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Abstract: The gear is a cyclic symmetric structure, and each tooth is subjected to a periodic mesh force.
These mesh forces have the same phase difference tooth by tooth, which can excite gear vibrations.
The mechanism of additional axial force caused by gear bending is shown and examined, which can
significantly affect the stability of a self-excited thin spur gears vibration. A mechanical model based
on energy balance is then developed to predict the contribution of additional axial force, leading to
the proposed numerical integration method for vibration stability analysis. By analyzing the change
in the system energy, the occurrence of the self-excited vibration is validated. A numerical simulation
is carried out to verify the theoretical analysis. The impacts of modal damping, contact ratio, and the
number of nodal diameters on the stability boundaries of the self-excited vibration are revealed.
The results prove that the backward traveling wave of the driven gear as well as the forward traveling
wave of the driving gear encounter self-excited vibration in the absence of sufficient damping.
The model can be used to predict the stability of the gear self-excited vibration.
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1. Introduction

Gears are commonly used in machines, automobiles, wind turbines, and aerospace industries as a
transmission component. The status of the operational gear significantly influences the performances
of the machines. In order to meet specific operational requirements, some gears are designed to be thin.
As a consequence, the bending stiffness and the associated flexural natural frequencies are relatively
low, which could easily lead to some kind of dynamic phenomena, such as transverse vibration.

Recent research on fracture failure of aero-engine gears showed that the characteristics of the
gear crack were found to be typical fatigue fractures caused by transverse vibrations. However,
the operational conditions showed that there was no resonance during the operation, which indicates
that there must be some other reasons that could cause the fracture. Gears’ self-excited vibration was
suspected to be the main reason, but this needs to be verified.

In most investigations on the vibration of gears, gears are usually simplified as thin, moderate,
thick annular plate, or thick-walled cylinders [1]. Many different theories of plate vibration can
be applied when studying the vibration of circular or annular plates with variable thickness.
These theories include the classical thin plate theory, the shear deformable plate theory (for the thicker
plates), and even three-dimensional (3D) elasticity theory [2]. The study of plate vibration can be
traced back to the 19th century, and many studies have contributed considerably to this research area.

Symmetry 2018, 10, 664; doi:10.3390/sym10120664 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym10120664
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/12/664?type=check_update&version=2


Symmetry 2018, 10, 664 2 of 15

Leissa [3] and Houser [4] summarized the theoretical studies of plate vibration and gear dynamics
in detail. Some of the complex effects—such as the distributed masses at the outer edge, the outer
reinforcing ring, the shear deformation, the rotary inertia, and initial tension on the free vibration of
the spinning disk—were studied by Sinha [5,6], Cote [7], and Suzuki [8]. Chen [9] also theoretically
studied the vibration and stability of rotating polar orthotropic sandwich plates.

In recent years, the finite element method (FEM) and experimental tests have been increasingly
used to analyze gear vibration characteristics including resonance, modal shape identification, and the
effect of the thickness on the natural frequencies [10–13]. In addition, the traveling wave vibrations
occur more easily in the running gears due to a high meshing frequency, and the traveling wave
vibration has been widely investigated in the field of rotating disks [14–17]. Many researchers focused
on gear engagement dynamics using FEM [18,19], lumped parameters models [20–24] and experimental
tests [18,25–27]. FEM can capture accurately nonlinear dynamics but requires a well-defined geometry
and a long calculation time. Lumped parameter models have high computational efficiency but need
some results from FEM models [20]. These works have contributed to the establishment of the traveling
wave vibration theory. A number of papers can be found on the traveling wave vibration of a rotating
gear [28–30]; however, few papers have dealt with gear self-excited vibration [31], even though this
phenomenon was the main reason for the aero-engine gear crack failures.

The purpose of this paper is to meet the actual demand to verify gear self-excited vibration
observed in the field and to analyze the stability, if it does exist. We study the transverse self-excited
vibration of a thin spur rotating gear using a numerical method, and the conditions that could cause
transverse self-excited vibration are predicted. The self-excited force is calculated based on the analysis
of the traveling wave vibration. Through numerical simulation, the impacts of modal damping,
contact ratio, and the number of nodal diameters on the stability boundaries are studied. The work
is organized as follows: Theoretical derivation of the proposed method, including the principles of
self-excited vibration, the source of spur gear self-excitation, and self-excited vibration prediction, are
shown in Section 2. Convergence analysis and stability boundary analysis is performed on a thin spur
gear in Section 3, followed by conclusions in Section 4.

