, we present a sampling plan for the inspection
of the finished product. We expect that the proposed sampling plan based on the synthetic statistic
will perform better than the traditional single sampling plan. The complete structure of the proposed
plan is given for normal distribution with known and unknown standard deviation. A real example is
used for illustration purposes.

2. Design of the Proposed Sampling Plan

Suppose that Y1, Y2, . . . , Yn is an independent random sample of size n from lot quality
characteristic Y that follows the normal distribution with mean µ̂Y = ∑n

i=1 Yi/n and variance σ2
Y.

Let U denote the upper specification limit (USL). The proposed sampling plan is stated as follows:

2.1. Plan When the Standard Deviation Is Known

Step 1: Select a random sample of size n from a lot at the inspection point and calculate µ̂Y.
Step 2: The lot will be accepted and considered conforming if v = (U − µ̂Y)/σY is larger than an
acceptance number c1; if smaller than an acceptance number c2, the lot will be rejected and declared as
non-conforming. If c2 ≤ v ≤ c1, go to the next step.
Step 3: Count the number of inspected units between the current and the last non-conforming units.
The number is taken as CRL, say d1.
Step 4: Accept the lot if CRL ≥ d, where d denotes the non-conforming items; otherwise reject the lot.

The quality of interest is assumed to follow the normal distribution with known or unknown
population standard deviation. Haq and Khoo [20] stated that CRL is a random variable. The
distribution function of CRL, Fp(CRL), is given by

Fp(CRL) = 1− (1− p)CRL, CRL = 1, 2, . . . (1)

The CRL is normally distributed as

CRL ∼ N
(

1
p

,
1− p

p2

)
, (2)
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where p is the proportion of non-conforming units.
The operating characteristic (OC) function of the proposed sampling plan is given by

Pa(p) = P{v > c1}+ P{c2 < v < c1}P{CRL ≥ d}. (3)

For abbreviation, A1 = P{v > c1}, A2 = P{c2 < v < c1} and A3 = {CRL ≥ d}.
So, the OC function in Equation (3) can be written as

Pa(p) = A1 + A2 A3. (4)

Now, the OC function will be driven assuming the quality of interest Y follows the normal
distribution with known population standard deviation.

A lot of product will be accepted if P{v > c1}.
Let

A1 = P{(U − µ̂Y)/σY > c1}. (5)

Now, according to Duncan [23],

c1σY + µ̂Y ∼ N
(

µY + c1σY, σ2
Y/n

)
. (6)

Thus,

A1 = P
{

c1σY + µ̂Y − (µY + c1σY)

σY/
√

n
<

U − (µY + c1σY)

σY/
√

n

}
. (7)

Let z = µ̂Y−µY
σY

, where z is a standard normal random variable:

A1 = P
{

z <
U − µY − c1σY

σY/
√

n

}
. (8)

Let zp = (U − µY)/σY/
√

n, where zp is the p-th percentile under the standard
normal distribution.

A1 = P
{

z <
(
zp − c1

)√
n
}
= Φ

((
zp − c1

)√
n
)

(9)

Similarly,

A2 = P{c2 < v < c1} = P(v > c2)− P(v > c1) = Φ
((

zp − c2
)√

n
)
−Φ

((
zp − c1

)√
n
)
. (10)

Now, we derive this probability for A3 as follows:

A3 = P{CRL ≥ d} = 1− P{CRL < d} = 1− 1 + (1− p)CRL = (1− p)CRL. (11)

Finally, the OC function can be rewritten as

Pa(p) = Φ
((

zp − c1
)√

n
)
+
{

Φ
((

zp − c2
)√

n
)
−Φ

((
zp − c1

)√
n
)}
× (1− p)CRL. (12)

Let α be the producer’s risk and β be the consumer’s risk. The producer desires that the lot
acceptance probability be larger than the confidence level, say 1 −α, at an acceptable quality level
(AQL), while the consumer would like the lot acceptance probability for the bad lot to be smaller
than β at limiting quality level (LQL). Let p1 and p2 denote AQL and LQL, respectively. The plan
parameters of the proposed plan will be determined using non-linear optimization:

