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Abstract: We develop the existence criteria for solutions of Liouville-Caputo-type generalized
fractional differential equations and inclusions equipped with nonlocal generalized fractional integral
and multipoint boundary conditions. Modern techniques of functional analysis are employed to
derive the main results. Examples illustrating the main results are also presented. It is imperative to
mention that our results correspond to the ones for a symmetric second-order nonlocal multipoint
integral boundary value problem under suitable conditions (see the last section).
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1. Introduction

Fractional order differential and integral operators extensively appear in the mathematical
modeling of various scientific and engineering phenomena. The main advantage for using these
operators is their nonlocal nature, which can describe the past history of processes and material
involved in the phenomena. Thus, fractional-order models are more realistic and informative than
their corresponding integer-order counterparts. Examples include bio-engineering [1], Chaos and
fractional dynamics [2], ecology [3], financial economics [4], etc. Widespread applications of methods
of fractional calculus in numerous real world phenomena motivated many researchers to develop this
important branch of mathematical analysis—for instance, see the texts [5-8].

Fractional differential equations equipped with a variety of boundary conditions have recently
been studied by several researchers. In particular, overwhelming interest has been shown in the study of
nonlocal nonlinear fractional-order boundary value problems (FBVPs). The concept of nonlocal conditions
dates back to the work of Bitsadze and Samarski [9] and these conditions facilitate describing the physical
phenomena taking place inside the boundary of the given domain. In computational fluid dynamics
(CFD) studies of blood flow problems, it is hard to justify the assumption of a circular cross-section of
a blood vessel due to its changing geometry throughout the vessel. This issue has been addressed by
the introduction of integral boundary conditions. In addition, integral boundary conditions are used in
regularization of ill-posed parabolic backward problems. Moreover, integral boundary conditions play an
important role in mathematical models for bacterial self-regularization [10].

On the other hand, multivalued (inclusions) problems are found to be of special significance in
studying dynamical systems and stochastic processes. Examples include granular systems [11,12],
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control problems [13,14], dynamics of wheeled vehicles [15], etc. For more details, see the text [16],
which addresses the pressing issues in stochastic processes, queueing networks, optimization and their
application in finance, control, climate control, etc. In previous work [17], synchronization processes
involving fractional differential inclusions are studied.

The area of investigation for nonlocal nonlinear fractional boundary value problems includes
existence and uniqueness of solutions, stability and oscillatory properties, analytic and numerical
methods. The literature on the topic is now much enriched and covers fractional order differential
equations and inclusions involving Riemann-Liouville, Liouville-Caputo (Caputo), Hadamard type
derivatives, etc. For some recent works on the topic, we refer the reader to a series of papers [18-36]
and the references cited therein.

In this paper, we introduce and study a new class of boundary value problems of
Liouville-Caputo-type generalized fractional differential equations and inclusions (instead of taking
the usual Liouville-Caputo fractional order derivative) supplemented with nonlocal generalized
fractional integral and multipoint boundary conditions. Precisely, we consider the problems:

¢Dgy(t) = f(ty(1)), te]:=10,T],

i=1
0<171<"'<771'<"'<17m<§1<'”<§]‘<"'<§k<T,

m k
y(T) = Y oI5, y(ns) +x, 3y (0) = X 1iy(E) M
£

and
eDgy(t) € F(t,y(1)), te]:=[0,T]

m k
y(T) =Y o 1P y(yi) +x, 6y(0) = Y miy(E)), )
i=1 j=1

O<m< - <p< - <pu<f<- << - <&<T,

where £ Dy, is the Liouville-Caputo-type generalized fractional derivative of order 1 < a < 2, PI(’]S v
is the generalized (Katugampola type) fractional integral of order B > 0,0 >0, f : ] xR — Risa
continuous function, Oi, Hj, K € R,i=12,...,mj=12...,kdé= tl’P%, and F: xR — P(R)isa
multivalued function (P (R) is the family of all nonempty subsets of R).

The rest of the paper is arranged as follows: Section 2 contains some preliminary concepts related
to our work and a vital lemma associated with the linear variant of the given problem, which is used to
convert the given problems into fixed point problems. In Section 3, the existence and uniqueness results
for problem (1) are obtained by using a Banach contraction mapping principle, Krasnoselskii’s fixed
point theorem and Leray-Schauder nonlinear alternative. Existence results for the inclusions problem
(2) are studied in Section 4 via Leray—Schauder nonlinear alternative, and Covitz and Nadler fixed
point theorem for multi-valued maps. Examples illustrating the obtained results are also included.

2. Preliminaries

Denote by X! (a,b) the space of all complex-valued Lebesgue measurable functions ¢ on (a,b)
equipped with the norm:

b dx\1/p
||(PHX5=(/ |xcq0(x)\i’7x> <oceR,1<p <o
a

Let L!(a, b) represent the space of all Lebesgue measurable functions ¢ on (a,b) endowed with
the norm:

b
19l = [ loGoldx < e
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We further recall that AC"(J,R) = {x: ] > R:x,x/,. Cxn=1) e C(J,R) and x(m=1) ig absolutely
continuous }. For 0 < e < 1, we define Ce,(J,R) = {f : ] = R : (## —af)°f(t) € C(J,R)}
endowed with the norm | f|lc., = [[(# — af)°f(t)||c. Moreover, we define the class of functions f

that have absolutely continuous 6"~ !-derivative, denoted by AC#(J,R), as follows: AC?(J,R) = { f:
] - R:61f € AC(J,R),0 = tl_P%}, which is equipped with the norm || f||cr = ZZ;& 165 fllc.