2. Theoretical Analysis

For a pair of precise meshing spur gears, there is no axial force when they are running, so only
torsional vibration can occur. Therefore, there must be an axial force that could excite the transverse
vibration and results in fatigue failure. Actually, the gears used in industry cannot be precisely meshed
as expected. The deflections of axes can create an angle between the contact line of the gears and the
rotation axis. As a result, an axial force component is contained in the mesh force vector, and it can
become a self-excited force of the system. This kind of axial force can excite transverse vibrations of
the gear. Once the vibration status changes, the axial force changes accordingly, and subsequently
the changed axial force will, in turn, continue to affect the transverse vibration. This consecutive
interaction will be enhanced when the feedback is positive, and the gear system will constitute a
self-excited vibration system.

Figure 1 depicts a schematic diagram of the mechanism of gear self-excited vibration. Through the
axial force and the damping force applied to the transverse traveling wave vibration, the change in
the system energy can be determined. If the excitation work is more than the work consumed by
the damping, the system energy increases, which indicates that self-excited gear vibration will occur.
This is the theory upon which the analysis of this paper is based.
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Figure 1. The mechanism of the gear self-excited vibration.

2.1. Traveling Wave Vibration of the Rotating Gear

A cylindrical coordinate (r, θ, z) fixed on the rotating gear is defined, and in order to describe the
theoretical analysis as well as the subsequent numerical results more clearly, the phenomenon of the
traveling wave vibration of the thin rotating gear is discussed first.

The transverse vibration of a thin spur gear has the same expressions as the circular plate, since it
is usually simplified as an annular plate. According to the plate vibration theory, displacement of the
circular plate transverse vibration could be expressed as:

w(r, θ, t) = A(r) cos mθ· cos ωt (1)

where w is the vibration displacement in the z direction, r is the radial coordinate, θ is the circumferential
coordinates, t is time, A is the vibration amplitude that depends on the radial coordinate r, m is the
number of nodal diameters, and ω is the vibration frequency.

Equation (1) is the vibration displacement of a stationary gear or the displacement in the rotary
coordinate fixed on the rotating gear. It can also be decomposed into two components:

w(r, θ, t) =
1
2

A(r)[cos(mθ −ωt) + cos(mθ + ωt)] (2)

Since the gear is rotating, the rotation speeds of the nodal diameters are different in the inertia
coordinate for these two components; therefore, the transverse vibration of a rotating gear is a kind of
traveling wave vibration. The first component of the right item of Equation (2) represents a traveling
wave rotating in the same direction of the gear, which is called the forward traveling wave (FTW),
whereas the second component represents a traveling wave rotating in the opposite direction of the
gear, called the backward traveling wave (BTW).

2.2. Mechanical Model of the Gear Self-Excited Force

According to the gear self-excited vibration mechanism, a mechanical model is proposed to
describe the self-excited force of the spur gear. Figure 2a is the schematic diagram of an engaged spur
gear pair and the defined rotary coordinates. If there is an initial axial deflection when the gears are
running, the normal direction of the surface of the action is no longer perpendicular to the rotation axis,
and there occurs transverse deformation along the tangential direction at the mesh point, as shown in
Figure 2b. Thus, the mesh force will generate an axial component—the gear self-excited force Fz(t).
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Figure 2. Schematic diagram of the engaged gear pair and the self-excited force.

If the transverse vibration displacement at the gear rim develops along the circumferential
direction, the displacement is approximately along a cosine curve, shown as the solid line in Figure 2b
when looking from the A-A direction. According to the relationship between the forces shown in
Figure 2b, and taking the direction of w(θ) as the positive direction, the self-excited force can be
expressed as:

Fz(t) = −Ft(t) sin β = Ft(t)
∂w
r∂θ

(3)

where β is the axial angle that represents the angle between the normal direction and the axial direction
of the meshing force.

Based on the mechanism of the gear meshing, the engagement process of the gears with contact
ratios from 1–2 consists of two parts: The single tooth mesh process and the double teeth mesh process.
If the gear torque load is T0, take the pitch diameter d0 instead of the mesh point diameter d1, assuming
that the height of the gear tooth is small enough compared to the gear diameter. Accordingly, the mesh
force Ft(t) for the engaged gear can be expressed as:

Ft(t) =

{
4T0/d0 Single tooth mesh process
2T0/d0 Double teeth mesh process

(4)

Since the engagement of the operating gear is a continuous process, the single tooth and the
double tooth mesh processes are converting to each other continually. So, the mesh force Ft(t) is not
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only time-dependent when observed from the whole gear, but is also periodic. Thus, two different
mesh points should be considered.