Minimize n (13a)
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Subject to

Pa(p1) = Φ
((

zp1 − c1
)√

n
)
+
{

Φ
((

zp1 − c2
)√

n
)
−Φ

((
zp1 − c1

)√
n
)}
× (1− p1)

CRL ≥ 1− α (13b)

Pa(p2) = Φ
((

zp2 − c1
)√

n
)
+
{

Φ
((

zp2 − c2
)√

n
)
−Φ

((
zp2 − c1

)√
n
)}
× (1− p2)

CRL ≤ β (13c)

The plan parameters were determined through the grid search method using R. There may exist
multiple combinations of plan parameters that satisfy the constraints given in Equations (13). The plan
parameters that have smaller values of sample size n were selected for the proposed plan.

The plan parameters of the proposed sampling plan when the population standard deviation is
known are reported in Tables 1–6. Tables 1–3 are shown when α = 0.10; β = 0.10 and d = 3, 5 and 10.
Tables 4–6 apply when α = 0.05; β = 0.05 and d = 3, 5 and 10.

Table 1. The plan parameters when α = 0.10; β = 0.10 and d1 = 3.

p1 p2 n c1 c2

0.001 0.002 149 3.4794 2.9843
0.003 59 3.4656 2.9172
0.004 39 3.6467 2.8750
0.006 22 3.9711 2.7909
0.008 16 3.9849 2.7665
0.010 14 3.9729 2.7304

0.0025 0.005 126 3.1160 2.6908
0.010 29 3.3875 2.5655
0.015 17 3.5652 2.4867
0.02 13 3.7411 2.4192

0.025 11 3.5434 2.3765
0.005 0.010 108 3.1973 2.4497

0.015 42 3.8170 2.3767
0.02 25 3.1853 2.3147
0.03 15 3.4527 2.2232
0.04 11 3.8465 2.1485
0.05 9 3.7092 2.0973

0.01 0.02 91 3.9526 2.1913
0.03 34 3.3476 2.1028
0.04 22 3.4104 2.0251
0.05 16 3.4434 1.9832
0.10 7 3.5877 1.7948

0.03 0.06 66 3.7805 1.7163
0.09 25 3.5193 1.6044
0.12 15 3.9399 1.5323
0.15 10 3.3894 1.4609
0.3 4 3.4160 1.2080

0.05 0.10 51 2.4917 1.4637
0.15 19 3.4008 1.3423
0.2 11 3.0401 1.2516
0.25 8 3.9895 1.1674
0.50 4 3.1974 0.7173
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Table 2. The plan parameters when α = 0.10; β = 0.10 and d1 = 5.

p1 p2 n c1 c2

0.001 0.002 151 3.3638 2.9841
0.003 60 3.7240 2.9205
0.004 40 3.8650 2.8610
0.006 22 3.7215 2.7962
0.008 17 3.7168 2.7429
0.01 12 3.9341 2.7035

0.0025 0.005 126 3.6859 2.6923
0.01 30 3.3694 2.5623

0.015 18 3.8893 2.4770
0.02 13 3.9230 2.4410

0.025 10 3.9381 2.3863
0.005 0.01 110 3.2076 2.4493

0.015 42 3.3055 2.3762
0.02 26 3.6578 2.3116
0.03 15 3.8236 2.2259
0.04 10 3.7691 2.1604
0.05 9 3.8312 2.0858

0.01 0.02 93 2.7234 2.1894
0.03 35 3.7009 2.1060
0.04 22 3.0012 2.0323
0.05 15 3.5220 1.9866
0.1 7 3.8554 1.8123

0.03 0.06 64 3.1131 1.7165
0.09 23 3.5835 1.6088
0.12 14 2.9151 1.5326
0.15 10 1.4655 1.4598
0.3 6 1.2389 1.1066