More generally, the space of functions endowed with the norm | f||cr_ = Yoo 16 fllc + l1om f lc., is
defined by /

Cl(R) = {f ] R:8"f € C(J,R),5"f € Cep(],R),6 = tl_P%}.

Notice that C}; = CJ.

Definition 1 ([37]). For —oc < a < t < b < oo, the left-sided and right-sided generalized fractional integrals
of f € XL (a,b) of order & > 0 and p > 0 are respectively defined by

1-a /ot gP—1

(PI§‘+f)(t) = ?(0&) /a (tp psp)l—af(s)dS, (3)
1-a /b -1

R0 = [ e @

Definition 2 ([38]). For 0 < a < x < b < oo, the generalized fractional derivatives, associated with the
generalized fractional integrals (3) and (4), are respectively defined by

eosnm = (Fed) enn

el At -1
; m(tl pﬁ) /HWJE(SWS, ®)

eoi = (—0r D) e

pﬂ*?’H*l _dnn fb g1
toa (~1 5 | e ©

if the integrals exist.

Definition 3 ([39]). The left-sided and right-sided Liouville—Caputo-type generalized fractional derivatives of
f € AC}[a,b] of order o > 0 are respectively defined via the above generalized fractional derivatives as

DS, f(x) = "D [ (1) - k: i) ) ), s=tr %
n—1 (_1\ksk _
D} f(x) =*Dj- {f(t) _ kz ( 1):’ f(b) (bP p tp)k} (x), 5= xlfpd;dx, ®)
—0 :

where n = [a] + 1.

Lemma 1 ([39]). Leta > 0,n = [a] + 1 and f € AC}[a,b], where 0 < a < b < co. Then,
1.ifa &N,

€D§+f(t) _ m 1 /a-t (tP — sP)n—a—l (6" f)(s)ds _ pl::awnf)(t)/ ©)

n—a). 0 sl—p
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1 b gf — o\ n—a=1(—1)"(5"f)(s)ds Casen
L0 = g () SR e, ao)
2. Ifa €N,
D4 f=0"f, (Djf=(-1)""f. (11)

Lemma 2 ([39]). Let f € AC}[a,b] or C§[a,b] and « € R. Then,

DS ) = f) - X SO (o

= p
n—1 ¢ _1\k(sk _
D £ = F - T CUE (o

In particular, for 0 < a <1, we have

PI3EDG f(x) = f(x) = f(a), PL;-EDj- f(x) = f(x) — f(b).

For computational convenience, we introduce the notations:

k g;’ k
Ay = 1=) pi—, A=) u (12)
=1 P j=1
TP m ”P(ABJFl) m UPAB
Bl = _— 0; - ! 7 B2 = l - 0j l 4 (13)
p ; oFHIT (B +2) ; "0PT(p+1)
QO = AiB,+ BiA;. (14)

The following lemma, related to the linear variant of problem (1), plays a key role in converting
the given problem into a fixed point problem.

Lemma 3. Let h € C(0,T)NL(0,T), y € AC%(]) and Q # 0. Then, the solution of the boundary value
problem (BVP):

EDg y(t) = h(t), te]:=1[0,T],

y(T) = impzﬁmm) +x, dy(0) = imy@j), (15)
0<m ;---<171~<~--<17m<{;’1 <]-7--<§]‘<---<§k<T,
is given by
y(h) = I+ &{ - B ,é I3 E) + A1 [ L 03I PhOm) I H(T) + x] }

0 k m atp (16)
+ptT){Bz 121 uiP 1§ h(G)) + Az [ 121 0; P1ys "h(n;) — P15 h(T) + K} }
j= =

Proof. Applying 7, on the fractional differential equation in (15) and using Lemma 2, the solution of
fractional differential equation in (15) for t € J is

() =PI h(t) + 1+ c tp—pla/tsp1(fp—5")”‘1h(5)ds+c tol (17)
y(t) =I5, 12 =Ty o T
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for some c1, c; € R. Taking § — derivative of (17), we get

2—n t
Sy(t) =PI () + ¢ = h /0 P1(1 — ) 2p(s)ds + co.

Using the boundary condition éy(0) = Z] 1 #jy(G;) in (18), we get

k gp
CZ—ZVJpIg+ (€)) +ClZVJ+C2ZVJ
j= j=

which, on account of (12), takes the form:
k
A1C2 — A2C1 = Z ‘Zl]plg+h(6/)
j=1

Applying the generalized integral operator ¢ I§+ on (17), we get

B e w(B+1)
Br1)  PpPr(g+2)

PP _patB
o+y() p10+ h( )+C1 151‘

which, together with the boundary condition y(T) = Y/ ; 0; F’Ig+y(17i) + «, yields
p
T° a+pB 77p
PIS k(T — = PI, i
s ratay ZUI hon) +2‘”1 oPT(p+1)
p(p+1)

+ Qi+ K.
21 TP (B +2)

Using the notations (13) in (21), we obtain
Bicy + Bycy = ZUZPI’H ni) —PIEh(T) +x

Solving the system of Equations (19) and (22) for ¢; and ¢, we find that

{ Blzm S h(E) +A1[Zmpl"‘+’3h 1) =PI h(T) + x| }.

and

{Bz Z?‘Jplg+ (¢)) +A2[Z"z pIHﬁh (i) = 1*h(T) +K} }

50f 20

(18)

(19)

(20)

(21)

(22)

(23)

(24)

Substituting the values of ¢; and c; in (17), we get Equation (16). The converse follows by direct

computation. The proof is completed. [

3. Main Results for the Problem (1)

By Lemma 3, we define an operator G : C — C (C = C(],R)) associated with problem (1) as

k m
gy(t) = Pl f(tLy(h) + é{ —B1 ) w15 (&, y(E)) + Ar [ Y o P13 P (i ()
0 =1
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0 k
PR F(T,y(T) +x] } + o {B2 Y I3 £(E,v()
j=1

+Az { iw 1P iy (i) — I F(T,y (D) + K] } (25)

In the following, for brevity, we use the notations:

P“ p(a+p)
e Uk TP
A S e |ow{'Bl'Z”‘f st Gt gD )
o p(a+p)
0t TP
‘Q|{| 2\2\#; m+| 2|{Z| ail BT (et B+ 1) +p“1“(a+1)}}' (26)

In the first result, we establish the existence of solutions for problem (1) via Leray-Schauder
nonlinear alternative [40].