Let F0 = 2T0/d0, and after the coordinate transformation t′ = 2πnzt/60, the expressions of the
mesh force at mesh point 1 and mesh point 2 are shown in Figure 3, where n is the rotational speed,
z is the number of gear teeth, and ε is the gear contact ratio.
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Figure 3 shows that both forces are periodic functions with a period time of 2π. To facilitate further
analysis, Fourier expansion of these two mesh forces in one period is completed, and the harmonic
terms of the mesh forces are:(

F1t(t)
F2t(t)

)
=

(
3− ε

ε− 1

)
F0 +

(
1
1

)
·2F0

π

∞

∑
k=1

1
k

sin kεπ cos[kzΩt− kεπ] (5)

where k is excitation order.
Substitute Equation (5) into Equation (3), then the expression of the self-excited force can

be obtained.
Although the mechanical model of the self-excited force proposed here is simple, it meets all of

the requirements of the mechanical principles. Thus, the mechanical model is sufficient to describe the
overall behavior of gear.

2.3. The Work of the Self-Excited Force on the Vibration

Take the backward traveling wave of the driven gear as an example. The position angle θ of the
mesh point varies with time in the rotary coordinate, and the relationship between θ and time t (θ = 0
when t = 0) is:

θ = −Ωt (6)

where Ω is the gear angular speed.
In addition, mesh points 1 and 2 are on the two adjacent teeth, and the phase φ between these

two points is shown in Figure 4. In an actual situation, the phase φ changes as the engagement process
continues. However, in order to simplify the analysis, let φ = 1.5β′ = 3π/2z. Then, the expressions of
the backward traveling wave at mesh point 1 and mesh point 2 are:

wb,1 =
1
2

A0 cos(ω−mΩ)t (7)

wb,2 =
1
2

A0 cos[(ω−mΩ)t +
3π

2z
] (8)
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Therefore, the work done by the additional force to the backward traveling wave during one
vibration cycle can be determined by the following equation:

WF =
∫ T

0
Ft(t)

∂wb
r∂θ
·∂wb

∂t
·dt (9)

The time of one vibration cycle for the backward traveling wave is T = 2π/ω. If we substitute
Equation (5) into Equation (9), then the excitation work done to the BTW is:

WF = W1cbF + W2cbF (10)

where
W1cbF = W1cbF1 + W1cbF2 + W1cbF3 + . . . (11)

W2cbF = W2cbF1 + W2cbF2 + W2cbF3 + . . . (12)

And

W1cbF1 =
∫ T

0 (3− ε)F0
1
2r A0m sin(ω−mΩ)t·[ 1

2 A0(ω−mΩ) sin(ω−mΩ)t]dt

= 1
8r (3− ε)F0 A2

0m(ω−mΩ)
[

T − 1
2(ω−mΩ)

sin 2(ω−mΩ)T
] (13)

W1cbFk =
∫ T

0
2F0
π ·

1
k sin kεπ· cos(kzΩt− kεπ)· 1

4r A2
0m(ω−mΩ) sin2(ω−mΩ)t·dt

= 1
4rkπ F0 A2

0m(ω−mΩ) sin kεπ·
{

1
kzΩ [sin(kzΩT − kεπ) + sin kεπ]

− 1
2 ·
〈

1
kzΩ−2(ω−mΩ) [sin(kzΩT − 2(ω−mΩ)T − kεπ) + sin kεπ]

+ 1
kzΩ+2(ω−mΩ) [sin(kzΩT + 2(ω−mΩ)T − kεπ) + sin kεπ]

〉}
k = 2, 3 . . .

(14)

W2cbF1 =
∫ T

0 (ε− 1)F0
1
2r A0m sin[(ω−mΩ)t + 3π

2z ]·{
1
2 A0(ω−mΩ) sin[(ω−mΩ)t + 3π

2z ]}dt

= 1
8r (ε− 1)F0 A2

0m(ω−mΩ)
{〈

T − 1
2(ω−mΩ)

·
[
sin(2(ω−mΩ)T + 3π

z )− sin 3π
z
]〉} (15)
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W2cbFk =
∫ T

0
2F0
rπ ·

1
k sin kεπ· cos(kzΩt− kεπ)· 14 A2

0m(ω−mΩ) sin2[(ω−mΩ)t + 3π
z
]
·dt

= 1
4rkπ F0 A2

0m(ω−mΩ) sin kεπ·
{

1
kzΩ [sin(kzΩT − kεπ) + sin kεπ]

− 1
2 ·
〈

1
kzΩ−2(ω−mΩ)

[
sin(kzΩT − 2(ω−mΩ)T − kεπ − 3π

z ) + sin(kεπ + 3π
z )
]

+ 1
kzΩ+2(ω−mΩ)

[
sin(kzΩT + 2(ω−mΩ)T − kεπ + 3π

z ) + sin(kεπ − 3π
z )
]〉}

k = 2, 3 . . .