0.05 0.1 51 3.9700 1.4617
0.15 18 2.4733 1.3395
0.2 11 3.6075 1.2512
0.25 8 3.0504 1.1416
0.5 6 3.3012 0.7054

Table 3. The plan parameters when α = 0.10; β = 0.10 and d1 = 10.

p1 p2 n c1 c2

0.001 0.002 155 3.9299 2.9855
0.003 57 3.9924 2.9178
0.004 40 3.8441 2.8771
0.006 22 2.8000 2.7765
0.008 15 3.8966 2.7442
0.01 13 3.9976 2.7261

0.0025 0.005 129 3.5904 2.6924
0.01 30 3.6197 2.5654

0.015 18 3.7502 2.4766
0.02 14 3.8565 2.4436

0.025 11 2.4078 2.3604
0.005 0.01 111 3.1776 2.4529

0.015 41 3.3770 2.3720
0.02 26 3.4368 2.3179
0.03 14 3.7240 2.2241
0.04 11 3.6457 2.1551
0.05 11 3.7843 2.1435
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Table 3. Cont.

p1 p2 n c1 c2

0.01 0.02 91 3.7666 2.1904
0.03 34 3.3960 2.1032
0.04 21 3.8900 2.0445
0.05 16 3.6782 2.0048
0.1 11 1.7125 1.6840

0.03 0.06 64 3.4675 1.7205
0.09 24 2.8968 1.6181
0.12 14 3.2757 1.5203
0.15 11 3.8574 1.4644
0.3 11 3.8097 1.2932

0.05 0.1 51 2.4851 1.4639
0.15 18 3.6275 1.3396
0.2 11 3.8537 1.2565
0.25 11 3.0288 1.1701
0.5 11 3.0181 1.1003

Table 4. The plan parameters when α = 0.05; β = 0.05 and d1 = 3.

p1 p2 n c1 c2

0.001 0.002 246 3.4198 2.9845
0.003 94 3.9443 2.9183
0.004 59 3.9073 2.8757
0.006 33 3.8889 2.8009
0.008 26 3.8108 2.7363
0.01 20 3.8911 2.6958

0.0025 0.005 209 3.1764 2.6898
0.01 48 3.7530 2.5660

0.015 28 3.5286 2.4824
0.02 20 3.6565 2.4335

0.025 17 2.3806 2.3588
0.005 0.01 182 3.3640 2.4511

0.015 68 3.0169 2.3706
0.02 43 3.0483 2.3093
0.03 23 3.7964 2.2268
0.04 17 3.5539 2.1648
0.05 13 3.9996 2.1168

0.01 0.02 149 3.4811 2.1909
0.03 56 3.2557 2.1026
0.04 34 3.2229 2.0347
0.05 25 3.9023 1.9816
0.1 11 1.8231 1.8222

0.03 0.06 105 2.2099 1.7189
0.09 39 3.7363 1.6065
0.12 22 2.6545 1.5285
0.15 16 3.5869 1.4569
0.3 6 3.7337 1.1991

0.05 0.1 86 3.0352 1.4622
0.15 31 3.8744 1.3461
0.2 17 3.2382 1.2445
0.25 12 3.0924 1.1606
0.5 5 3.0085 0.7865
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Table 5. The plan parameters when α = 0.05; β = 0.05 and d1 = 5.

p1 p2 n c1 c2

0.001 0.002 255 3.6970 2.9822
0.003 98 3.4399 2.9157
0.004 60 3.8186 2.8705
0.006 34 3.8556 2.7987
0.008 25 3.7824 2.7450
0.01 21 3.7976 2.6856

0.0025 0.005 205 3.8492 2.6909
0.01 50 3.3888 2.5714
0.015 27 3.7268 2.4869
0.02 20 3.9461 2.4335
0.025 17 3.6876 2.3707