Theorem 1. Suppose that the following conditions hold:

(Hy) For a function ¢ € Ll([O, T],R™"), and a nondecreasing function ¢ : R™ — R such that lf(t,y)| <
o®)yp(llyl)), V(ty) €[0T xR;

(Hy) there exists a positive constant M such that

M
x| (o] A1] + TP|Az|)
p|Q|

>1,

P(M)A1 +

where

A= PI(T) + |Q|{\Bl|Zw,wow,w|A1|[2wPI“*ﬂcp(ni)MIgw(T)}}
o (1Bl 2 115902 + 142l 2 ol P15 P pp) +#15 9(1)] . @)

Then, there exists at least one solution for problem (1) on [0, T].

Proof. Firstly, we show that the operator G : C — C defined by (25) is continuous and completely
continuous.

Step 1: G is continuous.

Let {y,} be a sequence such that y, — y in C. Then,
k
1G(yn) () =G (] < PIAf(ELya(t) — F(Ey(H)] + f12|{|31|]§ [P I+ 1 £ (8 yn (7)) — £(81,y(E)))]

1A [ 1 1o TP LA v n)) — £y )] + I LT, 0(T)) — £ 9D}

i=1
P

+ ey {132l Z P15 £ (85,9 () = £ (5,98

]_

Azl [ 32 1o PO (1)) = POy )|+ 2B LF(T, 9 (T)) = AT y(D)]] )

i=1

AllfCryn) = FC Y-

IN
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In view of continuity of f, it follows from the above inequality that

1G(n) =GWI < AlFC yn) = fFC )l =0, as n— eo,

Step 2: G maps bounded sets into bounded sets in C.

For a positive number r, it will be shown that there exists a positive constant ¢ such that |G (y) || < ¢
foranyy € B, = {y € C : |ly|| < r}. By (Hy), foreach t € ], we have

G() ()]

IN

k m
OIS If (L ()] + ﬁ{w X P B F @ @) -+ 1aal | X bl P13y )
j= i=
t k
HIAFT Y]+ Ixl] §+ e {182 X 7 £ (81
=

Al Y2 1611 PE P £ yn)| + P18 AT, y(T) + 1]}
i=1

IN

Lo p(T)y([lyll) + |Q{|B1IZIH;‘710< P&y (||y||)+|A1|[Z|o,|P1“ ¢Cr)p(lyl)

i=1

+ 15 $(T)p(yll) + ]| } + m{w}; i 1° 18- 0 (& lly )

+|Az|[f:\mm“+% () (lyl) + P16 (T (llyll) + Ix]] §

m

w(lyll) (13- 9(T) + |Q|{\Bl|Zw,ww@m|A1\[Z|oaw“* 9 (i)

IN

i=1

+I59(T)| ) + ﬁ{\Bz\ ; P I 0(&) + 142l | Y2 il 1P pn) + 15 (D)) })
£

L eIl Ar| + TP A)
P[]

IN

k m
w(lirl) (P15 o(T) + ﬁ{wn 3 InjlP 13 p(2) + |44 | L Il 15 Pom)

]'7

+15.9(T)| } + ‘Tfn {18 Z P15 4(&) + 142 g il P15 P () + P13 ()| })
L [Kl(plAs] + T Aa))

— /.
e[

Step 3: G maps bounded sets into equicontinuous sets of C.

Let B, be a bounded set of C as in Step 2, Then, for ¢, t, € (0, T| with t; < t,,and y € B, we have

G(y)(t2) = G(y)(11)]

<)~ )|+ t|{|Bz|Z|P‘J|pIo+|f§], (@)
+|4g| [ Z o3l 15 PLF Oy () |+ P I LA (T, y(T))| + Il |}
tl - g1 t sP—1
= }/ £ —s0)l (t’f—sﬂ)lﬂ"}(ﬂs)d”/t1 (té’—sp)lf"‘(p(s)dS

t - i 14 ®
+! me‘ {000) (1Bl 32 iy PR 0(@5) + 12l 351681 P ) + 18- 0(D)] ) + i}
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— 0 as tp — 14,

independently of y € B,. In view of steps 1-3, it follows by the Arzeld—Ascoli theorem that the
operator G : C — C is completely continuous.

Step 4: We show that there exists an open set V.C C withy # AG(y) for A € (0,1) and y € oV.
Lety € C be a solution of y = AGy for A € [0,1]. Then, for t € [0, T], we have
y®H = [AGy) D)
< PIIFYON gy {|Bl| 2 I L@ @)+ 1A [ X bl P15 £y )

i=1

I F(Ty (D) + Il } + m{'32',§ 1P I3 1 £y (@)

2l [ X bl 1P Oy )] + 018 AT, y(T)] + 1]}

i=1

IN

pUlyl (P15 lo(D) + 155 {|Bli 2 7§ (@)) + |l 2 joil PIg P9 ()

wrpm]+ J&{\Bﬂzwwow g+ 142l[ L lei 15 otn) + #1507 })

eIl Aq] + TP]Ao))
Pl

which, on taking the norm for ¢ € |, implies that

[yl
<1
x| (p|A1| + TP[Az]) —
A+
vl A o0

By the assumption (H;), we can find a positive number M such that ||y|| # M. Introduce
V ={y € C: |ly| < M} and observe that the operator G : V — C is continuous and completely
continuous. By the definition of V, there does not exist any y € 9V satisfying y = AG(y) for some
A € (0,1). Hence, we deduce by the nonlinear alternative of Leray—-Schauder type [40] that G has a
fixed point y € V that is indeed a solution of the problem (1). This completes the proof. [

In the next result, we prove the existence of solutions for problem (1) by applying Krasnoselskii’s
fixed point theorem [41].