(16)

The excitation work for the forward traveling wave vibration can be quickly obtained by simply
replacing wb with wf in Equation (9) and the other related equations. Moreover, if the object of the
analysis is the driving gear, the term Ft(t) must be replaced with −Ft(t). That is, the relationship of the
excitation work between the driving gear and the driven gear is:

WzbF = −WcbF (17)

2.4. The Work of the Damping Force on the Vibration

The damping of an engaged rotating gear is quite complex and hard to calculate. However,
because the damping always dissipates the energy, the work of the damping force could be obtained
by taking advantage of the loss factor η, which represents the energy loss of the system caused by the
damping effect [32]. The definition is:

η =
∆U

2πUmax
(18)

where ∆U is the energy dissipated of the system during one damping cycle (vibration cycle) and Umax

is the initial system energy, which is approximately equal to the maximum system kinetic energy when
the damping is relatively low, which is Umax = Tmax.

For an engaged gear, the maximum kinetic energy is the integration of the kinetic energy
throughout the whole gear web, which is:

Tmax =
1
2

∫ r2

r1

∫ 2π

0
ρh(

∂wb
∂t

)2
max·rdrdθ (19)

where A(r) = A0·R(r). According to Equations (18) and (19), and the relationship η = 2ζ for the situation
of low damping [32], the damping work during one vibration cycle can be determined as:

WD = 4πζUmax =
ρhζω2π2

2
A2

0

∫ r2

r1

R2(r)rdr (20)

where the term
∫ r2

r1
R2(r)rdr can be calculated from the deformation results of the FEM modal analysis:

∫ r2

r1

R2(r)rdr =
num

∑
i=2

1
2
(R2

(i)ri + R2
(i−1)ri−1)·|ri − ri−1| (21)

where num is the number of the numerical integration data, and ri and R(i) are the values of the radius
and normalized deformation at point i, respectively.

2.5. Theoretical Prediction of the Self-Excited Vibration

From the perspective of the system energy, if the excitation work applied to the traveling waves is
larger than the damping work, the total energy of the system will increase over time, indicating that
self-excited vibration will occur. Thus the condition of the gear self-excited vibration occurrence is:

WF > WD (22)
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The mesh force amplitude F0 when the self-excited vibration occurs can then be determined by
solving the equation:

WF = WD (23)

Moreover, once the mesh force amplitude F0 is obtained, the critical transmission power,
which also represents the minimum transmission power that can cause self-excited vibration, or the
maximum transmission power for safe operation, can then be predicted according to the definition of
the transmission power.

P0 =
F0d0n

2× 9550
KW (24)

Therefore, if the actual operation transmission power P is larger than the critical transmission
power P0, then self-excited vibration will occur and the system will be unstable.

3. Results and Discussion

According to the theoretical analysis of self-excited vibration in thin spur gears, the calculation
program of the proposed method is developed by using Fortran language. The block diagram of
proposed analysis method is shown in Figure 5. And the interface of the program is shown in Figure 6.Symmetry 2018, 10, x FOR PEER REVIEW  9 of 16 
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The program shown in this paper is applied to a model of a virtual thin spur gear. The parameters
of the thin spur gear used in this numerical simulation are listed in Table 1, with radius of the rim
r1 = 95 mm, radius of the hole r2 = 25 mm, thickness h = 4 mm, and the number of teeth z = 50. The finite
element model is shown in Figure 7. The gear material properties are: Young modulus E = 212 GPa,
density ρ = 7.85 × 103 kg/m3, and Poisson’s ratio µ = 0.284. Several different parameters were also
chosen for the numerical simulation in order to demonstrate the effects of the nodal diameter and
damping ratio on the self-excited vibration stability. The maximum simulation speed was 10,000 rpm,
and the results for each speed were calculated.
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Table 1. Gear parameters.