0.005 0.01 177 3.4134 2.4501
0.015 69 3.9088 2.3771
0.02 42 3.3285 2.3109
0.03 23 3.7813 2.2288
0.04 17 3.4296 2.1601
0.05 14 3.4711 2.1121

0.01 0.02 150 3.1164 2.1902
0.03 57 3.7079 2.1052
0.04 34 3.1515 2.0345
0.05 24 3.4513 1.9841
0.1 11 3.4608 1.7974

0.03 0.06 103 2.9333 1.7177
0.09 39 3.6868 1.6049
0.12 23 1.5333 1.5276
0.15 16 3.4043 1.4619
0.3 7 3.4607 1.2496

0.05 0.1 86 3.9006 1.4638
0.15 30 2.6066 1.3374
0.2 18 3.1795 1.2451

0.25 12 2.9045 1.1554
0.5 6 2.7580 0.7237

Table 6. The plan parameters when α = 0.05; β = 0.05 and d1 = 10.

p1 p2 n c1 c2

0.001 0.002 247 3.7059 2.9842
0.003 96 3.6896 2.9223
0.004 58 3.6879 2.8696
0.006 35 3.9449 2.8052
0.008 25 2.7456 2.7453
0.01 20 3.9529 2.7031

0.0025 0.005 206 3.7122 2.6918
0.01 48 3.7121 2.5667

0.015 30 3.4956 2.4778
0.02 21 3.9908 2.4181

0.025 16 3.7084 2.3739
0.005 0.01 178 3.9578 2.4499

0.015 70 3.5863 2.3693
0.02 41 3.4823 2.3166
0.03 24 2.2205 2.2183
0.04 17 3.6664 2.1543
0.05 13 3.5100 2.1068
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Table 6. Cont.

p1 p2 n c1 c2

0.01 0.02 146 2.9641 2.1899
0.03 56 3.8422 2.1011
0.04 33 3.6253 2.0392
0.05 25 3.8764 1.9772
0.1 11 3.8363 1.7778

0.03 0.06 104 2.6316 1.7185
0.09 38 3.1868 1.6112
0.12 22 3.7694 1.5272
0.15 17 3.0419 1.4531
0.3 11 3.3751 1.0947

0.05 0.1 84 2.9680 1.4625
0.15 30 3.5914 1.3393
0.2 17 3.2897 1.2421
0.25 12 2.8807 1.1583
0.5 11 0.8640 0.6545

From Tables 1–6, we note the following trends in plan parameters:

1. For the same values of α and β, as d1 increases from 3 to 10, the value of n increases, which means
that a larger sample size is needed from the lot of the product when the total number of
consecutive items increases between two consecutive non-conforming items.

2. We also note that for the same values of d1, the value of the sample size increases as α and β

decrease, which means that as the producer’s confidence level about the acceptance of a good lot
increases and the consumer’s risk decreases, they are willing to inspect a larger sample from the
lot of the product.

2.2. Plan When the Standard Deviation Is Unknown

In this section, we derive the OC function of the proposed plan when the population standard
deviation of the normal distribution is unknown but estimable as a sample standard deviation.

Step 1: Select a random sample of size n from an inspection point and calculate µ̂Y.
Step 2: The lot will be accepted and considered conforming if vs = (U − µ̂Y)/S, where S =√

n
∑

i=1
(Xi − X )/n− 1, is larger than c1; if smaller than c2, the lot will be rejected and declared as

non-conforming. If c2 ≤ v ≤ c1, go to the next step.
Step 3: Count the number of inspected units between the current and the last nonconforming units.
The number is taken as CRL.
Step 4: Accept the lot if CRL ≥ d; otherwise, reject the lot.