Theorem 2. Let f : [0, T] x R — R be a continuous function such that the following assumptions hold:

Hz) |f(t,x) = f(t,y)| < Lllx—yl, Vte[0,T], L>0, x,y eR;
(Hy) [f(t,y)] < ®(t), Y(t,y) €[0,T] xR, and ® € C([0, T],R*).

Then, problem (1) has at least one solution on [0, T, provided that

ox

TP & pla+p) Tox
L( Q] {|Bz| Y Iul m +]A;]

’71
ey S R =2

}) <1. (28)
[(p]A1|[+TP|Az|)

Proof. Let us fix7 > [|®[|A + |KT,where |®|| = sup,c; |®(t)| and consider B = {y € C:

llyll < 7}. Let us split the operator G : C — C defined by (25) on By as G = A + B, where A and B are
given by

k m
Alt) =I5 fLy) + 5 { - B Y 115 Sy y(6)) + A [ Y i P15 FOny (1)) =I5 ST, y(D)) + x|},
= 1=
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and

tP x o d a+pB o

B(t) = —={B2 Y P16 £(&, (&) + Ao | Yo PP £y ny) =PI ST, (1) +] .
% j=1 i=1
For x,y € By, we find that
lx+ Byl < sup {sta ftx()]+ 5 {|Bl| z 1P I £ (& x(8) + Ar { z o3l #1521 £ (i x (1))
S
I T, 2(T)] + Il | + m{'BZ'; PTGy (@)]

i=1

A2l Y2 163l PP £ )|+ PB LFCTy(T)] 4[] }

1 ¢
< || ﬁ ‘Q|{| 1|2W1m
(Hﬁ) pa
TP &
+‘A1‘[2| 1‘ lX"r,Br Dé—|—ﬁ-|—1) +p“r(0¢—|—1)]}+ |Q|{‘ 2|2|H} “r(w—l—l)
p(a+p)
e x| (p|A1] + TP|Az|)
sl “+5T(a+ﬁ+1)+P“T(a+1)]}}+ ol
< ||q>HA+ |K|( ‘A1|+TP‘A2|) <7

plQ
Thus, Ax + By € Br. Now, for x,y € B; and for each t € |, we obtain
te k .
1Bx =Byl < sup { == {[Bal Y ImlP 16 |£(8j,(87) = £(&, ()]
Eavdie] j=1

+4o| | il o3 P I P O x 1)) = £ iy i) |+ P B LF(T, 2(T)) = F(T,y(T)) ] }}

- L(LP{IBIfI‘IiHA\[iIU‘\ g e+P) L™ Vi
= o U G W e (o 1) TR b (ay p 1) T p T (4 1) Yl

which, together with condition (28), implies that B is a contraction. Continuity of f implies that the
operator A is continuous. In addition, .4 is uniformly bounded on By as

Tox 1 k f”‘ m ,1(“+ﬁ)
Ay| < |®|(==——+=1IB = +|A e
Iyl < el + el | Ll rrar) Al L e

i
i)+

In order to show the compactness of the operator A, let sup, ;g [f(tY)] = f < oo
Consequently, for t1,t, € |, t; < t;, we have

1—a

() ()~ (Ap) ) < s /0“ (8 =) = (= ) (s () ds

[ ) syl as]|

par(o{+ 0 {2(#’3 BRURCIRTANE
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As the right-hand side of the above inequality tends to zero independently of y € B; when
ty — t1, therefore A is equicontinuous. Thus, A is relatively compact on B;. Hence, the conclusion of
Arzeld-Ascoli theorem applies and that .4 is compact on By. Since all the conditions of Krasnoselskii’s
fixed point theorem hold true, it follows by Krasnoselskii’s fixed point theorem that problem (1) has at
least one solutionon J. [

Our final result in this section is concerned with the uniqueness of solutions for problem (1) and
is based on a Banach fixed point theorem.

Theorem 3. Assume that f : [0, T] x R — R is continuous and the condition (Hs) holds. Then, problem (1)
has a unique solution on | if
LA <1, (29)

where A is defined by (26).

Proof. In view of the condition (29), consider a set B = {y € C : ||y|| < 7}, where

x| (0] A1|+TP| A, |)
S - sup |£(£,0)] = fo
1—LA te[0,T]

and show that GB; C B; (G is defined by (25)). For y € By, using (H3), we get
1G(y) (1)l
k
< Plllf(Ly () = f(50) + | f(£0)]] + ﬁ{‘Bl‘ Z; [P Ig+ [1£ (81, (&) — £(&1,0) [+ 1£(E;, 0)l]
=
0 [ 32 1o P3P () — £, 00 + £ )]+ 218 (T, y(T)) — F(T,0)| + (T, 0)]
i=1

0 k
+xl} + {18 L I8 1(E (&) = 16,00+ /(& 0

+14 [i o I P Oy 1) = £, 0)| + £, O)) + PR [LF(T,y(T)) = £(T,0)] + |£(T,0)]