Parameter Value

r1 25 mm
r2 95 mm
h 4 mm
z 50
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3.1. Convergence Analyses

For high-speed gears, the meshing period is smaller than the low nodal diameter’ vibration period.
For the convenience of calculation, the initial moment of the vibration period during the calculation
is defined as the initial moment of the single-tooth engagement period, or the initial moment of the
double-tooth engagement. A vibration cycle consists of a number of complete engagement cycles and
an incomplete engagement cycles. In the program, the incomplete engagement cycle is treated as the
truncation error. Therefore, the greater vibration cycle considered during the calculation, the smaller
the truncation error. Figure 8 shows the impact of the calculation cycle on the results. When the
vibration cycle is 1, the numerical calculation results have a certain degree of fluctuation. When the
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vibration cycle is large enough (more than 100), the work done by the excitation force becomes
stabilized and approaches the limit value. Therefore, in the calculation below, the vibration cycle is
selected as 100.
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3.2. Stability Boundary Analysis

Figure 9 provides an example of the excitation work done to the BTW and FTW vibrations of the
driven gear with two nodal diameters. The most obvious difference between the BTW and FTW is
that the excitation work done to the BTW is positive, whereas the excitation work done to the FTW
is negative. This means the self-excited force promotes the vibration of the BTW and decreases the
vibration of the FTW. In this circumstance, the vibration energy of the BTW increases over time if
there is insufficient damping, which indicates that self-excited vibration may occur. On the other hand,
self-excited vibration cannot occur for the FTW vibration because of the negative excitation work,
which means that the self-excited force consumes the vibration energy, behaving like damping. For the
driving gear, since the excitation work done to the traveling waves is opposite to that of the driven
gear, self-excited vibration will occur in the FTW vibration rather than the BTW vibration.

Symmetry 2018, 10, x FOR PEER REVIEW  11 of 16 

 

3.2. Stability Boundary Analysis 

Figure 9 provides an example of the excitation work done to the BTW and FTW vibrations of the 

driven gear with two nodal diameters. The most obvious difference between the BTW and FTW is 

that the excitation work done to the BTW is positive, whereas the excitation work done to the FTW is 

negative. This means the self-excited force promotes the vibration of the BTW and decreases the 

vibration of the FTW. In this circumstance, the vibration energy of the BTW increases over time if 

there is insufficient damping, which indicates that self-excited vibration may occur. On the other 

hand, self-excited vibration cannot occur for the FTW vibration because of the negative excitation 

work, which means that the self-excited force consumes the vibration energy, behaving like damping. 

For the driving gear, since the excitation work done to the traveling waves is opposite to that of the 

driven gear, self-excited vibration will occur in the FTW vibration rather than the BTW vibration. 

 
(a)                                             (b) 

Figure 9. Excitation work of the vibration with two nodal diameters: (a) Backward traveling wave 

(BTW) and (b) forward traveling wave (FTW). 

The vibrations with three, four, and five nodal diameters have the same conclusions, and the 

figures will not be superfluously presented here. The rest of the discussion in this paper is based on 

the results of the backward traveling wave vibration of the driven gear as an example. 

Figure 10 depicts the amplitude of the mesh force and the transmission power for the vibration 

with three nodal diameters when self-excited vibration occurs, which are called the critical mesh force 

and the critical transmission power, respectively. For each of the vibration parameters, e.g. nodal 

diameter and contact ratio, the entire image region is divided into two parts by the value line: An 

unstable area and a stable area. That means if the operating point is within the unstable area, then 

self-excited vibration will occur, and the gear will become unstable. Therefore, the possibility of self-

excited vibration occurrence for thin spur gears indeed exists, and the size of the stable area 

determines the stability of the gear’s self-excited vibration. Figure 10 shows that the stable area is not 

affected by the contact ratio. 

  

Figure 9. Excitation work of the vibration with two nodal diameters: (a) Backward traveling wave
(BTW) and (b) forward traveling wave (FTW).



Symmetry 2018, 10, 664 11 of 15

The vibrations with three, four, and five nodal diameters have the same conclusions, and the
figures will not be superfluously presented here. The rest of the discussion in this paper is based on
the results of the backward traveling wave vibration of the driven gear as an example.

Figure 10 depicts the amplitude of the mesh force and the transmission power for the vibration
with three nodal diameters when self-excited vibration occurs, which are called the critical mesh
force and the critical transmission power, respectively. For each of the vibration parameters,
e.g., nodal diameter and contact ratio, the entire image region is divided into two parts by the value
line: An unstable area and a stable area. That means if the operating point is within the unstable area,
then self-excited vibration will occur, and the gear will become unstable. Therefore, the possibility
of self-excited vibration occurrence for thin spur gears indeed exists, and the size of the stable area
determines the stability of the gear’s self-excited vibration. Figure 10 shows that the stable area is not
affected by the contact ratio.
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Figure 10. (a) Critical mesh force and (b) critical transmission power for the vibration with three
nodal diameters.