The OC function of the proposed plan when the population standard deviation is unknown is
derived as follows:

Pa(p) = P{vs > c1}+ P{c2 < vs < c1}P{CRL ≥ d}. (14)

Letting B1 = P{vs > c1}, B2 = P{c2 < vs < c1} and B3 = {CRL ≥ d}.
The lot acceptance probability can be written as

Pa(p) = B1 + B2B3, (15)

where B1 = P{(U − µ̂Y)/S > c1},
So, B1 = P{c1S + µ̂Y < U}. Now, according to Duncan [24],

c1S + µ̂Y ∼ N
(

µY + c1E(S), Var(µ̂Y) + c2
1Var(S)

)
(16)
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since E(S) = c4σ and V(S) = σ2(1− c2
4
)
, where, c4 = [2/(n− 1)]1/2Γ(n/2)/Γ[n− 1/2].

So, the normal distribution of c1S + µ̂Y is given as c1S + µ̂Y ∼
N
(
µY + c1c4σY, σ2

Y/n + c2
1σ2

Y
(
1− c2

4
))

:

B1 = P

 c1σY + µ̂Y − (µY + c1c4σY)

σY

√
1/n + c2

1
(
1− c2

4
) <

U − (µY + c1c4σY)

σY

√
1/n + c2

1
(
1− c2

4
)
. (17)

Let z = c1σY+µ̂Y−(µY+c1c4σY)

σY

√
1/n+c2

1(1−c2
4)

, where z is a standard normal random variable:

B1 = P

z <
U − µY − c1c4σY

σY

√
1/n + c2

1
(
1− c2

4
)
. (18)

Let (U − µY)/σY = zp, where zp is the p-th percentile under the standard normal distribution,
then we have

B1 = Φ

((
zp − c1c4

)√ 1
1
n + c2

1
(
1− c2

4
)). (19)

Similarly, the other factors can be written as

B2 = P{c2 < v < c1} = P(v > c2)− P(v > c1)

= Φ

((
zp − c1c4

)√ 1
1
n +c2

2(1−c2
4)

)
−Φ

((
zp − c1c4

)√ 1
1
n +c2

1(1−c2
4)

)
.

(20)

Now, we derive this probability for B3 as follows

B3 = P{CRL ≥ d} = 1− P{CRL < d} = 1− 1 + (1− p)CRL = (1− p)CRL. (21)

Finally, the OC function can be rewritten as

Pa(p) = Φ

((
zp − c1c4

)√ 1
1
n +c2

1(1−c2
4)

)
+

{
Φ

((
zp − c1c4

)√ 1
1
n +c2

2(1−c2
4)

)
−

Φ

((
zp − c1c4

)√ 1
1
n +c2

1(1−c2
4)

)}(
(1− p)CRL

)
.

(22)

(Minimizing n.)
Subject to

Pa(p1) = Φ

((
zp1 − c1c4

)√ 1
1
n +c2

1(1−c2
4)

)
+

{
Φ

((
zp1 − c1c4

)√ 1
1
n +c2

2(1−c2
4)

)
−

Φ

((
zp1 − c1c4

)√ 1
1
n +c2

1(1−c2
4)

)}(
(1− p1)

CRL
)
≥ 1− α

(23)

Pa(p2) = Φ

((
zp2 − c1c4

)√ 1
1
n +c2

1(1−c2
4)

)
+

{
Φ

((
zp2 − c1c4a

)√ 1
1
n +c2

2(1−c2
4)

)
−

Φ

((
zp2 − c1c4

)√ 1
1
n +c2

1(1−c2
4)

)}(
(1− p2)

CRL
)
< β.

(24)

The plan parameters are determined through the grid search method. It is important to note
that, using the above non-linear optimization solution, there may exist multiple combinations of plan
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parameters that satisfy the constraints given in Equations (23) and (24). The plan parameters with
smaller values of sample size n will be selected for the proposed plan.

The parameters of the proposed plan when the population standard deviation is unknown are
shown in Tables 7–12.