+Ixl]}

(Lllyll + fo)

pa (a+pB)
TP« k ) m 14
+ A4 [ i

1
- -+ - !B g N I
o rEsRAral 2 ey Ll e

IN

TP o mP(’X*ﬁ)

p“F(Dc+1)]}+p\Q|{| 2'};‘”f|pwr(¢x+1)+| 2'[;‘”’|pa+ﬁr(zx+ﬁ+1)

+

% x| (p|A1] + TP| Az])
+prxr(a+1)” + 00

x| (0| A1] + TP|Az|)
Pl

<7

< (L¥+ fo)A+

which, on taking the norm for t € J, yields ||G(y)|| < 7. This shows that G maps B; into itself. Now,
we establish that the operator G is a contraction. For that, let y,z € C. Then, we get

k
IGw)(H) —G(=z) ()] < PIoIf(ty(t) — ftz(t)| + fﬁ‘{lBﬂ 21 [ilP 1o+ 1 (&5, y(8) = £(8,2(8)
=

+41] il sl P15 P £ Oy (i) = o 2())| + P BG F(T,y(T)) = F(T,2(D))]] |
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p k
+p|tQ{|Bz|j; |Vj|p18‘+‘f(§j,y(§j)) _f(Cj/Z(C]’)H

+|4a|[ il 03l PI P Oy (1)) = £ 1o 2(00)] + P I | F(Ty(T)) = F(T,2(T))]] }

< LAly —z|.

Consequently, we obtain

1G(y) =G < LA[ly — =],

which implies that G is a contraction by the condition (29). Hence, G has a unique fixed point by a
Banach fixed point theorem. Equivalently, we deduce that problem (1) has a unique solution on J. The
proof is completed. [J

Example 1. Consider the following boundary value problem
V3eDgy(t) = f(ty(1)), t € 0,2],
y(2) =1/21313/5y(1/4) +2/31/313/5y(3/4) +2/9, (30)
6y(0) = 2/5y(1) +4/5y(3/2),

wherep =1/3, 0« =7/5,00=1/2,00=2/3, =3/5 1 =1/4, 410 =3/4, y1 =2/5, yp =4/5, « =
2/9,81=1,8 =23/2,T =2and f(t,y(t)) will be fixed later.

Using the given data, we find that |A;| = 2.947314182, |A;| = 1.2, |B1| = 0.491608875, |B;| =
1.181571585, | Q2| = 4.072393340, and A = 27.12293267 (A;, B; (i = 1,2), 2 and A are respectively given
by Equations (12), (13), (14) and (26)).

For illustrating Theorem 1, we take

_ A+ lyl 1
£y =g (GraTv+3s) 1)

Clearly, f(t, x) is continuous and satisfies the condition (H;) with ¢(t) = %, (lyll) = ||yl + 3.
By the condition (Ha), we find that M > 2.390158. Thus, all conditions of Theorem 1 are satisfied and,
consequently, there exists at least one solution for problem (30) with f(t,y(t)) given by (31) on [0, 2].
In order to illustrate Theorem 2, we choose

_tan"ly+e!

4/81 +sint

It is easy to check that f(t, x) is continuous and satisfies the conditions (H3) and (H4) with

L =1/36and ®(t) = 8\7% In addition,

f(ty) (32)

o (a+B) TP

TP k m 77’]
L(——1!IB R — - i ~ 0.420512 < 1.
Gt X ey + el S sy * oo o)) -

Thus, all of the conditions of Theorem 2 hold true. Thus, by the conclusion of Theorem 2,
problem (30) has at least one solution on [0, 2].

With LA ~ 0.753415 < 1, one can note that the assumptions of Theorem 3 are also satisfied.
Hence, the conclusion of Theorem 3 applies and the problem (30) with f(t,y) given (32) has a unique
solution on [0, 2].
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4. Existence Results for the Problem (2)

This section is devoted to the existence of solutions for problem (2).

Definition 4. A function y € C([0, T|,R) possessing Liouville—Caputo type generalized deravative of order «
is said to be a solution of the boundary value problem (2) if y(T) = alplg+y(111) +x, 6y(0) = Z] 1Hy (&)
and there exists function v € L1([0,1],R) such that v(t) € F(t,y( )) a.e. on [0, T| and

¥ = PR+ 5] - Blzy]plmv(g] +A1[Zal 18 Poy) — P15o(T) + 5]}

{BZZy]pIg+v &) +A2[Zal fv(m)—ﬁIgw(T)ﬂ}}. (33)

4.1. The Carathéodory Case

Here, we present an existence result for problem (2) when F has convex values and is of the
Carathéodory type. The main tool of our study is a nonlinear alternative of Leray—Schauder type [40].

Theorem 4. Assume that:

(Ci) F : [0,T] x R — Pepc(R) is L'-Carathéodory, where Pepo(R) = {Y € P(R)
Y is compact and convex};

(Ca) there exists a continuous nondecreasing function ¥ : [0,00) — (0, 00) and a function ® € L(]0, T],R*)
such that

IE(t)lp = supf|x] : x € E(ty)} < DO (|lyll) for each (£,y) € [0,T] x ;

(C3) there exists a constant W > 0 such that

W] -
x| (p]A1] + TP[Az]) ~ 7
Y(||W|)Ar +
(W) o
where
- a+pB
Ay = FIO(T)+ |Q‘{|Bl|2|mmo+ (&) +|A1\[2 o3l P 1o P(s) + P13 (T)| |
TP
mm{wzmwlm (€])+IAzI[Z\Uz\F’I“+’3<1>(771)+P18‘+<I>(T)]}~ (34)

Then, problem (2) has at least one solution on [0, T).