In order to analyze the influences of the number of nodal diameters and the damping ratio on the
stability of the gear system, some additional comparisons between different nodal diameters, as well
as damping ratios, are completed.

Figure 11 shows the critical mesh force and critical transmission power for vibrations with different
nodal diameters. From the figure, we conclude that the number of nodal diameters considerably affects
both the critical mesh force and critical transmission power. The more the number of nodal diameters,
the larger the stable area. This is because a vibration with more nodal diameters always has a higher
vibration frequency. As a result, the maximum vibration velocity, as well as the maximum kinetic
energy of the system, are greater than those vibrations of the smaller nodal diameters, resulting in
larger damping work for the same damping ratio. Thus, through the discussions above, we conclude
that when the other conditions are constant, the vibration with fewer nodal diameters more easily
creates self-excited vibration and becomes unstable.

Figure 12 shows the critical mesh force and critical transmission power for vibrations with
different damping ratios. The results show that the damping ratio influences both the critical mesh
force and critical transmission power. In fact, according to Equation (20), the capacity of the gear
stability linearly increased along with the increase of the damping ratio. Therefore, increasing the
damping ratio is one of the most effective methods to improve the stability and avoid self-excited
vibration for the selected gear operating condition.
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The results for the driving gear are similar to those of the driven gear discussed above, and are
not present in this paper.

4. Conclusions

This paper addresses the self-excited vibration of a thin spur gear caused by the initial transverse
vibration. Based on the theory of self-excited vibration, a method is proposed to predict the condition
of the self-excited vibration occurrence and the capacity of the self-excited vibration stability for a
thin spur gear. The self-exciting force and the associated excitation and damping work are analyzed
theoretically, and a numerical simulation is performed to verify the theoretical analysis. The operating
conditions when the self-excited vibration occurs are predicted, and the influences of the nodal
diameter, contact ratio, and damping ratio on the gear stability are also discussed. The results from the
numerical simulation prove that the proposed method is capable of predicting the stability of the gear
system and several main conclusions from the simulation are drawn as follows:

(1) The additional axial force caused by the initial transverse vibration is the self-exciting force of
the gear system, which promotes backward traveling wave vibration of the driven gear and forward
traveling wave vibration of the driving gear. That means self-excited vibration may occur under
these cases.

(2) The effect of the contact ratio on the excitation work and the stability can be neglected.
The contact ratio is not a key parameter that affects the self-excited vibration of the gear.
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(3) The nodal diameter significantly influences both the critical mesh force and critical transmission
power, which represent the capacity for stability, indicating that the vibration with a smaller nodal
diameter would more easily encounter self-excited vibration.

(4) The damping ratio also has a significant impact on system stability. Increasing the damping
ratio is the most effective method for improving the stability and avoiding self-excited vibration for a
selected operating condition for the gear system.

As the method proposed in this paper can predict self-excited vibration in spur gears, it is useful
for troubleshooting the transmission box, especially for those with thin gears. The method can also be
applied in industry for the analysis of gear crack failures with non-resonance conditions.
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Notation

A(r) vibration deformation of gear web Umax initial system energy
A0 vibration amplitude at the gear rim w vibration displacement
BTW backward traveling wave wf displacement of FTW
d0 pitch diameter wb displacement of BTW
d1 diameter of mesh point W1cbF excitation work of BTW at mesh point 1
Ft(t) mesh force W2cbF excitation work of BTW at mesh point 2
F0 amplitude of the mesh force WcbF excitation work of BTW for driven gear
Fz(t) self-excited force of driven gear WzbF excitation work of BTW for driving gear
FTW forward traveling wave WF excitation work
h thickness of the gear web WD damping work
k excitation order β axial angle
m number of nodal diameters β′ central angle of one gear tooth
n rotational speed (r/min) ∆U energy dissipated in one damping cycle
P0 transmission power ε contact ratio
r radius of the gear φ phase angle between adjacent teeth
R(r) normalized deformation function ϕ circumferential angle of the mesh point
r1 radius of the inner hole η loss factor
r2 radius of the gear rim Ω angular speed of the gear
Tmax maximum kinetic of the gear θ circumferential coordinates
T0 torque ζ damping ratio
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