Table 7. The plan parameters when α = 0.10; β = 0.10 and d1 = 3.

p1 p2 n c1 c2

0.001 0.008 153 2.9792 2.9754
0.01 122 2.9510 2.9277

0.0025 0.015 151 3.9044 2.7319
0.02 106 3.9143 2.6785

0.025 84 3.9496 2.6318
0.005 0.03 113 3.8947 2.4941

0.04 77 3.9536 2.4373
0.05 60 2.3960 2.3950

0.01 0.04 148 3.9160 2.3188
0.05 103 3.8683 2.2736
0.1 43 2.1212 2.1093

0.03 0.09 139 3.7827 1.9360
0.12 80 3.8701 1.8689
0.15 55 3.5204 1.8113
0.3 21 1.6229 1.6169

0.05 0.15 99 3.5967 1.7045
0.2 56 3.3451 1.6266
0.25 38 3.2364 1.5625
0.5 14 1.3384 1.3055

Table 8. The plan parameters when α = 0.10; β = 0.10 and d1 = 5.

p1 p2 n c1 c2

0.001 0.008 151 2.9752 2.9701
0.01 119 2.9468 2.9360

0.0025 0.015 149 3.8303 2.7309
0.02 105 3.9921 2.6789

0.025 85 2.6362 2.6328
0.005 0.03 111 3.8117 2.4938

0.04 78 3.9747 2.4385
0.05 61 2.3968 2.3910

0.01 0.04 148 3.3235 2.3180
0.05 103 3.9378 2.2733
0.1 43 3.9939 2.1109

0.03 0.09 140 3.9770 1.9352
0.12 80 3.4821 1.8680
0.15 55 3.3794 1.8108
0.3 21 1.6228 1.6172

0.05 0.15 99 3.6847 1.7042
0.2 56 3.9822 1.6253
0.25 38 3.8038 1.5671
0.5 14 1.3662 1.3353
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Table 9. The plan parameters when α = 0.10; β = 0.10 and d1 = 10.

p1 p2 n c1 c2

0.001 0.008 153 2.9792 2.9619
0.01 118 2.9430 2.9382

0.0025 0.015 151 3.9947 2.7295
0.02 108 3.9812 2.6723

0.025 85 2.6500 2.6223
0.005 0.03 113 3.9430 2.4955

0.04 78 3.9899 2.4336
0.05 60 2.3948 2.3868

0.01 0.04 148 3.8961 2.3183
0.05 104 3.6389 2.2731
0.1 44 2.1334 2.0947

0.03 0.09 139 2.9529 1.9361
0.12 80 3.4453 1.8684
0.15 55 3.8115 1.8128
0.3 21 1.6131 1.6074

0.05 0.15 99 3.0060 1.7038
0.2 56 3.9726 1.6277
0.25 38 3.8273 1.5637
0.5 14 1.3177 1.3153

Table 10. The plan parameters when α = 0.05; β = 0.05 and d1 = 3.

p1 p2 n c1 c2

0.001 0.006 131 3.0253 3.0253
0.008 95 2.9752 2.9656
0.01 72 2.9479 2.9429

0.0025 0.01 163 3.9527 2.8041
0.015 92 2.7339 2.7337
0.02 67 2.6762 2.6754

0.025 52 2.6549 2.6330
0.005 0.02 124 3.7278 2.5722

0.03 69 3.9674 2.4982
0.04 48 2.4463 2.4367
0.05 37 2.4016 2.3974

0.01 0.03 154 3.6499 2.3766
0.04 91 3.6024 2.3221
0.05 64 3.7575 2.2755
0.1 27 2.1415 2.1059

0.03 0.09 85 3.8778 1.9386
0.12 49 3.8849 1.8701
0.15 34 3.9906 1.8202
0.3 13 1.6467 1.6274

0.05 0.15 61 2.9675 1.7067
0.2 35 3.9433 1.6332
0.25 24 3.8601 1.5612
0.5 9 1.3900 1.3796
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Table 11. The plan parameters when α = 0.05; β = 0.05 and d1 = 5.