Proof. In order to convert problem (2) into a fixed point problem, we introduce an operator N : ¢ —
P(C) by
N(y) ={heC:h(t)=Fy)(H)}, (35)

where

" 1 k ” i a+p «
Fy)(t) = P10+v<t>+5{—Bl;ujplow(cj)m[zoi% o) =PI o(T) +] |
]:

+i{ BT P 1 0(E) + Ax [ 21 0PI Poy) 1, 0(T) +x] |,

for v € Sr,,. Obviously, the fixed points of the operator ' correspond to solutions of the problem (2).
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It will be shown in several steps that the operator N satisfies the assumptions of the
Leray-Schauder nonlinear alternative [40].

Step 1. N (y) is convex for each y € C.
This step is obvious since S, is convex (F has convex values).
Step 2. N maps bounded sets (balls) into bounded sets in C.

For a positive number R, let Bx = {y € C : |ly|| < R} be a bounded ball in C. Then, for each
h € N(y), y € Bg, there exists v € Sf , such that

1 m
n(t) = P13+v<t>+0{ Blzm%wc + A Lot =I5 o(T) + 5]
]_
+ i { B T P T 0(E) + 4s | ;’;mf’lﬁv(m)—PIgw(T)H]}.

Then, for ¢ € [0, T], we have
« 1 £ « o a+p o
< P+ e { 1B X B 0@+ al [ Lo PPl + P8 [o(T)] + ]}
j=1 i=1

te £ o7 L o 7a+p 078
+—ar{ B2l o P 1[o(@)] + 1421 | Y- 03 13 Plor) | + P18 lo(T)] + Il }
plQ| = =

IN

#(lyll) (13- (T) + |§)|{|Bl|2uﬂo+ (&) +|A1|[f 1o Pl + 15 o(T)] }

+PT£| {\Bz\ Zy]f’[tx (&) + |A2|[Z‘71 PI’H'ﬁ'iD(qi) +plg+<1>(T)] })

, IKl(pl 4 LA
i)

Thus,

Il < ¥ (R)(PI (1) + M{\Blwzw,m <¢]>+|A1|[z|a,|Pz“*ﬁcb(m)mg@(T)}}
=

v . . " (0| P1 P (i,
+ eyt ;Iﬂ,\”&@@])l+\Az\[i;|m|”lo+ @ () + 1. (T)| })

el Ar] + T9]Ao])
QY

I\

Step 3. N maps bounded sets into equicontinuous sets of C.

Letty,tp € (0,T), t; < tp, and lety € Bg. Then,

|h(t2) = h(t1)]

! tP P
< |Plg-o(t2) = Plg-o(tr) el |BZ|Z|V]|P10+\ (@l
4ie]
el 321011 PPl + P fo(T)] + [xl] )
2 * 1 i 0+
1=
1—a 1 1 4
P lP(I{) h sP sP tr sP
< B _ st
< 1w g ~ e O, e O
|t — 1] ko e
S YR (1Bl X gl - (C;)+|A2|[Z|¢Tz| I8P () + P15 0(T)] ) + | Aa[x)}

j=1
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— Qasty—t; =0,

independently of y € Br. In view of the foregoing steps, the Arzeld—Ascoli theorem applies and that
the operator N : C — P(C) is completely continuous.

In our next step, we show that \V is u.s.c. We just need to establish that A has a closed graph as it
is already shown to be completely continuous [42] (Proposition 1.2).

Step 4. N has a closed graph.
Letyn — Y+, hn € N (yn) and h, — h,. Then, we have to show that . € N (y«). Associated with
hy € N(yx), we have that v, € S F,y, Such that for each t € [0,T],
o 1 d o L a+p o
hn(t) = PI%0u(t) + 5{ ~B ;W’I on(&)) +A1[Z;Ui P Pon () — P10, (T) +KH
j= i=

10 k ) m +B
+p—Q{B2Zy]-pl(‘)hvn(é‘j)—l-AZ[ZUi o+ vn(ry,)—pléﬁvn(T)—l-K}}.
=1 i=1

Thus, it is sufficient to establish that there exists v« € Sf, such that for each t € [0, T],
o 1 £ o L a+p o
h(t) = PIou(t) + 5 { =B L uf10u (&) + A1 | Lo I Pou () =10 (T) +x] }
j=1 i=1

to k . o a+p «
+E{BZ 3 1180 (&) + Ao Y- 0 P15 Pou (i) — P10 (T) 1] |
j:l i=1
Next, we introduce the linear operator © : LY( [0,T]|,R) — C as
v—Ou(t) = FPIy.o(t) Q{ By E,u]'o[ 0(¢) +A1{Z¢TI + Py ’71)_P10+U(T)+K]}
tP )
otk 3P Io(E) + A [ 3200215 o) —P1g.o(T) + 5] ).
=1 i=1

Observe that ||, (t) — h.(t)|| — 0 as n — oo. Therefore, by a closed graph result obtained in [43],
© o Sp is a closed graph operator. Moreover, we have that 1, (t) € ©(Sf,, ). As yn — y«, we have that

() = fo.0+ 5]~ Blzwz 0. (g)) +A1[Zm o= Pou(m) =0 (T) +x] }
P

+pt;{322y]’3[ 0.(5)) +A2[Za, o, () — P10, (T) +x] )

for some v, € Sp, .

Step 5. There exists an open set U C C([0, T],R) with y ¢ AN (y) for any A € (0,1) and all
y €.

Let A € (0,1) and y € AN (y). Then, we can find v € L'([0,T],R) and v € Sp, such that, for
€ [0, T], we have

v = MR+ {8 ZMIOW(C] +A1[zla,wo+ Polm) =16, 0(T) +x] }
&

t : & o a+p «
+Ap70{B2 Z ]’l]'plo+v(§]‘) + Az |: Z 0; p10+ 'z)(;zll-) _ PIO+U(T) + K] }
=1 i=1
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As in Step 2, one can find that

ly(#)]

IN

PR o)+ 1y ~ {18} 2 P T o)) + 14| 21‘7’ P15 PloGn)] + P B o(T)] + ¢l }

P
+ a2 ¥ I8 o(6) + Ao [ 52 10 P15 Lo + 033 fo(T)] + )]}

ol =1 i=1

IA

¥(y) ("I o(T) + |§1)| {111 Z P10 (E)) + | A4 [ 2 o3l P I Pl )|+ 01 |@(T)] | |

TP . . .
*m{‘Bz\;\ﬂﬂ” (g)) + \Az\[glaA"IOf%(m)wI o(1)|})

[<l(p[A1] + TP|Az|)

+ 7
QY

which implies that

llyll
<1.
x|(p|A1] + TP|Az]) —
b4 N> +
(lylh A2 o0

By the assumption (C3), there exists W such that ||y|| # W. Let us set
U={yecCUR):[yl <wW}.

Observe that the operator A" : U — P(C(],R)) is a compact multi-valued map, u.s.c. with convex
closed values. From the choice of U, there does not exist y € dU satisfying y € AN (y) for some
€(0,1). In consequence, we deduce by the nonlinear alternative of Leray—Schauder type [40] that
the operator A has a fixed point y € U that is a solution of problem (2). This completes the proof. [

4.2. The Lipschitz Case

Let (X,d) be a metric space induced from the normed space (X;|| - ||). Define H; : P(X) x
P(X) = RU {co} as Hy(P, Q) = max{sup,pd(p, Q),sup,cod(P,q)}, where d(P,q) = inf,cpd(p; q)
and d(p,Q) = inf,cqd(p;q). Then, (P ;(X), Hy) is a metric space [16]. (Here, Py ;(X) = {Y €
P(X) : Y is closed and bounded}).

In the following result, we apply a fixed point theorem (If N : X — P,;(X) is a contraction, then
FixN # @, where P, (X) = {Y € P(X) : Y is closed }) due to Covitz and Nadler [44].

Theorem 5. Let the following conditions hold:

(C4) F:[0,T] x R = Pp(R) is such that F(-,y) : [0, T] — Pep(R) is measurable for each y € R, where
Pcp( ) =A{Y € P(R) : Y is compact};

(Cs) Hy(F(t,y),F(t, 7)) < 6(t)|ly — 7| for almost all t € [0, T) and y,j € R with 6 € C([0,T],R") and
d(0,F(t,0)) < 0(t) for almost all t € [0, T|, where

Then, problem (2) has at least one solution on [0, T] if ||0||A < 1, i.e.,

TPa 1 ¢
K= 10 ey |Q\{|Bl|2|ﬂf AT )
pla+p)
A T
+|A1|[Z| e e TR rem vl (36)

P”‘ m p(a+p)
i i e
+‘0|Q|{‘BZ‘Z|V] le"( +1)+‘ 2|[§|Ul| a+ﬁr(“+ﬁ+1)+par(lx+1)}}} <L
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Proof. By the assumption (Cy), it is clear that the set S, is nonempty for each y € C and thus there

exists a measurable selection for F (see Theorem IIL.6 [45]). Firstly, it will be shown that N (y) € P.(C)

for each y € C, where the operator N is defined by (35). Let {u,},>0 € F(y) be such that u,, —
u (n — o0) in C. Then, u € C and we can find v, € Sf,, such that, for each t € [0, T},

1 k m
() = Pioa®)+ 5{ =B Xm0 (@) + A1 [ Y oi P 1 Pou () — 1Mo (T) +x] }
j=1 i=1
t : o . a+p o
+p—Q{Bg ) i Igron (&) + Az [ Y 0i PIg P ou (i) — PI§ 0 (T) + K] }
j=1 i=1
Since F has compact values, we pass onto a subsequence (if necessary) such that v,, converges to
vin L'([0, T], R), which implies that v € S Fy and for each t € [0, T], we have
. 1 k . m atp .
() = u(t) = PIo) + 5{ =B X ufon(@) + A1 | Lo g ol =15 0(T) +x) §
j=1 i=1

0 k m atB
+p—Q{Bz Y uifIg0(E)) + Az [ Y 0PI o(y) — P15 o(T) + K] }
=1 i=1

Thus, u € N (y).
Next, it will be shown that there exists K < 1 (defined by (36)) such that

Hy(N(y), N(9)) < K|ly — 7| foreach y,7 € C.

Lety,7 € C and hy € F(y). Then, there exists v1(t) € F(t,y(t)) for each t € [0, T] and that

1
m) = o+ 5{- Blzm%vl(@ +A1[Zmplofv1<n,>—Plowlmﬂ}}
12
tP mn '
+m{32 Zl U1 01(E) + Ao Yo Oy Pon () — P10 (T) +x] }.
= =

ly(t ) 7(t)| and that there exists w € F(t,7(t)) satisfying the
t)l, te[0,T].
(R) as

S(t) ={w e R: |oy(t) —w| <0()[y(t) —7(H)[}-

By (Cs), Ha(F(t,y), F(t, 7)) < 0(t)
inequality: vy (t) — w| < 6(#)|y(t) — 7(
Next, we introduce S : [0, T] — P

By Proposition II1.4 [45], the multivalued operator S(t) N F(t,(t)) is measurable. Thus, there
exists a function v, (), which is a measurable selection for S and that v, (¢) € F(¢t,7(t)). Thus, for each
t € [0, T], we have |vy(£) — 02(£)] < 6(8)[y(t) — 7(t)].