p1 p2 n c1 c2

0.001 0.006 134 3.0210 3.0185
0.008 93 2.9744 2.9712
0.01 72 2.9494 2.9332

0.0025 0.01 164 3.8663 2.8040
0.015 94 3.9907 2.7329
0.02 66 2.6814 2.6751

0.025 50 2.6487 2.6404
0.005 0.02 124 3.9426 2.5711

0.03 69 2.5004 2.4900
0.04 49 2.4509 2.4307
0.05 38 2.3921 2.3907

0.01 0.03 154 3.7962 2.3770
0.04 91 3.5615 2.3215
0.05 64 3.9424 2.2756
0.1 27 2.1368 2.1111

0.03 0.09 85 3.4555 1.9391
0.12 49 3.9763 1.8716
0.15 34 3.7792 1.8131
0.3 13 1.6426 1.6363

0.05 0.15 61 3.3949 1.7081
0.2 34 3.9277 1.6335
0.25 24 3.6845 1.5605
0.5 9 1.3449 1.3025

Table 12. The plan parameters when α = 0.05; β = 0.05 and d1 = 10.

p1 p2 n c1 c2

0.001 0.006 132 3.0262 3.0120
0.008 92 2.9814 2.9707
0.01 72 2.9481 2.9467

0.0025 0.01 165 2.8045 2.8003
0.015 93 2.7362 2.7267
0.02 66 2.6876 2.6611

0.025 51 2.6485 2.6192
0.005 0.02 125 3.9041 2.5699

0.03 71 3.8810 2.4888
0.04 50 2.4499 2.4475
0.05 37 2.3963 2.3925

0.01 0.03 154 3.7925 2.3772
0.04 91 3.5878 2.3196
0.05 63 2.2770 2.2767
0.1 26 2.1320 2.1235

0.03 0.09 85 3.3253 1.9381
0.12 49 3.9748 1.8696
0.15 34 1.8176 1.8100
0.3 13 1.6231 1.6141

0.05 0.15 61 3.4726 1.7079
0.2 35 3.7932 1.6326
0.25 24 3.9281 1.5688
0.5 11 1.3624 1.2874

From Tables 1–12, we note that for the same values of α and β, n is larger in the case of an unknown
population standard deviation than in the known case, which means that when the population standard
deviation is unknown, a larger sample size is required from a lot of the product to satisfy the given
producer’s risk and consumer’s risk. Also, from Tables 7–12 we note that, for the same values of
d, the values of the sample size increase as α and β decrease, which means that as the producer’s
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confidence level about the acceptance of a good lot increases and the consumer’s risk decreases,
they are willing to inspect a larger sample from a lot of the product.

3. The Advantages of the Proposed Plan

The sampling plans reported in McWilliams et al. [24] and in this study for the same specified
parameters are shown in Table 13 when the population standard deviation is unknown.

Table 13. The comparison of the proposed plan with McWilliams et al. [24] when α = 0.10; β = 0.10.

p1
McWilliams et al. [24] Sampling Plan

Proposed Plan for d = 10

Known σ Unknown σ

p2 n n n

0.001 0.008 485 15 153
0.01 388 13 118

0.0025 0.015 354 18 151
0.02 194 14 108
0.025 155 11 85

0.005 0.03 176 14 113
0.04 96 11 78
0.05 77 11 60

0.01 0.04 166 21 148
0.05 105 16 104
0.1 38 11 44

0.03 0.09 101 24 139
0.12 54 14 80
0.15 34 11 55
0.3 12 11 21

0.05 0.1 0 51 0
0.15 60 18 99
0.2 32 11 56

0.25 20 11 38
0.5 7 11 14

From Table 13, it can be noted that the plan proposed herein is more efficient at reducing the
sample size for the inspection of the finished lot of product. For example, when p1 = 0.001, p2 = 0.008,
α = 0.10, β = 0.10 and d = 10, the sample size n from the McWilliams et al. [24] sampling plan is 485,
while the sample size for the plan proposed in this study is 15 when the standard deviation is known
and 153 when it is unknown. Therefore, the proposed plan requires a smaller sample than the existing
plan for the inspection of a lot. So, the proposed plan minimizes the inspection time.