Next, we define

1 k " m “+‘B Dc
6{ —B1 ) uiPI02(8) + A [ Y i Pl Pou (i) =PI va(T) +K]}
=1 i=1

ha(t) = FPlg.oa(t) +

t° k o1 e o 1&+B o
+oa B L T5-02(8)) + Ao Lo P Poal) I oa(T) +x]}
j=1 i=



Symmetry 2018, 10, 667 17 of 20

for each t € [0, T]. Then,

|hy(t) — ho(t)]
1

m
gplg+‘vl(t)_02(t)‘ | ‘{|Bl|Z|ﬂ]|plo+‘vl(§])_02 g] |+‘A1‘[Z Uz‘plm [01(n:) — v2(11:)]
j=1 =1

+ I [on(T) = o2(T)]] } + IQI{|Bz| ZV] 8+ loa(&)) — 01() \+|Az|[i 6P o) = o1 ()|
]— i=1
+P I oo (T) — o (T)]] }
o™ 1 m 111 p(a+p) TP
SHGH[W |Q|{‘ 1\2|H;W+\ 1\[;| “+5I’tx+/3+1)+p“l"(w+1)”
pu o(a+p) TPn i
+ |Q|{\ leIﬂ]mHAz\[ZI ail Mr(wﬁﬂ)+par(a+1)]}]ny—yu.

pa

Hence,
oo platp)
TP 1 771
I =l <10l ey M{wnzm iar(HlﬁlAll[Dz\m
(‘JtX

TP TP !
T o {'Bz'; il T 1)

m pla+p)
. i " .
el [ Y ol g + ) I 9

+

Analogously, interchanging the roles of y and i, we find that

TPe 1 r gl P
HNO)N@) < 10l [ + |Q|{\Bl|2|u]mﬂfh\[ilmlm
Plx

TP TP !
torar D)) e {‘BZ‘E"‘J‘pwer)’

pa+p)
4 7t TP _
ol | Ll g5+ a9

This shows that V is a contraction. Therefore, the operator A/ has a fixed point y by Covitz and
Nadler [44], which corresponds to a solution of problem (2). This completes the proof. []

Example 2. Consider the following inclusions problem:
2. DYy (t) € E(ty(1)), t € 10,2],
y(2) = 1/21V313/5y(1/4) +2/31/313/5y(3/4) 4+ 2/9, (37)
6y(0) =2/5y(1) +4/5y(3/2),

where F(t,y(t)) will be defined later.

The values of |A1|, |Az|, |B1l, |Bz2|, |2 and A are the same as those in Example 1. For illustrating
Theorem 4, we take

F(t,y(t)) = [\/L%H(sinw;),“%”(tan—lwwi)] (38)
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It is easy to check that F(t,y(t)) is L' —Carathéodory. In view of (Cy), we find that ®(t) =

14t 2 1
(1+ >,‘~I’(||y|\) = |lyll + T and the condition (C3) implies that W > 3.289470. Thus, all

hypotheses of Theorem 4 hold true and the conclusion of Theorem 4 applies to problem (37) with
F(t,y(t)) given by (38) on [0, 2].
Now, we illustrate Theorem 5 by considering

1 —t 1
FOt0) = [l (-t yesne), S (G D) o

Clearly,

(t+1)
20

Hy(E(t,y), E(t, 7)) < ~55~ Iy = 7ll-

t+1
Letting 0(t) = ( 1—’2—0 ), we observe that d(0, F(£,0)) < 6(t) for almost all ¢ € [0,2] and that
K =~ 0.6780733168 < 1 (K is given by (36)). As the assumptions of Theorem 5 hold true, there exists at
least one solution for problem (37) with F(t,y(t)) given by (39) on [0, 2].

5. Conclusions

We have developed the existence theory for fractional differential equations and inclusions
involving the Liouville-Caputo-type generalized derivative, supplemented with nonlocal generalized
fractional integral and multipoint boundary conditions. Our results are based on the modern
techniques of the functional analysis. In case of a single valued problem (1), we have obtained three
results: the first two results deal with the existence of solutions while the third one is concerned with
the uniqueness of solutions for the given problem. The first existence result relies on a Leray—Schauder
nonlinear alternative, which allows the nonlinearity f(t,y) to behave like |f(t,y)| < ¢(t)p(||yll)
(see (Hp)) and the second results, depending on Krasnoselskii’s fixed point theorem, handles the
nonlinearity f(t,y) of the form described by the conditions (H3) and (Hjy). The third result provides a
criterion ensuring a unique solution of the problem at hand by requiring the nonlinear function f(t,vy)
to satisfy the classical Lipschitz condition and is based on a Banach fixed point theorem. The tools
of the fixed point theory chosen for our case are easy to apply and extend the scope of the obtained
results in the scenario of simplicity of the assumptions. Again, for the inclusion problem (2), the
idea is to assume a simple set of conditions to establish the existence of solutions for problem (2)
involving both convex and nonconvex valued maps. As a matter of fact, the fixed point theorems
chosen to solve the multivalued problem (2) are standard and popular in view of their applicability.
Concerning the choice of the method to solve a given problem, one needs to loook at the set of
assumptions satisfied by the single and multivalued maps involved in the problem, which decides
the selection of the tool to be employed. As an application of the present work, the generalization
of the Feynman and Wiener path integrals developed by Laskin [46], in the context of fractional
quantum mechanics and fractional statistical mechanics, can be enhanced further. We emphasize that
we obtain new results associated with symmetric solutions of a second-order ordinary differential
equation equipped with nonlocal fractional integral and multipoint boundary conditions if we take
O<m< - << - <yu<& < <Gj<-- <G <T/2and f(t,x) to be symmetric on the
interval [0, T] forall x € Rwhena — 27 (p =1).
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