Aslam et al. [17] proposed a plan for when the population standard deviation is unknown.
The efficiency of the proposed sampling plan is also compared with the sampling plan proposed
by [17] in terms of the sample size required for the inspection of the product. The sample size of both
sampling plans for the same values of the specified parameters is reported in Table 14.
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Table 14. The comparison of the proposed plan with Aslam et al. [17] when α = 0.05; β = 0.05.

p1
Aslam et al. [17] Sampling Plan

Proposed Plan for d = 3

Unknown σ

p2 n n

0.001 0.01 230 72
0.0025 0.015 155 92

0.02 120 67
0.025 95 52

0.005 0.03 105 69
0.04 85 48
0.05 80 37

0.01 0.04 115 91
0.05 70 64
0.1 55 27

The proposed sampling plan provides smaller values of sample size as compared to the plan
proposed by Aslam et al. [17] for an unknown population standard deviation case. For example,
when AQL = 0.001 and LQL = 0.01, the proposed sampling plan provides n = 72 while the existing
sampling plan provided n = 230. So, it is concluded that the proposed sampling plan is more efficient
than the existing sampling in minimizing the cost of inspection directly associated with the sample size.

4. Application of the Proposed Plan

An electronic company in Saudi Arabia is interested in inspecting/testing power distribution
switches (PDS), which are used in heavy-capacity loads using the proposed sampling plan in Hsu
et al. [25]. The capacity load is the variable of interest. The quality assurance department set some
standard for the inspection of short circuit threshold with an upper specification limit U = 1.66A:

AQL = 0.05, LQL = 0.5, d = 2, α = 0.10; β = 0.10 and CRL = 3.

To devise the proposed plan, it is assumed that the population standard deviation of the normal
distribution is unknown. The 14 preliminary observations are:

0.8876, 1.8885, 0.6295, 1.0903, 1.2847, 0.1734, 1.0356, 0.5426, 0.9104, 0.1951, 0.5043, 1.5512, 1.7691, 0.1523.

For this data, the necessary statistics are calculated as follows:

µ̂Y =
n

∑
i=1

Yi/n = 0.9010, S = 0.5751 and U = 1.66A. The values of vs = (U − µ̂Y)/S = 1.3194.

Then, the plan parameters for these specified parameters from Table 7 are n = 14, c1 = 1.3384,
c2 = 1.3055.

In this example, since vs is between c1 and c2, according to Step 2, the decision will be made using
attribute inspection (Step 3). For this inspection, we will count the number of defective CRL to make
a final decision about the submitted lot of product. Since CRL = 3 > d = 2 (Step 4), the lot should
be accepted.

5. Conclusions

In this paper, a new sampling plan is proposed, wherein the structure of the plan is given for the
normal distribution with known and unknown population standard deviation. Some tables when σ is
known and unknown are given for practical use. In addition, a practical application of the proposed
plan in the industry is suggested. The proposed plan is more efficient than the existing plan in terms
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of the sample size required for the inspection of the submitted lot of product while keeping the risk
low. It is recommended that the proposed sampling plan be applied in industry for inspections to save
on costs and time. The proposed sampling plan using a cost model can be studied in future research.
The proposed plan for some non-normal distribution can be studied as future research.
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Abbreviations and Symbols

µ̂Y mean of random variable Y1, Y2, . . . , Yn of sample of size n
σ2

Y variance of random variable Y1, Y2, . . . , Yn of sample of size n
U upper specification limit (USL)
v statistic
c1 and c2 acceptance numbers
CRL number of inspected units between the current and the last nonconforming units
d acceptance number
Fp(CRL) the distribution function of CRL
OC operating characteristic
AQL acceptable quality level
LQL limiting quality level
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